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Summary 
The success of artificial intelligence in clinical environments relies upon the diversity and 
availability of training data. In some cases, social media data may be used to counterbalance the 
limited amount of accessible, well-curated clinical data, but this possibility remains largely 
unexplored. In this study, we mined YouTube to collect voice data from individuals with self-
declared positive COVID-19 tests during time periods in which Omicron was the predominant 
variant1,2,3, while also sampling non-Omicron COVID-19 variants, other upper respiratory 
infections (URI), and healthy subjects. The resulting dataset was used to train a DenseNet model 
to detect the Omicron variant from voice changes. Our model achieved 0.85/0.80 
sensitivity/specificity in separating Omicron samples from healthy samples and 0.76/0.70 
sensitivity/specificity in separating Omicron samples from symptomatic non-COVID samples. In 
comparison with past studies, which used scripted voice samples, we showed that leveraging the 
intra-sample variance inherent to unscripted speech enhanced generalization. Our work 
introduced novel design paradigms for audio-based diagnostic tools and established the potential 
of social media data to train digital diagnostic models suitable for real-world deployment. 
 
1. Introduction 
COVID-19 is routinely detected and confirmed through polymerase chain reaction (PCR) using 
nasal or throat swabs; however, turnaround time and resource costs pose a challenge for testing 
in some settings. Some invasive home testing methods have been developed but can require 
expensive reagents and/or laboratory expertise, restricting accessibility. Moreover, these tests do 
not offer immediate results, which have become increasingly necessary as societies move 
towards “living with COVID”4. Serial testing practices have become common, in which 
reasonably sensitive at-home antigen tests are followed by more-specific PCR confirmation. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2022. ; https://doi.org/10.1101/2022.09.13.22279673doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.09.13.22279673
http://creativecommons.org/licenses/by/4.0/


 

1 

Instant, non-invasive, and sensitive testing methods may be useful for suggesting confirmatory 
testing or to track the spread of variants with unique audio phenotypes.  

Prior AI methods have been unable to successfully detect pre-Omicron variants from unscripted 
or scripted human voice alone, or have been otherwise unsuitable for deployment (e.g., limited 
training data, poor generalization)5. Omicron variants, however, are typically milder and affect 
the upper airway more commonly than prior variants, often resulting in voice changes without a 
cough or other respiratory symptoms6. This presents an opportunity for targeting with AI 
methods, if robust datasets were available.  

Worldwide, various social media platforms have over 3.6 billion users, with expectations to 
exceed 4.4 billion by 20257. Over 500 hours of video are uploaded to YouTube alone every 
minute8. While often ignored, much of this data is available to researchers through Python 
libraries provided by social media companies. Such data more accurately portrays noisy, 
unscripted "real-world” data, whose broad diversity supports generalizability. Our model was 
trained using this freely accessible data. Though annotation of training data was based upon 
prevalence assumptions and self-declaration instead of sequencing, these limitations contributed 
to the practicality and cost-effectiveness of the approach. As opposed to other methods that rely 
on lab results, AI-based classification tools using voice alone could be instant, accessible, cost-
effective, and deployable in real-world settings.  

There are numerous barriers to practical deployment of AI models for COVID-19 diagnostics. 
Prior attempts have failed due to training on extremely limited datasets, producing overfit models 
that do not generalize9. Existing models for acoustic, AI-driven diagnostics have also been 
limited due to a reliance on short, structured samples collected in controlled, scripted 
environments. In this report, we broadly applied dataset design and audio-based deep learning 
methodologies in the context of Omicron classification.  

Contributions: 
 

1. An AI system was constructed using social media data, with training and validation 
strategies designed for real-world clinical settings. This improves upon prior social media 
AI efforts which simply facilitated narrow tasks in controlled settings involving frequent 
users of social media.  

2. A new framework for rapid diagnostic tools from voice/audio data was designed to 
emphasize longer samples and unscripted collection protocols. This strategy relied on the 
diversity of the input data to better prepare for real-world testing environments. A 
convolutional neural network (CNN) model trained on long, unscripted samples showed 
improved generalization in comparison to prior work on short, scripted speaking inputs, 
as well as in our comparative experiments involving short, unscripted inputs. 

3. The first non-invasive model for instant Omicron detection was developed using training 
data that included past variants, recent subvariants, healthy controls, and other respiratory 
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illnesses. Our data was compiled from a diverse array of settings and recordings, 
containing over 28 hours of unscripted audio from people posting with self-declared 
Omicron. This is several orders of magnitude greater than previous efforts. Identification 
of voice changes in speakers with self-declared Omicron showed that unscripted 
recordings may be sufficient for detecting Omicron COVID-19, which is a change from 
past variants. 

4. Acoustic biomarkers for COVID-19 were shown to change between non-Omicron 
(primarily Alpha/Delta) variants (lower respiratory symptoms) and the milder Omicron 
variant (upper respiratory symptoms). Models trained on voice data from pre-Omicron 
variants experienced a decrease in both sensitivity and specificity when validated on 
Omicron test data. This result emphasized the necessity of variant-specific methods for 
testing, or continual learning techniques that adapt as pandemics evolve over time.  

 

2. Related Work 
  

2.1 Social Media Data for Clinical Tasks 
Cost-effective data collection, curation, annotation, and augmentation are critical for enabling AI 
to track or predict illness. Social media is an expansive source of information that does not rely 
on intricate searching mechanisms or filtered, delayed reporting, potentially facilitating 
epidemiological surveillance. 

Several existing diagnostic models have utilized social media data. A deep learning model 
trained on Tweets was more predictive of atherosclerotic heart disease mortality than a 
conventional mechanistic input-based model combining demographic and health risk factors10. 
Additional methods have extracted textual and visual features from Tweets to predict and 
classify mental health status11,12,13. These models, however, were only useful for active social 
media users. Other social media platforms have also been used as data sources for biomedical 
applications, though less frequently than Twitter. Manual analysis of YouTube home videos by 
non-clinical raters was able to detect and classify autism in children with high performance14. 
YouTube audio, visual, and search-history data have also successfully detected mental illnesses 
including depression and OCD15,16. 
 
 

2.2 AI for COVID-19 Testing 
AI methodologies have been applied to numerous COVID-19 datasets to develop deployable 
diagnostic tools. Coughing and breathing changes associated with COVID-19 may have unique 
features that might be useful for classification, or differentiation from other upper respiratory 
illnesses or infections (URIs). Related work should, however, be contextualized using the criteria 
outlined by Han et al., which pointed out methodological flaws such as mixing training/testing 
data, exclusion of non-COVID URIs, and overfitting on small datasets5. Prior work has also 
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typically lacked stratification by variant, instead considering “COVID” as a whole and assuming 
a generally consistent phenotype. 
 
Nonetheless, previous efforts highlighted the potential for voice-based diagnostic tools, 
especially given that COVID-19 breath sounds were characterized by unique time and frequency 
domain patterns17. A CNN-based model trained on forced-cough recordings in limited numbers 
of patients with and without COVID-19 was able to recognize COVID-19 with high sensitivity, 
even in otherwise asymptomatic subjects18. Audio-based technologies using cough sounds have 
also been deployed on a smartphone app for COVID-19 detection19,20,21,22,23. A binary classifier 
was able to differentiate COVID-19 speech from normal speech based on scripted telephone 
data24. Assessment of spectral features of speech alone in asymptomatic patients with and 
without COVID-19 yielded a true positive rate of 70%, though the likelihood of generalization 
was quite limited due to scripted collection and small sample size. 
 
In a dynamic pandemic such as COVID-19, crowdsourced datasets allowed for continuous and 
focused sample collection. “Coswara” is a database containing COVID-19 respiratory sound 
samples, including cough, breath, and scripted voice data25. Samples recorded and uploaded by 
volunteers on a smartphone or computer were divided into COVID and non-COVID cohorts26. 
Numerous researchers have used this database to train AI models for COVID-19 detection20,23,27. 
Such algorithms reported an accuracy of 97% on limited binary datasets, which notably excluded 
other respiratory illnesses28,29. Deep learning models trained on the “Sounds of COVID” dataset, 
which contained scripted samples, showed that voice alone performed poorly on pre-Omicron 
data (0.61 ROC-AUC)5. Further, most studies focused on multi-input models without specifying 
the variant (via sequencing or demographic statistics). 

 

3. Methods                 
This study was performed as human subjects research with Institutional Research Board approval 
and waiver of subject consent. The analysis, supervised training, validation, and testing pipeline 
for the Omicron voice detection model is outlined (Fig. 1).  

3.1 Data Collection                                                                                                       
Audio samples were mined from YouTube searches and annotated by cohort based on self-
declaration and presumptive correlation with epidemiological data.  
 

1. COVID-19 – Omicron variant (presumed by dates, including both symptomatic and 
asymptomatic cases) 
 

2. COVID-19 – non-Omicron variant (presumed by dates, including both symptomatic and 
asymptomatic cases) 
 

3. Symptomatic, non-COVID upper respiratory illnesses and infections (URI) 
 
 

4. Presumably healthy or non-acutely ill (asymptomatic).  
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A series of heuristics were used to identify relevant videos. For example, if the user said, “I have 
COVID” or “I tested positive” during a time in which Omicron was the dominant variant, the 
audio sample was labeled as “Omicron”. We excluded videos that contained low-quality audio or 
featured multiple speakers. For the URI cohort, we excluded videos where there were no obvious 
respiratory symptoms. YouTube videos were annotated by cohort and manually verified to 
ensure accurate labeling. Since the data mining procedure was standardized but not 
comprehensive, future studies might benefit from automated mining procedures for dataset 
expansion. All Omicron videos were from December 20th, 2021 – August 1st, 2022. Omicron was 
designated a “variant of concern” on November 26th, 2021 by the WHO, and was estimated to be 
the dominant variant in the US by late December 202130,31. Omicron was identified as the 
dominant variant globally, accounting for > 98% of sequences shared on GISAID after February 
20222,32. The BA.1 and BA.2 lineages were most common between December 2021 – June 2022, 
with BA.4/BA.5 becoming more prevalent in July 202233. No sequencing was recorded.  
  
3.2 Data Preprocessing 
Raw audio samples extracted from YouTube videos were noisy, often containing background 
noise, long periods of silence, or low-resolution audio. To reduce potential sources of confusion, 
a preprocessing pipeline was implemented: 
   

1. Audio Denoising: Following audio quality assessments, “noisy” sound was removed 
using semi-supervised machine learning methods developed by Dolby and accessed 
through Dolby Media libraries for Python34. 
  

2. Removal of Background Noise and Silence: Background noise was removed via a      
U-Net convolutional neural network architecture35. Extended periods of silence were 
removed via a voice activity detector that leveraged Gaussian mixture models to identify 
non-speaking regions36. 

  

3. Conversion into Mel spectrograms: Samples were converted into a 3-channel matrix, 
corresponding to 3 Mel spectrograms generated with different window sizes and hop 
lengths. Mel spectrograms represented sound as frequency over time with frequency 
values converted to the Mel scale, which represents pitch based on how the human ear 
perceives loudness. This approach ensured that each channel contained different 
frequency and time information (equivalent to resolution in a standard image 
representation), providing the model with maximal context during training37. 

 
3.3 Augmentation 
In audio-based diagnostics, there is minimal value in positional context. While past work has 
shown that sounds have variable effectiveness as disease predictors, we further assumed that 
relevant digital biomarkers of laryngitis should be detectable within a 10 second interval38. Our 
simple data augmentation strategy relied on the positional invariance of speech samples and the  
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Figure 1: Workflow 
for YouTube data 
preprocessing. (1) 
Data was collected 
from YouTube and 
annotated based on 
user declarations. (2) 
A U-Net model was 
used to separate 
voice from music 
and other 
background noise. 
(3) A voice activity 
detector (VAD), 
built with Gaussian 
mixture models 
removed extended 
periods of silence. 
(4) The remaining, 
cleaned voice data 
was converted into a 
spectrogram.  
 

 
 
reduced need for modeling long-term dependencies, in the context of laryngitis. We aimed to use 
the natural diversity of speech to enhance the generalizability of our model and reduce the 
impact of class imbalance. For each audio recording, we considered the set of possible 
transformations to be the result of dividing the sample into segments of length n seconds. Time 
and frequency masking were applied to each segment (via SpecAugment) prior to input into the 
CNN model, which is explained in section 3.439. 
 
3.4 DenseNet  
Convolutional neural networks (CNNs) utilize the convolution operation to model spatial 
relationships in matrices (e.g., images or spectrograms). These representations are generally 
input into a standard feed-forward neural network and mapped onto an outcome or embedding 
vector. In most cases, individual layers are connected only to the subsequent layer. DenseNet 
introduced a new framework wherein each layer was connected to all subsequent layers in a 
“Dense Block”, while allowing for multiple Dense Blocks within the same network40. These 
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blocks were connected to each other via convolution and pooling layers which structured the 
outputs of one block as inputs for the following block. This approach had multiple advantages 
for complex tasks, including improved feature propagation and reuse. 
   
 

Figure 2: Workflow for 
training and validation of 
Omicron detection 
pipeline. (1) Audio 
recordings were split 
into segments and 
converted to 
spectrograms; (2) 
DenseNet model was 
trained on the 
spectrograms; (3) trained 
model was used to 
predict if segments in a 
testing dataset were 
positive or negative for 
Omicron COVID-19 
(majority vote was used 
to assign a label). 
 

 
The DenseNet model was chosen due to the scalability of the architecture and high top-1 
accuracy value on the complex ImageNet dataset, indicating that it had learned a generalizable 
representation of images through key shapes/features. A pre-trained model was chosen based on 
prior work which reported that CNN models pre-trained on ImageNet achieved superior 
performance on audio data compared to randomly initialized models37,41. Other recent 
architectures (e.g., Vision Transformer) can also be used in our model-invariant system42.  
 
 

4. Experimental Design 
Experiments were performed to assess the potential of social media data for training models to 
complete diagnostic tasks. We also assessed the generalization capacity gained from using the 
long, free-response inputs as a component of the data augmentation strategy alongside 
SpecAugment (compared to short, standardized inputs). The reported performance metrics were 
mean values from 6-fold cross validation used in each experiment (Table 2).  
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4.1 YouTube Dataset                                                                                                                 
Our YouTube dataset contained 183 subjects with Omicron (28.39 hours), 120 with pre-Omicron 
COVID-19 (22.84 hours), 138 with symptomatic non-COVID URIs (8.09 hours), and 192 that 
were asymptomatic healthy (33.90 hours). Dataset statistics are listed in Table 1 to emphasize the 
additional information gained from collecting longer samples of unscripted voice data.  
 
To the best of our knowledge, the YouTube dataset currently contains the largest amount of 
voice data (in hours) for COVID-19 (all variants), the Omicron variants specifically, and, 
particularly, URI that were confirmed or self-declared non-COVID. This is in comparison to all 
publicly available COVID-19 voice/sounds datasets. The Coswara dataset contained samples 
which may be other upper respiratory infections but were not confirmed or self-declared as non-
COVID25. We also noted that nearly half the 1,964 negative participants in the “Sounds of 
COVID” dataset had at least one “COVID” symptom, but many were unrelated to the upper 
respiratory system (e.g., fever, dizziness)5.  
 
In contrast, the YouTube dataset intentionally included illnesses that were designated non-
Omicron based on self-declaration or date of posting. The samples were selected for the potential 
to impact the upper respiratory system, teaching the model to separate between non-COVID 
illnesses and Omicron. These URI included influenza, strep throat, cold, allergy attack, asthma, 
bronchitis, and others. Prior to training, we applied preprocessing and augmentation strategies to 
the dataset as described in sections 3.2-3.3. 
 
Table 1: Comparative statistics for two common COVID-19 Voice Datasets. Statistics from 
Coswara were listed based on the amount of data at the time of access (May 18th, 2022). We also 
excluded any data points which did not meet the criteria for inclusion in the Coswara database 
(e.g., multiple voices, indetectable audio).  
  

Dataset COVID-19 
Samples 
(All) 

Omicron 
Samples 

Other URI 
(Symptomatic) 
Samples 

COVID-19 
total audio 
(hours)  

Omicron 
total audio 
(hours) 

URI total 
audio 
(hours) 

YouTube Dataset 316 183 138 51.23 28.39 8.09 

Coswara 464 213 102 1.92 0.95 0.47 

 
4.2 DenseNet Model Training 
For supervised classification tasks involving voice samples, a cross-entropy loss function was 
used to fine-tune a pre-trained DenseNet. To address imbalances in the dataset, each batch was 
generated by oversampling the minority class. For each sample in the batch, a 2.5 second voice 
segment was selected randomly from the entire audio recording.  
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4.2.1 Classification of Omicron and Asymptomatic Healthy Subjects                         
A DenseNet model was trained to identify healthy subjects (e.g., for testing asymptomatic 
individuals prior to attending populated events) through the binary classification task of 
separating asymptomatic healthy voices from all Omicron subjects. 
 
4.2.1 Classification of Omicron and Symptomatic URI Subjects                                                
For further classification of users presenting with upper-respiratory symptoms, the model was 
trained to use voice data to separate Omicron subjects from symptomatic subjects with other, 
non-COVID URIs. 
 
4.2.3 Model Training with Non-Omicron COVID-19 Data 
We trained a model with non-Omicron data and attempted to classify COVID/URI and 
COVID/healthy from test sets containing only Omicron and non-COVID subjects (no other 
variants were present). This was done to highlight changes in disease phenotype over time and 
show the need for variant-specific digital testing methods.  
 
4.2.4 Model Training with Single Segments 
To demonstrate the importance of collecting longer time-series datasets, we repeated the 
Omicron detection tasks (4.2.1-4.2.2) with short, randomly selected segments (one per sample) 
from the YouTube dataset. The same segment was used throughout the training process – the 
remainder of the data was not shown to the model. Due to model overfitting, we froze the base 
layers of the DenseNet and fine-tuned only the classification head.  
 
4.3 Model Validation 
When validating on a blind test dataset, sensitivity and specificity were calculated on a per-
sample basis. Each sample was divided into n-second segments as described in section 3.3. For 
samples that could be split into multiple segments, a majority vote was used to assign the final 
label (“positive” or “negative”). This approach was used to facilitate real-world deployment 
where the user might be prompted to supply at minimum 30 seconds of audio, thereby reducing 
the risk of random noise or vocal shifts that could obscure relevant digital biomarkers. 
 
5. Experimental Results 
 

5.1 Digital Testing on the YouTube Dataset 
 

5.1.1 Extended Voice Samples 
Our model was tested on the YouTube dataset to perform classification tasks (Table 2). Voice 
changes were used to detect the Omicron variant on “real-world” data from YouTube. Model 
performance was 85% sensitive and 80% specific for classification of Omicron subjects and 
asymptomatic healthy subjects. Notably, the model yielded a sensitivity of 76% and a specificity 
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of 70% on the symptomatic testing task of separating Omicron samples from other, symptomatic 
URI samples. These findings indicate the existence of an Omicron-specific laryngitis. This 
finding suggests that models trained on real-world voice data may have relevance for 
symptomatic testing, beyond identifying healthy, asymptomatic voices.  
 
Our model was further tested on the YouTube dataset to determine if voice changes caused by  
Omicron represented a detectable shift in phenotype compared to Alpha/Delta variants, which 
often presented with lower respiratory symptoms. Similar to past work, the results show that 
voice data alone does not facilitate the separation of pre-Omicron COVID-19 samples from 
asymptomatic healthy samples (84% sensitivity / 58% specificity). The limited signal verifies the 
limited acoustic biomarkers in subjects with the pre-Omicron variants of COVID-19. The 
improved results on the COVID/URI classification task (74% sensitivity / 70% specificity) are 
likely due to the model detecting voice changes or other respiratory symptoms in the patients 
with URI. This is in contrast with the pre-Omicron COVID-19 patients, which seem to have 
similar voices to healthy asymptomatic subjects. Voice data was more effective at detecting the 
Omicron variant in both the healthy/COVID-19 classification task (a difference in specificity of 
over 20%), and the COVID-19/other URI classification task.  
 
Table 2: Model performance on COVID-19 detection (including both Omicron data and non-
Omicron data) with randomly selected test datasets from the YouTube dataset. 
   
Task Train Data Test Data Sensitivity Specificity 
Asymptomatic Healthy vs. 
Omicron 

Omicron Omicron 0.85 0.80 

Asymptomatic Healthy vs. 
Omicron  

Non-Omicron 
COVID-19 

Omicron 0.82 0.71 

Omicron vs. Symptomatic 
URI 

Omicron Omicron 0.76 0.70 

Omicron vs. Symptomatic 
URI 

Non-Omicron 
COVID-19 

Omicron 0.70 0.65 

Asymptomatic Healthy vs. 
pre-Omicron  

Non-Omicron 
COVID-19 

Non-Omicron 
COVID-19 

0.80 0.58 

pre-Omicron vs. 
Symptomatic URI 

Non-Omicron 
COVID-19 

Non-Omicron 
COVID-19 

0.74 0.70 

 

Furthermore, our results show that there is performance degradation for the Omicron/URI task 
(5-7% reduction in both sensitivity and specificity) when a non-Omicron model is validated on 
Omicron test data. This is in comparison to an Omicron-trained model that is validated on 
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Omicron test data. The likely cause of this result is that the model does not learn to recognize the 
Omicron-specific laryngitis that may be an important feature for classification. There was a 
similar performance decline (5-10%) on the healthy/Omicron binary classification task (pre-
Omicron training, Omicron testing), which is, once again, likely resulting from the model being 
boosted by the presence of “Omicron laryngitis” in the training data. We observe that the model 
for healthy/pre-Omicron classification achieves better performance on Omicron test data than the 
non-Omicron test data. We speculate that this is due to the limited presence of general laryngitis 
in the training data, which can be transferred to Omicron test data, where upper respiratory 
symptoms are common. For the non-Omicron test data, laryngitis in the test data, statistically, 
should be much more sporadic.  

5.1.2 Single-segment Voice Samples 
We trained our model to complete both the Omicron detection tasks on the same subjects, with 
only one segment per subject in the dataset. Despite the use of multiple data augmentation 
techniques, our results (Table 3) showed a decrease in both sensitivity and specificity (10-20%) 
when only a single segment was used, demonstrating the importance of collecting longer          
time-series data, even if there are a limited number of subjects. In addition, these extended data 
points may reduce the risk of error in a real-world digital testing solution. When performing 
inference, the model can check multiple independent segments over a 30+ second input (faster 
than current rapid testing solutions) to reduce the risk of testing on a corrupted or 
unrepresentative data point. 
 
Table 3: Model performance on Omicron detection with a single segment per sample.  
 
Task Train Data Test Data Sensitivity Specificity 

Healthy vs. Omicron Omicron Omicron 0.73 0.67 

Omicron vs. URI Omicron Omicron 0.59 0.64 

 

 
6. Discussion 
 

In this report, we show that: 
 

1. Public online data, including unscripted social media data, had potential epidemiologic 
value in pandemics, with audio information that could be utilized by AI models for 
applications not specific to social media/Internet users.  

 

2. In contrast with past variants, voice change was a predictor of the Omicron variant, which 
was often milder and lacked a cough. Omicron samples were distinguishable not only 
from healthy voices, but also from voices with other self-declared upper respiratory 
illness and infections. 
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3. Models trained on pre-Omicron data alone showed a decline in performance when 
validated on test datasets containing Omicron samples. This demonstrates the importance 
of testing methods which are continuously updated and validated with variant-specific 
data. This is relevant for future pandemic preparedness, where perhaps deep learning may 
play a more meaningful role.  

 

4. Models trained on longer, unscripted audio samples achieved superior performance 
compared to shorter scripted inputs used in prior work (e.g., counting to 20) and shorter 
unscripted inputs (section 5.1.2). Lengthy voice samples improved model performance 
due to the diversity of unscripted data.  
 

We introduced the “YouTube COVID-19 voice dataset”, which contains over one full day of 
audio data corresponding to the Omicron variant, and similar quantities for non-Omicron 
COVID-19 and healthy controls. The dataset also includes over 8 hours of data from other upper 
respiratory illness and infection, improving upon other COVID-19 audio datasets which were 
noisy, unbalanced, and contained undiagnosed URI data (unconfirmed COVID negativity). This 
comparison underscores the value of retrospective data collection from public social media in 
real-world settings, despite the lack of ground truth verification. Voice changes may represent a 
biomarker for Omicron. The exact underlying mechanism for characteristic audiogram 
alterations may be due to local laryngitis; however, the central nervous system is also capable of 
controlling pitch in speech43,44. 
 
6.1 Real-World Deployment                    
Potential future directions for this work include dataset expansion through improved mining 
methods, implementation of a smartphone/web-app system for day-to-day testing or user-specific 
customized models, and development of continual learning. Furthermore, regular pre-screening 
in at-risk populations could be used to define the temporal/geographic dynamics of voice 
changes from variants as a virus evolves. However, model deployment, stability, and impact 
currently remain highly speculative due to the limited size of samples from other URIs, lack of 
PCR confirmation testing and sequencing, and cohort annotations based on assumption. 
 
7. Conclusion   
Digital epidemiology is provocative and understudied in the context of public online data and 
social media data; however, its wide availability raises new questions for privacy security, 
regulation, ethics, and real-world validation. Unscripted social media audio data may inherently 
be more diverse (and ultimately lead to more generalizable models) than narrow-intent scripted 
data. For symptomatic illnesses, these indicators may be more accurately reflected in longer 
samples. Even without ground truth from sequencing, the results achieved by this early effort at 
Omicron detection merit further evaluation or smartphone app assessment in specific controlled 
public health settings with unmet needs. Despite limitations, this work highlights the unique 
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presentation of laryngitis in patients with the COVID-19 Omicron variant. Social media as a 
source of unscripted audio data may enable new frameworks to facilitate variant-specific testing. 
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