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Abstract 1 

The transmission risk of SARS-CoV-2 within hospitals can exceed that in the general community 2 

because of more frequent close proximity interactions. However, epidemic risk across wards is still 3 

poorly described. We measured CPIs directly using wearable sensors given to all those present in a 4 

clinical ward over a 36-hour period, across 15 wards in three hospitals in spring 2020. Data were 5 

collected from 2114 participants. These data were combined with a simple transmission model 6 

describing the arrival of a single index case to the ward to estimate the risk of an outbreak. Estimated 7 

epidemic risk ranged four-fold, from 0.12 secondary infections per day in an adult emergency to 0.49 8 

per day in general paediatrics. The risk presented by an index case in a patient varied twenty-fold 9 

across wards. Using simulation, we assessed the potential impact on outbreak risk of targeting the 10 

most connected individuals for prevention. We found that targeting those with the highest 11 

cumulative contact hours was most impactful (20% reduction for 5% of the population targeted), and 12 

on average resources were better spent targeting patients. This study reveals patterns of interactions 13 

between individuals in hospital during a pandemic and opens new routes for research into airborne 14 

nosocomial risk. 15 

  16 
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Introduction 17 

Hospitals are vulnerable to outbreaks of disease, which is especially important in a crisis such as the 18 

COVID-19 pandemic. During the first pandemic wave in the UK, up to 16% of COVID-19 in-patients 1 19 

and 70% of staff 2 had acquired their infection in hospital. In addition to the direct medical risks to 20 

healthcare workers (HCW) and patients, infections among staff can lead to staff shortages and 21 

disorganisation when they are ill or forced to isolate.  22 

A key component of infection risk for an airborne infection is the rate of close contact between 23 

individuals. This may be much higher in hospitals than in the general population, potentially leading 24 

to elevated risk of transmission 3. Hence, anticipating the epidemic risk and prioritising prevention 25 

measures requires an understanding of patterns of close contacts in these settings 4. These patterns 26 

may vary widely depending on level of activity, specialty and organisation, and indeed the proportion 27 

infected in SARS-CoV-2 outbreaks differed considerably between wards 1,5.   28 

Direct recording of close proximity interactions using wearable electronic sensors enables all 29 

contacts to be recorded without inaccuracies in recall to which self-report methods are vulnerable 6. 30 

A limited number of previous studies have used wearable sensor technology to study interactions in 31 

hospitals. Some have relied on sensors worn only by HCWs, interacting with each other 7 or with 32 

fixed-point sensors which interact with the sensors worn by HCWs 8,9. Before the COVID-19 33 

pandemic, studies using sensors worn by patients and HCWs have been conducted in paediatrics 10, 34 

geriatry 11, acute care 12 and long-term care 13. 35 

This study was conducted to understand the threat of nosocomial infection during the pandemic 36 

period, by measuring patterns of contact between individuals, predicting epidemic risk and 37 

examining how to reduce it. The objectives were to collect detailed data on the frequency and 38 

duration of contacts occurring between different types of individuals across a range of different 39 

types of wards, and use this to predict epidemic risk using a simple transmission model. This would 40 

then also allow us to evaluate prevention strategies which target the most connected individuals.  41 
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 42 

Results 43 

Out of 2385 participants who were offered sensors, 98 (4%) refused to participate and a further 173 44 

(7%) did not have their data recorded due to loss of their sensor. The final sample consisted of 2114 45 

participants (89%), including 1320 HCW, 573 patients and 221 visitors, from whom 39 850 distinct 46 

interactions were recorded. Further details on the participants are shown in Supplementary Table S 47 

2. The contact information allowed reconstruction of the dynamic network of contact between all 48 

individuals on the ward. The contact networks exhibit different characteristic patterns, including 49 

some that are split between two separate centres, those where contacts are evenly distributed, 50 

those where a dense centre of contacts is surrounded by a lighter connected ring, or where the 51 

entire network is centralised around a hub of HCW (Figure 1).   52 

Heterogeneity in contact patterns 53 

Contact behaviour is highly heterogeneous, as shown by the distribution of numbers of unique 54 

contacts and total contact time (Figure 2). On average, participants formed 6.7 contacts per day, with 55 

ward-level averages ranging from 4.1 to 12.5. HCW contacts are widely distributed in terms of degree 56 

while most patients have few contacts. However, in terms of total contact hours, the overall 57 

distribution is dominated by HCWs and in particular nurses and physicians. 58 

Average contact intensity for each status on each ward, and with every other status, is shown as a 59 

contact matrix in Figure 3. Contact intensity among HCWs is relatively consistent between wards (on 60 

average between 18 and 41 contact minutes per hour spent on the ward), with most HCW contacts 61 

occurring with other HCWs, in every ward. In 8 of the studied wards including all the ICU wards and 62 

adult emergency, patients also had the majority of their contacts with HCWs, while in the general 63 

paediatrics and paediatric emergency wards they had most of their contact with visitors, and with 64 

other patients in the remaining 5. The contact rates per hour are shown in Supplementary Figure S 2, 65 
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and the average duration of contact in Supplementary Figure S 3, which shows the long duration of 66 

contacts, particularly between patients. The mean contact length was 30.3 minutes, but this varied 67 

from 15.7 to 70.6 minutes between wards.  68 

Variety in epidemic risk 69 

These heterogenous contact patterns translated into heterogenous risks of an airborne pathogen 70 

spreading within the wards. Figure 4 shows that the predicted overall number of secondary 71 

infections per day varies 4-fold between the different wards, from 0.12 to 0.49, with the lowest 72 

epidemic risk in the emergency wards and highest in general paediatrics.  This variation between 73 

wards is even more striking for secondary infections arising from an index case in a patient, with a 74 

predicted range from 0.04 to 0.81. In emergency units (adult and paediatric), we estimate that 75 

transmission between HCWs contributes almost all of the epidemic risk (Supplementary Figure S 4). 76 

For other wards, risk of transmission from patients was highly variable. In geriatry #1, the risk of 77 

direct patient-to-patient transmission was particularly high, while in geriatry #2 it was much lower, as 78 

in this ward the cumulative contact time between patients was considerably lower (Figure 3).  79 

In adult general wards, visitors presented low risk (up to 0.13 secondary infections per day). By 80 

oppositionestimated transmission risk from visitors could reach high levels in paediatric wards (up to 81 

0.83 secondary infections per day in general paediatrics). The risk posed by HCWs was more 82 

consistent between wards (0.13 to 0.35 secondary infections per day), with other HCWs being at 83 

most risk in every ward. 84 

Simulating preventive interventions 85 

Figure 5 depicts the relative reduction in the epidemic risk obtained if the most connected 5% of the 86 

population were given complete protection. The greatest effect came when targeting individuals 87 

based on their contact hours (with a 22% reduction in secondary infections in the median ward), 88 

while targeting by degree reduced infections by 13%, and selecting at random 10%. If only high-89 

contact patients were targeted, the reduction was similar (23%), whereas only 15% could be 90 
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achieved by targeting only high-contact HCWs. Much lower reductions were possible from visitors as 91 

they always made up much less than 5% of the total population size. 92 

We conducted two sensitivity analyses, the first of which was to examine the effect of changing the 93 

proportion targeted over the range 0-20%. The size of the effect increased steadily with targeting, 94 

with up to a 61% reduction achievable by targeting 20% of the population (Supplementary Figure S 95 

6). Targeting by contact hours remained the most effective method throughout, but when targeting 96 

20% of the population, it became as effective to target HCWs as patients.  97 

Secondly, we explored the effect of changing the shape of the relationship between time in contact 98 

and infection probability (Supplementary Figure S 5) by repeating the analysis with modified values 99 

of the shape parameter a (Supplementary Figure S 7). While this does change the scale of the 100 

reduction, it does not change the universal result that targeting by contact hours is the most 101 

effective. Targeting all individuals or patients was also consistently better than targeting HCWs for all 102 

values except the highest, a=0.5, which corresponds to a 50% chance of transmission in 2.2 hours. 103 

Discussion 104 

This work reveals that the epidemic risk of an airborne pathogen, such as SARS-CoV-2, can vary 105 

widely between clinical units due to heterogeneous patterns of contacts. We find that the risk 106 

presented by a single index infection varies four-fold between wards. Emergency wards are on the 107 

lower end because the time spent by patients and visitors on the wards was too short for them to be 108 

able to transmit the virus to many others. The variation in risk rises to twenty-fold if the index case 109 

was a patient, as in some wards e.g. geriatry #1 the risk of patient-to-patient transmission was 110 

particularly high, perhaps as a result of shared activities which are typical of long-term geriatric care. 111 

Visits were generally not permitted during this period for adults, but higher risk coming from visitors 112 

was notable in paediatric wards because visitors were expressly permitted in paediatric wards, as 113 

visits were considered essential to children’s medical prognosis.  114 
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The estimated number of secondary infections reached up to 0.8 infections per day, which 115 

represents a basic reproduction number R0 of 5.6 if we assume that the index case remains infectious 116 

on the ward for 7 days 14. The potential for high risk implies that mandatory mask-wearing to block 117 

transmission, particularly from patients, is a valuable safety measure across all wards. 118 

We examined how contact patterns could be exploited to improve prevention measures by better 119 

targeting, which may be critical in a context of limited resources. Our model provides an estimation 120 

of the maximum possible gain under the assumption that these measures are 100% effective, 121 

analogous to fully protective contact precautions, or complete immunisation prior to contact. As 122 

expected, targeting the most connected individuals had a disproportionate impact in reducing 123 

secondary infections. However, our work provides additional insight on how these highly-connected 124 

individuals may be selected. The biggest effect was achieved by targeting individuals by their relative 125 

contact hours. When targeting a subset of the population, the greatest overall impact was achieved 126 

by targeting patients, although the effect of targeting HCWs was more consistent. Targeting visitors 127 

was generally less effective except in paediatric wards.  128 

The current study is, to our knowledge, the only one to have used wearable sensors to sample from 129 

all hospital users during the COVID-19 pandemic, and to have examined contact patterns across a 130 

range of specialties. A study using the same type of wearable sensors, but in a rehabilitation hospital 131 

and a pre-pandemic context, reported an average contact rate of 11.6 per day for all hospital users 132 

13. This estimate is higher than our own average estimate of 6.7 contacts per day, but our range of 133 

ward level averages (4.1-12.5) overlaps with this.   134 

In our estimates of epidemic risk, we used average patterns of contact between hospital users and 135 

quantified only the risk of direct infection. While this does not take into account the dynamics of 136 

ongoing transmission across a network 15, we believe that our approach is more generalisable to the 137 

acute-care hospital environment, which has a largely transient population and in which therefore the 138 

connectivity between different parts of the network are less relevant. 139 
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Some limitations should be mentioned. First, the exact relationship between duration of contact and 140 

probability of infection is unknown, and is likely to differ between different SARS-CoV-2 variants. A 141 

saturating relationship between duration of exposure and infection risk has been identified, though 142 

over a timescale of days and within households 16. We assumed 50% probability of transmission after 143 

11 hours of contact, but explored modifying this between 2.2 and 110 hours, which did not change 144 

our general conclusions.  145 

Second, all types of recorded contacts were assumed to present equal risk, whereas this is likely to 146 

differ by nature of contact (e.g. conversational or physical), and be mitigated by prevention measures 147 

such as masks or hand hygiene, and vaccine-derived or natural immunity 17. Some care procedures 148 

may require physical contact or for the patient to be unmasked, potentially elevating the risk of 149 

patient to HCW transmission. However, since our results support the prioritisation of preventive 150 

interventions on patients over HCWs, accounting for this asymmetry should only reinforce our 151 

conclusions.  152 

Finally, the simulations we have implemented are limited to direct short-range human-to-human 153 

transmission and do not take into account for the risk of diffusion via air flows from physically 154 

separated individuals within a clinical unit 18,19. However, despite the risk of longer range 155 

transmission for SARS-CoV-2, current evidence shows that droplet transmission during close 156 

proximity interactions remains key for transmission 20. 157 

Beyond the illustration of its results for SARS-CoV-2, this work proposes a straightforward method 158 

based on measurements of close proximity interaction to assess and compare basic risk of airborne 159 

infection in clinical units. It allows the identification, among HCWs, patients and visitors, of those 160 

whose contribution to the global risk is highest, in order to propose priority targets for control 161 

measures. This work demonstrates the potential for combining contact monitoring and modelling to 162 

minimise nosocomial epidemic risk, which may be applied both in crisis and less urgent contexts, and 163 

adapted to other airborne bacterial or viral pathogens. 164 
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Methods 165 

Data collection 166 

The study was conducted in April-June 2020 in 15 wards in university hospital centres in Paris, Lyon 167 

and Bordeaux, selected for their diversity of clinical activity (details in Supplementary Table S 1). Each 168 

ward was studied for approximately 36 hours, starting with the nurses’ day shift in the morning of 169 

day 1 and finishing at the end of the day shift on day 2. All individuals initially present in the ward 170 

were offered sensors, as were all subsequent arrivals to the ward. At the end of the study period or 171 

on the participant’s departure, the sensor was returned. The age and function (patient, visitor, or 172 

type of health professional) of the individual was recorded, as well as the time period within which 173 

the sensor was carried. The wearable sensors (shown in Supplementary Figure S 1) recorded the 174 

identity of all other sensors within a range of about 1.5m every 10 seconds. Participants either kept 175 

the sensor in a pocket or on a pendant around the neck. For patients assigned to their room (COVID-176 

19 patients, intensive care patients or neonates), they were hung on a fixed part of their bed. 177 

Contact analysis 178 

The first step in the data analysis was to calculate summary statistics of contact, for each individual 179 

and then at the ward level between hospital users of different status (patient, visitor or HCW). The 180 

contact matrices summarise the amount of contact between each status of individual (patient, visitor 181 

and HCW) for each ward. The contact intensity and contact rate per hour, and the average duration 182 

of each contact, were calculated for individuals of status y with those of status x.  183 

Contact intensity was calculated for each individual as the total recorded cumulative contact minutes 184 

divided by the number of hours that individual spent carrying the sensor. The contact intensity 𝑘௫௬ is 185 

the total cumulative time an individual of status x spent in contact with individuals of status y per 186 

hour on the ward, and is calculated as in Equation [ 1 ] where 𝑛௫ is the number of individuals of 187 

status x on the ward, i is an individual of status x, 𝑡௜ is the number of hours this individual spent 188 
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carrying the sensor, j is an individual of status y, 𝐶௜௬ is the number of unique individuals of status y 189 

contacted by i, and 𝑑௜௝  is the total duration of their contact over the study period.  190 

𝑘௫௬ =
1

𝑛௫
෍

1

𝑡௜
෍ 𝑑௜௝

஼೔೤

௝

௡ೣ

௜

 191 

[ 1 ] 192 

Similarly, individual contact rate was the number of unique persons contacted by that individual, per 193 

hour carrying the sensor. Average contact rate per hour 𝑐௫௬ for individuals of status x with those of 194 

status y, is calculated by Equation [ 2 ], as the number of unique contacts of status y for individual i 195 

divided by their time with the sensor 𝑡௜, and averaged over all individuals i of status x.  196 

𝑐௫௬ =
1

𝑛௫
෍

𝐶௜௬

𝑡௜

௡ೣ

௜

 197 

[ 2 ] 198 

Individual average contact duration was the total cumulative contact minutes divided by the number 199 

of persons contacted. The average duration of a contact that status x has with status y, 𝑑௫௬, is 200 

calculated as in Equation [ 3 ] by first taking the average duration of all contacts an individual i of 201 

status x has with individuals j of status y, divided by all individuals of that status contacted, 𝐶௜௬. The 202 

average of this value is then taken across all individuals i of status x. 203 

𝑑௫௬ =
1

𝑛௫
෍

1

𝐶௜௬
෍ 𝑑௜௝

஼೔೤

௝

௡ೣ

௜

 204 

[ 3 ] 205 

The mean of each of these measures (contact rate, contact intensity and contact duration) was then 206 

calculated for each ward and between each combination of status and provided in contact matrices.  207 
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Epidemic risk 208 

To examine how these ward-level values translate to epidemic risk, we wrote a transmission model 209 

to predict the number of secondary infections which would occur per day from a hypothetical SARS-210 

CoV-2 index case if all contacts were susceptible. For each ward, we calculated the total number of 211 

expected contacts per day from the average contact rate per hour, 𝑐̅ (Equation [ 4 ]) in which n is the 212 

total number present, 𝐶௜ is the total number of contacts for individual i. 213 

𝑐̅ =
1

𝑛
∙ ෍

𝐶௜

𝑡௜

௡

௜

 214 

[ 4 ] 215 

We also calculated the average time spent on the ward per 24-hour period, 𝐻ഥ (Equation [ 5 ]), using 216 

their time carrying the sensor as a proxy, and where T is the total duration of the study on that ward. 217 

𝐻ഥ =
24

𝑛 ∙ 𝑇
෍ 𝑡௜

௡

௜

 218 

[ 5 ] 219 

We assumed that the probability of infection per contact increased with duration of contact, and 220 

with a diminishing increase for longer contacts 21. The overall probability of infection per contact, 𝑝inf തതതതത 221 

(Equation [ 6 ]), was calculated from the mean probability of infection per contact for each individual 222 

i across all of their contacts j, where the probability of infection between two individuals (Equation [ 223 

7 ]) is determined by the duration of contact 𝑑௜௝  and a shape parameter a, for which higher values 224 

are associated with a steeper increase of infection probability as contact duration increases 225 

(Supplementary Figure S 5). For the baseline analysis, a value of a = 0.1 is used, representing a 50% 226 

probability of infection after 11 hours in contact. 227 
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𝑝infതതതത =
1

𝑛
∙ ෍

1

𝐶௜
∙

௡

௜

෍ 𝑝inf௜௝

஼೔

௝

 228 

[ 6 ] 229 

𝑝inf௜௝
=

1 − 𝑒ିௗ೔ೕ∙௔

1 + 𝑒ିௗ೔ೕ∙௔ 230 

[ 7 ] 231 

The expected number of secondary infections per day, M, was then computed as the product of 232 

these three quantities (Equation [ 8 ]):  233 

𝑀 = 𝑐̅ ∙ 𝐻ഥ ∙ 𝑝inf തതതതത 234 

[ 8 ] 235 

Specific predictions of numbers of secondary infections per day between different status of hospital 236 

user (patients, visitors and HCWs) were calculated using the same approach. The number of 237 

secondary infections from an index infection of status x towards individuals of status y is predicted as 238 

𝑀௫௬ (Equation [ 9 ]). 239 

𝑀௫௬ = 𝑐௫௬ ∙ 𝐻௫ ∙ 𝑝infೣ೤
 240 

[ 9 ] 241 

where 𝑐௫௬ is the contact rate per hour between x and y (Equation [ 2 ]), 𝑝infೣ೤
 is the probability of 242 

infection in contacts between x and y (Equation [ 10 ], using 𝑝inf௜௝
 from Equation [ 7 ]), and 𝐻௫ is the 243 

average time spent on the ward by individuals of status x (Equation [ 11 ]). 244 

𝑝infೣ೤
=

1

𝑛௫
∙ ෍

1

𝐶௜௬
∙

௡ೣ

௜

෍ 𝑝inf௜௝

஼೔೤

௝

 245 

[ 10 ] 246 
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𝐻௫ =
24

𝑛௫ ∙ 𝑇
෍ 𝑡௜

௡ೣ

௜

 247 

[ 11 ] 248 

Finally, the overall number of secondary infections from an index case of status x to any status of 249 

individual is calculated by summing 𝑀௫௬ over all status y (Equation [ 12 ]). 250 

𝑀௫ = ෍ 𝑀௫௬

௬

 251 

[ 12 ] 252 

Simulated interventions 253 

We used this model to predict the effect of control measures targeting the most connected 254 

individuals by repeating this calculation of epidemic risk, M, but with the highest risk individuals 255 

being neither susceptible nor capable of transmitting. We selected the 5% of the population with 256 

either the most unique contacts over the whole study period, or the highest cumulative contact 257 

hours. The probability of infection from or to these individuals was set to zero. We also evaluated the 258 

targeting of only individuals of a single status, e.g. highly connected patients, ensuring for 259 

comparability that the number targeted still made up 5% of the total population. The reduction in 260 

daily risk was calculated as a proportion of the baseline risk in which nobody was targeted (Equation 261 

[ 13 ]).  262 

Relative reduction =
𝑀baseline − 𝑀targeted

𝑀baseline
 263 

[ 13 ] 264 

We tested the sensitivity of the simulation analysis to the proportion of the population targeted 265 

(over the range 0%-20%) and the shape parameter a which drives the increase in the infection 266 

probability for longer contacts (over the range 0.05-0.5). 267 
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All analyses were conducted using R 4.2.0 22, with network analyses conducted using igraph, and 268 

graphics produced using ggplot2. The code used for each analysis and visualisation is available at 269 

https://github.com/georgeshirreff/nodscov2_risksim. 270 

Ethics approval and consent to participate 271 

This research was approved by the Comités de protection des personnes (CPP) Ile-de-France VI on 272 

14/04/2020 and the Commission nationale de l'informatique et des libertés (CNIL) on 16/04/2020. 273 

Signed consent by patients, medical and administrative staff, and visitors was not required according 274 

to the CPP and CNIL, but participants could refuse to participate. When patients were minors, unable 275 

to refuse or under guardianship, parents, family or guardians, respectively, were asked. The study 276 

was carried out in accordance with the Declaration of Helsinki.  277 
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Figures 362 

 363 

Figure 1. Representations of contact networks within a ward. Each individual is a node and 364 

each link a contact, regardless of duration. Each row represents a different characteristic 365 

network shape, as indicated by the labels on the left. The numbers present of each status are 366 

given in the subtitle. 367 

 368 
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 369 

Figure 2. Connectivity of all status and functions of individuals across all wards. The depth 370 

of the violin represents the frequency of that value, and the total volume of each violin is 371 

equal. The orange point indicates the median of the distribution. 372 

 373 

Figure 3. Contact intensity between statuses of individuals on each ward. Each panel 374 

represents a ward, and each cell represents the total cumulative contact minutes that each 375 

type of individual (patient, visitor or HCW, columns) has with each type of individual (rows) 376 

per hour spent carrying the sensor. Where the type of individual is not present, the 377 

corresponding column is grey. 378 
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 379 

 380 

Figure 4. Predicted number of secondary infections per day from a single index case. Each 381 

panel represents a different hypothetical index infection, and the coloured bars represent the 382 

number of individuals of each status expected to be directly infected per day. The boxplots on 383 

the right illustrate the range of values in each bar plot. 384 
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 385 

 386 

Figure 5. The percentage reduction in number of secondary infections per day per infected 387 

individual, when the most connected 5% of the population are completely protected. In 388 

each panel, the 5% are taken only from the indicated group. The x-axis indicates the method 389 

by which connectivity is measured for targeting. Each point represents a single ward, and the 390 

horizontal red line represents the median across all wards.  391 

 392 

  393 
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List of abbreviations 394 
CNIL  Commission nationale de l'informatique et des libertés 395 

COVID-19 Coronavirus Disease 19 396 

CPP  Comités de protection des personnes 397 

HCW, HCWs Healthcare worker, healthcare workers 398 

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 399 
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