
 

 

Multi-population genome-wide association study implicates both 
immune and non-immune factors in the etiology of pediatric steroid 
sensitive nephrotic syndrome 
 
Alexandra Barry1,2+, Michelle T. McNulty1,2+, Xiaoyuan Jia3,4+, Yask Gupta5+, Hanna Debiec6+, Yang 
Luo7,8,9,10, China Nagano1,2,11, Tomoko Horinouchi11, Seulgi Jung12, Manuela Colucci13, Dina F. 
Ahram5, Adele Mitrotti5,14, Aditi Sinha15, Nynke Teeninga16, Gina Jin5, Shirlee Shril17,18, Gianluca 
Caridi19, Monica Bodria20, Tze Y Lim5, Rik Westland21, Francesca Zanoni6,22, Maddalena Marasa5, 
Daniel Turudic23, Mario Giordano24, Loreto Gesualdo14, Riccardo Magistroni25,26, Isabella Pisani27, 
Enrico Fiaccadori27, Jana Reiterova28, Silvio Maringhini29, William Morello30, Giovanni Montini30,31, 
Patricia L. Weng32, Francesco Scolari33, Marijan Saraga34, Velibor Tasic35, Domenica Santoro36, 
Joanna A.E. van Wijk21, Danko Milošević23, Yosuke Kawai3,4, Krzysztof Kiryluk5, Martin R. 
Pollak37,38, Ali Gharavi5, Fangmin Lin38, Ana Cristina Simœs e Silva39, Ruth J.F. Loos40, Eimear E. 
Kenny41,42,43, Michiel F. Schreuder16, Aleksandra Zurowska44, Claire Dossier45, Gema Ariceta46, 
Magdalena Drozynska-Duklas44, Julien Hogan45, Augustina Jankauskiene47, Friedhelm Hildebrandt1,18, 
Larisa Prikhodina48, Kyuyoung Song12, Arvind Bagga15, Hae II Cheong49, Gian Marco Ghiggeri20 , 
Prayong Vachvanichsanong50, Kandai Nozu11, Marina Vivarelli51, Soumya Raychaudhuri8,9,10,52,53, 
Katsushi Tokunaga3,4*, Simone Sanna-Cherchi5*, Pierre Ronco6,54*, Kazumoto Iijima55,56*, Matthew G. 
Sampson1,2,18* 
 
1. Division of Nephrology, Boston Children's Hospital, Boston, MA, USA 
2. Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA 
3. Genome Medical Science Project (Toyama), National Center for Global Health and Medicine 
(NCGM), Tokyo, Japan 
4. Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, 
Japan 
5. Division of Nephrology, Department of Medicine, Columbia University College of Physicians and 
Surgeons, New York, NY, USA 
6. Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherde Médicale, 
Unité Mixte de Rechereche S 1155, Paris, France 
7. Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, 
OX3 7FY, United Kingdom. 
8. Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 
USA.  
9. Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women’s 
Hospital, Harvard Medical School, Boston, MA, USA. 
10. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, 
MA, USA 
11. Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan 
12. Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 
Songpa-gu, Seoul, Korea 
13. Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Istituto di Ricovero 
e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy 
14. Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ 
Transplantation, University of Bari Aldo Moro, Bari, Italy 
 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.09.13.22279644doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.09.13.22279644
http://creativecommons.org/licenses/by-nd/4.0/


 

 

15. Department of Pediatrics, AIIMS, New Delhi, India 
16. Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical 
Center, Nijmegen, The Netherlands 
17. Department of Medicine, Boston Children's Hospital, Boston, MA, USA 
18. Department of Pediatrics, Harvard Medical School, Boston, MA, USA 
19. Laboratory on Molecular Nephrology, IRCCS Instituto Giannina Gaslini, Genoa, Italy 
20. Department of Nephrology and Renal Transplantation, IRCCS Instituto Giannina Gaslini, Genoa, 
Italy 
21. Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands 
22. Division of Transplantation, Department of Surgery, University of Pennsylvania, Philadelphia, PA 
23. Department of Pediatric Nephrology, Dialysis and Transplantation, Clinical Hospital Hospital 
Center Zagreb, University of Zagreb Medical School, Zagreb, Croatia 
24. Division of Nephrology and Pediatric Dialysis, Bari Polyclinic Giovanni XXIII Children's 
Hospital, Bari, Italy 
25. Department of Nephrology, Dialysis and Transplant Unit, University Hospital of Modena, Modena, 
Italy. 
26. Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, 
University of Modena and Reggio Emilia, Modena, Italy 
27. Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di 
Medicina e Chirurgia, Università di Parma, Parma, Italy 
28. Department of Nephrology, Medicine and General University Hospital, Charles University, Prague, 
Czech Republic 
29. Department of Pediatrics, ISMETT, Palermo, Italy 
30. Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale 
Maggiore Policlinico, Milano, Italy 
31. Department of Clinical Sciences and Community Health, University of Milan, Italy 
32. Department of Pediatric Nephrology, UCLA Medical Center and UCLA Medical Center-Santa 
Monica, Los Angeles, CA, USA 
33. Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, 
Division of Nephrology and Dialysis, University of Brescia and ASST Spedali Civili of Brescia, 
Brescia, Italy 
34. Department of Pediatrics, University of Split, Split, Croatia 
35. Department of Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia 
36. Division of Nephrology and Dialysis Unit, University of Messina, Sicily, Italy 
37. Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA. 
38. Department of Pediatric, Division of Pediatric Nephrology, Columbia University Irving Medical 
Center New York-Presbyterian Morgan Stanley Children's Hospital in New York, NY, USA 
39. Department of Pediatrics, Interdisciplinary Laboratory of Medical Investigation, Faculty of 
Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil 
40. The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount 
Sinai, New York, NY, USA 
41. Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
42. Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount 
Sinai, New York, NY, USA 
43. Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at 
Mount Sinai, New York, NY, USA 
44. Department of Pediatrics, Nephrology and Hypertension, Medical University Gdansk, Poland 
45. AP-HP, Pediatric Nephrology Department, Hôpital Robert-Debré, Paris, France 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.09.13.22279644doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.13.22279644
http://creativecommons.org/licenses/by-nd/4.0/


 

 

46. Pediatric Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, 
Barcelona, Spain 
47. Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania 
48. Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical 
University, Taldomskava St., 2, Moscow, Russia 
49. Department of Pediatrics, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170 beon-
gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14068 Korea 
50. Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla 
90110, Thailand 
51. Division of Nephrology, and Dialysis, Department of Pediatric Subspecialities, Istituto di Ricovero 
e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy 
52. Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA 
53. Centre for Genetics and Genomics Versus Arthritis, University of Manchester, Manchester, UK     
54. Department of Nephrology, Centre Hospitalier du Mans, Le Mans, France 
55. Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan 
56. Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, 
Kobe, Japan 
  
+ These authors contributed equally 
* Co-senior authors 
Please address correspondences to:  
Matt Sampson, MD MSCE 
Enders 509 
300 Longwood Ave 
Boston, MA 02115 
matthew.sampson@childrens.harvard.edu  
 
 

 

 

 

 

 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.09.13.22279644doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.13.22279644
http://creativecommons.org/licenses/by-nd/4.0/


 

 

ABSTRACT  

Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is the most common childhood glomerular 

disease. Previous genome-wide association studies (GWAS) identified a risk locus in the HLA Class II 

region and three additional signals. But the genetic architecture of pSSNS, and its genetically driven 

pathobiology, is largely unknown. We conducted a multi-population GWAS meta-analysis in 38,463 

participants (2,440 cases) and population specific GWAS, discovering twelve significant associations 

(eight novel). Fine-mapping implicated specific amino acid haplotypes in HLA-DQA1 and HLA-

DQB1 driving the HLA Class II risk signal. Non-HLA loci colocalized with eQTLs of monocytes and 

numerous T-cell subsets in independent datasets. Colocalization with kidney eQTLs was lacking, but 

overlap with kidney cell open chromatin suggests an uncharacterized disease mechanism in kidney 

cells. A polygenic risk score (PRS) associated with earlier disease onset in two independent cohorts. 

Altogether, these discoveries expand our knowledge of pSSNS genetic architecture across populations 

and provide cellspecific insights into its molecular drivers.  
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pSSNS is a rare disease of glomerular filtration barrier failure. Its incidence ranges from 0.96-

13.5/100,000, being most frequent in South Asian and East Asian populations1. pSSNS causes massive 

proteinuria and increased risk of thromboembolism, sepsis, and progression to chronic kidney disease 

(CKD)/end-stage kidney disease (ESKD)2–7. And those progressing to ESKD have increased odds of 

recurrent NS in their allograft8. pSSNS is impactful across the lifespan - 31-50% of those affected have 

relapses in adulthood9. Much of pSSNS’s morbidity is related to side effects of the non-specific 

immunosuppressants that allow some to achieve remission of their proteinuria7,10–17.  

 

There are no monogenic forms of pSSNS to illuminate its pathobiology. However, we know that immune 

dysregulation is a major contributor18,19. But determining causal immune factors via case-control studies 

of cytokines profiles, cell types, and transcriptomic signatures is challenging. The dynamic responses of 

the immune system at different disease stages and to various stimuli make it difficult to determine 

whether observed differences are causal, correlated, or due to independent biological/environmental 

factors. And kidney tissue in children is rarely available to determine intrarenal, molecular drivers of 

pSSNS.  

 

GWAS have discovered four pSSNS risk loci20–24. The top signal in each was in the HLA Class II region. 

Two other loci are plausibly immune-related, with the closest genes being Calcium Homeostasis 

Modulator Family Member 6 (CALHM6)25 and TNF Superfamily Member 15 (TNFSF15). The lead SNP 

of the fourth locus was within nephrin (NPHS1), a fundamental glomerular gene implicated in Mendelian 

NS26. These studies are illuminating but naturally by smaller sample sizes, primarily population-specific 

analyses, and limited post-GWAS analysis. Here, towards discovering a fuller spectrum of disease-

associated genetic variation and unraveling its pathogenesis at the interface of the immune system and 

kidney, we conducted a large and diverse GWAS of pSSNS. 
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We conducted a multi-population, fixed-effect, inverse-variance, meta-analysis across twelve GWAS 

datasets comprised of 2,440 cases and 36,023 controls of Admixed American, African, East Asian, 

European, Maghrebian and South Asian populations (Figure 1, Figure S1, Table S1).To account for 

population-driven effect heterogeneity, we also performed a meta-regression with MR-MEGA27. Eight 

loci (four new, and all outside HLA) were significant (MR-MEGA p < 5 x 10-8) (Table 1, Figure 2A, 

Figure S2). The lead SNPs of the novel loci were all intronic: (1) rs7759971 in Abelson Helper 

Integration Site 1(AHI1; p = 4.90 x 10-12); (2) rs55730955 in CD28 molecule (CD28; p = 4.27 x 10-10); 

(3) rs8062322 in C-type Lectin Domain Containing 16A (CLEC16A; p = 1.61 x 10-10); (4) rs28862935 

in betacellulin (BTC; p = 1.08 x 10-9). Four other significant loci were previously reported24,23. Two 

more significant loci emerged after conditioning: (5) rs1794497 upstream of HLA-DQB1, (p = 6.79 x 

10-52); (6) rs2256318 in an intron of MHC Class I Chain-related Gene A (MICA; p = 9.70 x 10-18) 

(Figure 2B, Figure S3). Population specific GWAS meta-analysis discovered two additional 

significant loci in Europeans (Figure 2C, Table S2, Table S3, Figure S4): The lead SNPs were in 

introns of (7) rs111796602 in an intron of Engulfment and Cell Motility 1 (ELMO1; p = 1.72 x 10-8) 

and (8) rs12911841 in an intron of Mortality Factor 4 Like 1 (MORF4L1; p = 3.88 x 10-8). The 

CALHM6 association appeared specific to Europeans (Panc_het = 4.99 x 10-4) and the TNFSF15 and 

NPHS1 associations to East Asians (Panc_het = 7.76 x 10-4 and Panc_het = 2.43 10-4, respectively) (Figure 

S5, Figure S6). All other loci had similar effects across populations (Figure 2D). Finally, there were 

13 novel suggestive loci (MR-MEGA p < 5 x 10-6) in the multi-population GWAS (Table S4, Table 

S5). On a liability scale and excluding HLA, European heritability was 0.04 [CI: -0.08,0.16] and East 

Asian heritability was 0.12 [CI: 0.04,0.21], with large confidence intervals likely due to small effective 

sample sizes. 	

 

A number of insights emerged from evaluating disease associations, functions, and expression patterns 

of the lead SNPs and/or the closest genes at the novel non-HLA loci. First, PheWAS using Open 
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Target Genetics (http://genetics.opentargets.org)28 found that SNPs at most loci associated with GWAS 

of diverse white blood cell traits, atopic disorders, and autoimmune conditions. For example, among 

the strongest associations with the lead SNPs at the following loci include: CLEC16A, CD28, MICA, 

and ELMO1 with eosinophil counts; AHI with monocyte and neutrophil counts, asthma, and hay fever 

(also shared by CD28); and MICA with Type 1 Diabetes (T1DM).  

 

Second, most of these genes, while primarily known for their role in immunity, also have known roles 

in kidney diseases and cells. Common AHI1 variants are associated with atopy, lupus, and diverse 

immune cell traits28. Rare AHI1 coding variants cause the monogenic ciliopathy Joubert Syndrome, 

which includes cystic kidney disease29. ELMO1 participates in Rac1 pathway activation and actin 

cytoskeletal rearrangement30, is expressed in podocytes31, and is associated with diabetic 

nephropathy32. CD28, a T-cell glycoprotein, binds a co-stimulatory molecule B7-1 (CD80) on antigen-

presenting cells. B7-1 is expressed on human podocytes in some forms of nephrotic syndrome, and 

blocking the B7-1/CD28 interaction with a CTLA-4 immunoglobulin can ameliorate proteinuria33. 

MICA is expressed in kidney endothelium, binds and activates cytotoxic CD8+ T cells and NK cells, 

and has increased glomerular expression in lupus34. BTC contributes to inflammation by binding to 

epidermal growth factor receptor35, a gene whose renal expression is upregulated after kidney injury36. 

CLEC16A takes part in the B cell receptor-dependent HLA-II pathway in human B cells37, but is also 

significantly expressed in the human podocytes (https://atlas.kpmp.org). It is involved in autophagy, 

mitophagy, and endolysosomal trafficking in multiple cell types38,39. It is also in close proximity to 

CIITA, a master transcription factor of HLA class II genes40 and Dexamethasone Inducible Transcript 

(DEXI), a glucocorticoid-induced gene41. 

 

We next turned to discovering specific variants and genes driving these GWAS signals and discerning 

whether they are acting in immune cells, kidney cells, or both.  
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First, we conducted colocalization with eQTL data from two functionally distinct kidney compartments 

(glomerulus and tubulointerstitium)42, multiple tissues from GTEx43, and immune cells from DICE44 and 

Blueprint45. Overall, pSSNS GWAS SNPs demonstrated significant enrichment in multiple immune cell 

eQTLs, led by a 69x and 62x increased odds of being monocyte and CD4+ memory Treg eQTLs, 

respectively (Figure 3). On an individual gene level, considering eQTLs with a regional colocalization 

probability (RCP) > 0.2, nine genes – including three which were the closest gene to a GWAS SNP 

(CALHM6, AHI1, TNFSF15) – colocalized with immune cell eQTLs (Figure 3, Table S6). All three 

significantly colocalized with monocyte eQTLs. AHI had significant eQTLs across monocytes, many T-

cell subsets, and naïve B cells. Finally, in CD4+ memory Treg cells, SNPs in the “Gasdermin B 

(GSDMB)” suggestive locus colocalized with two different genes – GSDMB and ORMDL sphingolipid 

biosynthesis regulator 3 (ORMDL3). The GSDMB/ORMDL3 locus is associated with multiple 

autoimmune disorders and eosinophilic inflammation-driven asthma46. In asthma, higher GSDMB 

expression is correlated with increased interferon signaling and MHC class I antigen presentation47. 

Notably, there was no colocalization with kidney eQTLs despite sufficient sample sizes to do so (Figure 

S7). 

 

We then created a 95% credible set for all non-HLA significant loci and assessed their overlap with 

ATAC-seq derived open chromatin data from immune48 and kidney cells49,50 (Table S7). The SNPs 

with the highest posterior inclusion probability (PIP) for AHI, rs7759971 (PIP 0.52), overlapped with 

open chromatin of multiple immune cell types, including CD34+ cells, common lymphoid and myeloid 

progenitors, hematopoietic stem cells, and multipotent progenitors. The top PIP SNP for CLEC16A, 

NPHS1, CD28, CALHM6, and TNFSF15 had no overlap with open chromatin. However, each locus 

had individual SNPs with lower PIPs that overlapped with both immune and kidney cell open 

chromatin. 
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We next fine-mapped the HLA signal  (Table S8) We first imputed across the extended MHC region 

using a multi-population HLA imputation panel 51, resulting in 640 classical HLA alleles, 4,513 amino 

acids in HLA proteins and 49,321 SNPs in the extended MHC region for association. We used 

population-specific and multi-population SNP-level logistic regression, to identify specific SNPs and 

classical alleles associated with pSSNS (Table S9, Supplement Note 1, Table S10, Figure S8).  

 

We next turned to discovering specific HLA amino acid positions most associated with risk of pSSNS 

through logistic regression analysis of all residues at each position. Amino acid position 47 in HLA-

DQA1 was the most strongly associated with pSSNS (Pomnibus = 7.73 x 10-83) (Table S11, Figure S9). 

Arginine was the most frequent amino acid; a substitution to lysine conferred the greatest disease risk 

(P = 5.70 x 10-80; OR [95% CI] =3.62 [3.17 – 4.14]). A second association in near-perfect linkage 

disequilibrium was identified at HLA-DQA1 position 52 (P = 1.14 X 10-82). Arginine was again the most 

common amino acid at this position, and a substitution to serine conferred the greatest protection from 

risk (P = 1.00 x 10-28; OR = 0.53 [0.47 – 0.59]). After conditioning, an independent association was 

discovered at HLA-DQB1 position 26 (P = 3.22 X 10-13). A change from the most common amino acid 

leucine to glycine conferred the most significant protection (P = 4.75 x 10-12; OR = 0.64 [0.60 – 0.73]). 

A haplotype analysis identified  the 47lysine-52histidine haplotype associated with greatest increased odds of 

pSSNS (Figure 4a).  HLA-DQA1 position 47 is located on the outside of the peptide-binding groove and 

acts as a regulator of binding stability, which, when altered, has been suggested to mediate the 

development of autoimmune disorders52. Arginine at HLA-DQA1 position 52 has been associated with 

autoimmune disorders, including T1DM53. 

 

We then used DynaMut254 to model the impact on protein structural stability of two amino acid 

haplotypes (Figure 4b). This is quantified by Delta Delta G (ddG), where ddG < 0 predicts unstable 
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structure. The haplotype consisting of lysine (47) and histidine (52) predicted the most instability (ddG 

= -3.64). Notably, the predicted increase in protein instability and increased odds of disease for each 

haplotype were concordant. This suggests that pSSNS-associated haplotypes increased the odds of 

disease by increasing the instability of HLA-DQA1 and altering its ability to properly form a stable HLA-

II molecule. 

 

Finally, we generated a pSSNS PRS using summary statistics of 1,607 cases and 11,995 controls from 

European and East Asian populations. We first tested its association with demographic and clinical 

phenotypes in 233 European children with sufficient clinical data from the EU-European sub-cohort, 

after adjusting for genetic principal components. There was a significant negative association observed 

between PRS and age of disease onset (P = 1.49 x 10-4, Figure 5A, Table S12). We then assessed the 

PRS in an independent cohort of 165 children with proteinuric kidney disease enrolled in the Nephrotic 

Syndrome Study Network (NEPTUNE)55. 30%, 49%, and 21% of all participants had focal segmental 

glomerulosclerosis, minimal change disease, or no biopsy, respectively. Adjusting for sex, histology and 

genetic principal components, we found a significant association between PRS and age of onset (P = 

0.003; Figure 5B, Table S12, Figure S10).  

A number of important discoveries emerged from this study. First, we tripled the number of pSSNS 

from four to twelve. Second, we found that while the immunological connections with the lead SNPs 

and closest genes in these newly discovered loci are well-established, most of them also have a bona 

fide, but overall less understood role, in kidney cells and diseases. Discovering upon which cells and 

organ systems each of these risk loci act will be an important future step. The availability of omics data 

from pediatric kidney tissue will be critical, as we hypothesize that the paucity of kidney eQTL signals 

we observed may be due to mapping pSSNS GWAS data to signatures primarily from adult tissues. 

Third, we identified monocytes and eosinophils dysfunction as a potential contributor to the 
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pathogenesis of pSSNS. The mechanisms by which genetically driven changes in these cell types 

contribute to pSSNS onset is an important area of future inquiry. Fourth, we discovered specific amino 

acid changes in HLA-DQA1 and -DQB1 associated with pSSNS that should help will empower 

subsequent studies to illuminate pathomechanisms at the most significant risk locus for this disease. 

Finally, the association of higher PRS with younger age of onset suggests that a stronger genetic 

predisposition to disease lowers the threshold of an individual to develop pSSNS in the context of 

environmental factors and may ultimately help share clinical screening and care. In	conclusion,	these	

findings	expand	our	knowledge	of	the	genetic	architecture	of	pSSNS	and	accelerate	our	

understanding	of	its	molecular	underpinnings	and	clinical	implications.	 

METHODS  

GWAS data summary.  

GWAS data from NEPHROVIR/EU. Sample collection and genotype calling were done at Sorbonne 

Université in Paris. Pediatric steroid sensitive nephrotic syndrome was defined as proteinuria > 

0.25g/mmol, serum albumin <25 g/L (<30 in France), full response within 4 weeks of 60 mg/m2/day of 

oral prednisone or prednisolone, and age of onset < 18 years old. 244 previously reported European 

patients from the NEPHROVIR study21 were combined with 159 newly recruited European patients 

recruited from France, Lithuania, Poland, Russia, Italy. Healthy adult controls (n=300) were recruited 

from Lyon, France, and combined with population-matched controls from The 1000 Genomes Project 

Phase 3 release (n=493)56. There were also 56 sub-Saharan African cases with 454 population-matched 

controls from The 1000 Genomes Project and 85 Maghrebian cases with 261 Moroccan population-

matched controls. Both were reanalyzed from a previous report21. There were 160 Indian cases with 93 

population-matched controls. Samples were genotyped on the Illumina Human OmniExpress or 

Illumina Omni 2.5 arrays.  
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GWAS data from Columbia University (US Cohorts). Sample collection and genotype calling was done 

at Columbia University in New York. Cases were defined by local recruitment centers across the US, 

Europe, and Brazil as either minimal change disease or non-biopsied SSNS with age of disease onset 

<21. Five cohorts from Columbia University consisted of patients from European (ncases=371, ncontrols-

=4359), East Asian (ncases=17, ncontrols=443), sub-Saharan African (ncases=65, ncontrols=7344), South Asian 

(ncases =39, ncontrols=534) and Admixed American (ncases =109, ncontrols=13266) populations. The 

genotyping of the cases was performed using multiple versions of MEGA (Multi-Ethnic Global Array) 

chips that includes MEGA 1.0, MEGA 1.1 and MEGAEX. The controls that were genotyped on 

MEGA1.0 were downloaded from NCBI dbGAP (IDAT files) from the PAGE consortium57. The 

differences between the chips were corrected first by mapping all the SNPs to a common cluster file in 

Genome Studio for individual MEGA platforms and further using Snpflip (https://github.com/biocore-

ntnu/snpflip) software. 

 

 GWAS data from Kobe University. Pediatric steroid sensitive nephrotic syndrome cases were defined as 

urine protein to creatinine ratio ≥ 2.0, serum albumin ≤ 2.5 g/dl, and complete remission with 4-6 weeks 

after starting 6- mg/m12 oral prednisolone per day and age of onset < 18 years old. Three GWAS studies 

of SSNS in Japanese (ncases= 987, ncontrols =3206), Korean (ncases= 243, ncontrols=4041) and Thai (ncases=65, 

ncontrols=94) population were completed at The University of Tokyo, Japan. The Japanese and Korean 

GWAS data have been previously reported22,23. The Thai dataset was genotyped with the Axiom array. 

 

Dataset QC, imputation and GWAS. 

Quality control, imputation, and GWAS were conducted separately for each study location and 

population. GC lambda (GCl) was used to assess inflation in all studies. The final case and control sizes 

and the number of variants tested can be found in Table S1 and Figure S1. Figure S11 shows matching 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.09.13.22279644doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.13.22279644
http://creativecommons.org/licenses/by-nd/4.0/


 

 

of cases and controls in PCA plots. Manhattan plots and GC can be found in Figure S12 and genome-

wide significant hits resulting from dataset GWAS are in table S13. 

 

GWAS data from NEPHROVIR/EU: EU-European, EU-African, Maghrebian, Indian.  

Each file was quality controlled separately to remove related individuals (IBD > 0.1875), low call rate 

(genotype rate < 98%), and cases with discordant sex. SNPs were quality controlled for allele frequency 

(MAF < 0.01), call rate (genotype rate < 98%) in all cohorts, and Hardy Weinberg equilibrium (HWE 

P<1x10-5) in controls only. The EU-European datasets were generated in multiple files and were merged 

stepwise on the common subset of SNPs, with the previous QC procedure reapplied after each merge. 

PCA plots were constructed from PLINK v1.9 to identify population outliers and check for batch 

effects58. Pre-imputation QC was conducted using McCarthy Tools with the TOPMed reference panel 

to check strand alignment and allele assignment. Insertions and deletions were excluded prior to 

imputation. Each population was imputed separately and cases and controls were imputed together on 

the TOPMed Imputation Server with the TOPMed r2 reference panel59–61. The QC was repeated after 

imputation and SNPs with low imputation quality (rsq < 0.3) were excluded. After imputation, UCSC 

Liftover62 was used to convert SNP positions from each population dataset to build GRCh37 to match 

the build of summary statistics from other analyses. The association tests were completed using PLINK 

v1.9 under an additive model with principal component adjustment to account for population 

stratification.  

 

GWAS data from Columbia University (US Cohorts) US-European, US-African, US-South Asian, US-

East Asian and Admixed American.  

Population was assigned by KING63 kinship analysis software and based on continental population as 

defined by the 1000 Genomes Project for all cases and controls64,65. Within each continental population 

(EUR, AFR, AMR, SAS and EAS), we removed variants with genotype rate < 99%, MAF < 0.01 and 
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HWE P<1x10-5. Each population was imputed separately with the TOPMed r2 panel59–61. After 

imputation, we removed first-degree relatives using KING, and variants with R2 < 0.8, MAF < 0.01 and 

HWE P<1x10-5. Principal components were calculated with FlashPCA66. For cohorts with large 

case/control imbalances (Admixed American and US-African), we used the SAIGE logistic model65 for 

calculating P-value and generating summary statistics. Association tests for European, South and East 

Asian were completed using PLINK v1.9 under an additive model with principal component adjustment 

to account for population stratification58. 

 

GWAS data from Kobe University: Japanese, Korean and Thai. 

Quality control and analysis of the Japanese and Korean datasets are previously described in Jia et.al23. 

For the Thai analysis, SNPs were removed that had info score < 0.9, MAF < 0.005, call rate < 97%, or 

HWE P < 1x10-5. Individuals with missing rate > 3%, IBD > 0.1875 and PCA outliers were removed. 

Genotypes were imputed with The 1000 Genomes reference panel using SHAPEIT67  and IMPUTE268. 

Logistic regression was performed with Plink1.9 and p-values were adjusted for genomic control (GC). 

 

Population-specific and multi-population meta-analysis. 

For each population-specific meta-analysis and the multi-population one, we conducted an inverse-

variance, fixed-effect meta-analysis using METAL with adjustment for population stratification (GC) 

on each input dataset and assessment for heterogeneity selected69. For within-population meta-analyses, 

we removed variants with heterogeneity P-value < 0.05. All significant associations were visually 

inspected and single SNPs that did not follow the expected LD trend were not taken forward for further 

consideration.  
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For the European meta-analysis, we included available summary statistics of suggestive SNPs  from 

Dufek et.al24, increasing the European sample size to 1,096 cases and 12,459 controls. The resulting 

suggestive and genome-wide significant SNPs are annotated in tables and figures.  

 

Multi-population meta-regression with MR-MEGA. 

To account for and assess heterogeneous loci, we conducted a meta-regression using MR-MEGA27. We 

included three principal components, which captured the population structure across all 12 datasets. This 

allowed us to stratify heterogeneity into residual heterogeneity and heterogeneity that correlates with 

population. We visualized each dataset’s PCs from MR-MEGA with the dataset-specific log odds ratio 

from METAL for each variant with heterogeneity that correlated with population. We adjusted for 

genomic control at the study level and after meta-regression to account for population structure within 

and between datasets. SNPs present in less than five studies were excluded. GC lambda (GCl) was used 

to assess inflation. Results tables include summaries from both METAL and MR-MEGA analyses (Table 

1). All Manhattan plots were generated with the qqman R package [doi: 10.21105/joss.00731.] and 

LocusZoom web tool70. All significant loci are > 1Mb from each other with r2 < 0.1. Loci were labeled 

by nearest genes.  

 

Conditional analyses. 

To identify independent secondary signals at the candidate loci, we used GCTA COJO71,72 to conduct 

approximate conditional analyses based on cohort-specific meta-analysis summary statistics. 

Conditional analysis was conducted in each dataset, with an LD reference generated from the dataset 

samples, due to differences in linkage disequilibrium structure between continental populations. Each 

cohort was conditioned for the eight independent loci identified from the initial meta-analysis. Multi-
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population meta-analysis of the conditioned cohorts was repeated in METAL69 to assess multi-

population genome-wide significant secondary loci after GCTA.  

 

Heritability estimates. 

SNP-based heritability was estimated on a liability scale with LD score regression (LDSC)73 using a 

population prevalence of 16/100,000 and excluding HLA [chr6:25,000,000-34,000,000]. We used non-

GC corrected population-specific meta-analysis summary statistics from METAL and pre-computed 

LD scores generated from 1000 Genomes EUR or EAS samples 

(https://alkesgroup.broadinstitute.org/LDSCORE/).  

 

 

 

Colocalization of SSNS GWAS variants and eQTLs datasets. 

We used fast enrichment estimation aided colocalization analysis (fastENLOC)74 for colocalization 

analysis with glomerular (n=240) and tubulointerstitial (n=311) eQTLs from nephrotic syndrome 

patients55, GTEx tissues (varied sample sizes), and immune eQTLs from both Blueprint45 (n=200) and 

DICE 44 (n=91) databases. Posterior probabilities for SSNS GWAS variants were calculated from MR-

MEGA Z-scores using TORUS75. We used an LD panel from European and East Asian 1000 Genomes 

samples to define haplotype blocks in the pSSNS meta-analysis56. Enrichment of pSSNS GWAS 

variants in each eQTL dataset was estimated using fastENLOC and subsequently informed prior 

probabilities for each analysis. For colocalization with our kidney eQTLs, which had available raw 

data, we could identify multiple eQTL signals per gene and multiple colocalized signals at each locus. 

For all other data, in which only summary statistics were available, we assumed at most one 

colocalized signal at each locus and did not account for LD.  
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Open chromatin annotation of credible sets. 

95% credible sets were constructed for each independent locus identified from the multi-population 

meta-regression from Bayes’ factors reported by MR-MEGA. Posterior inclusion probability (PIP) was 

estimated by dividing each Bayes’ factor by the summation of Bayes’ factors across all variants within 

a +/- 1Mb from the lead locus76.  

 

SNPs within 95% credible sets of our genome-wide significant loci were evaluated for positional overlap 

based on the boundaries of known open chromatin peaks in kidney49 and immune77 cell types. Open 

chromatin peaks were identified by MACS2 peak calling algorithm and optimized by gkmQC50.  

 

 

 

HLA imputation and analysis. 

To fine-map the HLA region, we conducted HLA imputation with the four-digit multi-ethnic v2 

reference panel on Michigan Imputation Server51. Cohorts were imputed individually to optimize 

population-specific structure within the HLA region. The imputed cohorts were then merged for multi-

population associations. We used HLA-TAPAS ‘assoc’ module to conduct a logistic regression of the 

HLA region of the multi-population and population-specific datasets. For population-specific analyses, 

we adjusted for genotype-based principal components from Plinkv1.958. The population-specific 

principal components and continental populations were included as covariates in the multi-population 

analysis. HLA-TAPAS was also used to conduct a stepwise conditional analysis, conditioning on the 

locus with the smallest association P-value. We additionally performed an omnibus test on the 

population-specific and multi-population cohorts to assess significance by amino acid position.  
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HLA modeling. 

To predict the reference (with arginine at position 47 and serine at position 52) structure of HLA-DQA1 

we extracted the sequence of HLA-DQA1 from UNIPROT database (Uniprot ID: P01909). We used 

NCBI BLASTp against PDB database to find the closest structure associated with the amino acid 

sequence of P01909. We identified the top hit as 6PX6_A (HLA-TCR complex, E = 2e-161) for the 

HLA-DQA1 sequence78. We extracted the PDB coordinates for chain A from the 6PX6 and visualized in 

PYMOL v2.5. Since the most common amino acid haplotype in the control population was arginine (47) 

and serine (52), we performed mutagenesis using PYMOL to model the reference protein 3-D structure79. 

 

In brief, we used the mutagenesis tool from PYMOL and selected the rotamer (most likely amino acid 

conformation) for arginine and serine which showed the minimum number of clashes with nearby atoms. 

Afterwards, we adjusted the conformation of nearby atoms (within 5 Angstrom) to minimum free state 

using “Clean” command in PyMOL which uses MMFF94 force field80 . Though point mutations locally 

affect the conformation of the protein, they can result in torsion, bending and stretching of the entire 

molecule. Therefore, we exported the protein structure to SPDBV software for further refinement81. 

 

We first fixed all the side chains of all amino acids to the best rotamer conformation using the simulated 

annealing method. Afterwards, we performed energy minimization using GROMOS 96 force field to 

extract the 3D coordinates that represent the lowest minimum energy conformation82. The refined protein 

structure of HLA-DQA1 was then assessed for changes in stability of protein for both amino acid 

combinations for each haplotype using “MULTIPLE MUTATION” in DynMut2 server54. The instability 

of HLA-DQA1 was evaluated using the predicted ddG parameter which measures changes in Gibbs free 

energy between the folded and unfolded states and the change in folding when a mutation is present. The 

interaction among amino acids in reference and mutated structure were predicted using Arpeggio83 and 

visualized in PyMOL. 
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Polygenic risk score analysis.  

Construction of the polygenic risk score (PRS). To investigate genetic risk across the genome, we 

generated a polygenic risk score (PRS) from the GWAS of European (US-European) and East Asian 

(Japanese, Korean, US-East Asian) populations using PRS-CSx84. Population-specific weights estimated 

by PRS-CSx were used as input, along with a testing/training dataset, for optimization of the gamma-

gamma priors a and b and the global shrinkage parameter used in the PRS-CSx model. Our main 

objective was to test clinical associations with PRS within case cohorts. We used case/control data and 

prediction accuracy to choose the best PRS model parameters. We fine-tuned and estimated PRS 

population weights in the EU-European and NEPTUNE separately. Since NEPTUNE is a case-only 

cohort, we included population--matched controls from the 1000 Genomes Project. In each dataset, 80% 

of cases and controls were randomly selected for training and 20% for testing. We varied the PRS-CSx 

hyper-parameters and chose the combination that gave the best prediction accuracy. The prediction 

accuracy with an area under the receiver operating characteristic curve was 0.74 (95%CI: 0.72-0.77) in 

EU-European dataset and 0.64 (0.61-0.68) in NEPTUNE.  

 

Clinical associations with PRS. The PRS was applied to pediatric participants from NEPTUNE55 

(n=165), and the EU-European data for which clinical data were available (n=239). For bivariate tests, 

we used the Wilcoxon test for binary traits, Kruskal-Wallis for categorical traits and univariate linear 

regression for continuous traits. Population in NEPTUNE was predicted using Peddy85 and the 1000 

Genomes reference panel. For associations with the age of onset, we conducted linear regression 

adjusting for sex, four genetic principal components, and histology (NEPTUNE only). 
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Figure 1: Flowchart of study design. pSSNS= pediatric steroid sensitive nephrotic syndrome, 

EUR = European, EAS = East Asian, eQTL = expression quantitative trait loci.  
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Table 1. Genome-wide significant SNPs from multi-population meta-analysis 

EA=effect allele, NEA=non-effect allele, OR [95% CI]= Odds ratio with 95% confidence 

interval. MR-MEGA results are not available for the conditional analysis.  

 

 

  

     Fixed-effects meta-analysis 

Meta-regression  

(MR-MEGA) 

Nearest 

Gene Top SNP Position (hg19) EA NEA OR [95% CI] P-value 

Het I2  

P-value P-value 

Population 

het P-value 

Discovery Meta-analysis 

HLA-DQB1 rs1063355 6:32627714 T G 0.46 [0.42, 0.50] 4.51 x 10-81 0.09 6.85 x 10-82 0.26 

NPHS1 rs412175 19:36342103 C T 1.65 [1.49, 1.83] 4.15 x 10-22 8.63 x 10-2 2.30 x 10-24 2.43 x 10-4 

CALHM6 rs2637678 6:116787378 C T 0.79 [0.73, 0.85] 1.48 x 10-10 7.30 x 10-5 2.06 x 10-12 4.99 x 10-4 

AHI1 rs7759971 6:135746884 T C 1.34 [1.24, 1.44] 1.28 x 10-13 0.52 4.90 x 10-12 0.74 

TNSFS15 rs10817678 9:117579457 G A 0.79 [0.73, 0.85] 2.92 x 10-10 0.04 5.57 x 10-12 7.76 x 10-4 

CLEC16A rs8062322 16:11092319 A C 0.75 [0.68, 0.81] 2.78 x 10-11 0.33 1.61 x 10-10 0.16 

CD28 rs55730955 2:204585956 A T 0.74 [0.68, 0.81] 3.59 x 10-11 0.62 4.27 x 10-10 0.34 

BTC rs28862935 4:75693465 A G 1.41 [1.27, 1.56] 1.00 x 10-10 0.18 1.08 x 10-09 0.24 

Conditional Meta-analysis 

HLA-DQB1 rs1794497 6:32649180 T C 0.49 [0.44, 0.53] 6.79 x 10-52 0.03 - - 

MICA rs2256318 6:31381519 A G 1.49 [1.36, 1.64] 9.71 x 10-18 4.18 x 10-4 - - 
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Figure 2. Manhattan plots of A) multi-population meta-analysis of 2,440 cases vs. 36,023 

controls, B) multi-population conditional meta-analysis, C) European meta-analysis of 674 cases 

vs. 6,817 controls. Novel genome-wide association are indicated with in red and only novel 

associations are labeled in B and C. Discoveries that included the summary statistics from 

suggestive SNPs available from Dufek et al indicated with ‘+’, D) Multi-population & single 

population odds ratios for novel multi-population significant SNPs discovered 
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Figure 3. Colocalization of SSNS GWAS and eQTL datasets. Each eQTL data set is labeled 

with colocalized loci to the left and enrichment estimates to the right. Genes with regional 

colocalization probability (RCP) > 0.2 in at least one tissue/cell are included. pSSNS GWAS loci 

that colocalized with tissue/cell-type eQTLs are indicated by black dots, with larger dots 

indicating higher RCP. GTEx tissues without associations are excluded from this figure (see 

Figure S7). Enrichment estimates, from fastENLOC, are based on genome-wide summary 

statistics from GWAS and include a shrinkage parameter, resulting in 0 enrichment for multiple 

tissues/cell-types.  logOR=2 ~ OR=7.5, logOR=3 ~ OR=20.1, logOR=4 ~ OR=50.6. 
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Figure 4. HLA-DQA1 amino acid risk associations. A) Increased risk and predicted stability 

change of the two-amino acid residue hapltoypes at HLA-DQA1 positions 47 and 52. Odds ratios 

are from a joint logistic regression with arginine47-serine52. The reference haplytype is the one 

conferring the strongest protection (i.e., odds ratio indicate increase in risk compared to 

arginine47-serine52). Increasingly negative “Predicted Stability Change” indicates increasingly 

decreased stability. B) Protein structure for the reference haplotype arginine47-serine52 (left, blue) 

and lysine47-histidine52 (right, red). The residues in lime color displays potential interacting 

amino acid with mutated amino acids. The color scheme for interaction is as follows: Cyan for 

Van der Waals, red for hydrogen bonds, green for hydrophobic bonds, sky blue for Carbonyl 

bonds and orange for polar bonds. When no bonds are displayed but the amino acids are shown 

they were predicted to form weak VDW bonds.   

 

  

 

Amino Acid Haplotype Haplotype Frequency    

DQA1_47 DQA1_52 Case Control OR (95% CI) P-value 
Predicted 

Stability Change  

cys ne arginine 0.34 0.31 1.93 (1.71, 2.18) 8.77 x 10-27 -2.67 
lysine his dine 0.28 0.12 3.56 (3.12, 4.06) 1.09 x 10-78 -3.64 

glutamine arginine 0.13 0.18 1.69 (1.45, 1.97) 2.90 x 10-11 -0.05 
arginine serine 0.25 0.39 Reference - - 
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Figure 5. Association between pSSNS PRS quartiles and age of onset in pediatric SSNS 

patients from A) EU-European and B) NEPTUNE pediatric cohorts.  
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