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We present a general theory of infection spreading, which directly follows from

conservation laws and takes as inputs the probability density functions of la-

tent times. The derivation of the theory substantially differs from Kermack

and McKendrick (1927) argument, which instead was based on the concept of

removal rates. We demonstrate the formal equivalence of the two approaches,

but our theory provides a clear interpretation of the kernels of the integro-

differential equations governing the infection spreading in terms of survival

function of the latent times distributions. This aspect was never captured be-

fore. Real distributions of latent times can be, then, employed, thus overcom-

ing the limitations of standard SIR, SEIR and other similar models, which

implicitly make use of exponential or exponential-related distributions. SIR

and SEIR-type models are, in fact, a subclass of the theory here presented.

We show that beside the infection rate ν, the joint probability density function

pEI (τ, τ1) of latent times in the exposed and infectious compartments governs
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the infection spreading. Assuming that the number of infected individuals is

negligible compare to the entire population, we were able to study the stabil-

ity of the dynamical system and provide the general solution of equations in

terms characteristic functions of the probability distribution of latent times.

We present asymptotic solutions for the case R0 = 1 and demonstrate that the

moments of the latent times distribution govern the rate of disease spreading in

this case. The present theory is employed to simulate the diffusion of COVID-

19 infection in Italy during the first 120 days. The estimated value of the basic

reproduction number is R0 ≈ 3.5, in very good agreement with existing data.

Introduction

Mathematical modeling has proven to be an extremely powerful tool to explain and predict the

course of an epidemic, by helping to plan effective policies to control the infection spreading

(1–8).

The most common framework for modeling infectious disease dynamics involves dividing

the population into compartments and using ordinary differential equations (ODEs) to specify

flows between them. For diseases conferring permanent immunity, the SIR (susceptible - infec-

tious - recovered) model is usually employed (1,9,10). A simple enhancement of the SIR model

is SEIR one (susceptible - exposed - infectious - recovered), where the compartment of exposed

(i.e. infected) individuals but not yet infectious is introduced. These models assume that the

time an individual spends in each compartment is exponentially distributed (2–5). While such

an assumption could sound reasonable in some circumstances, it is often unrealistic (11–15),

and usually leads to an underestimation of the basic reproduction number and to overoptimistic

predictions about the efficacy of epidemic control measures (16). The assumption of exponen-

tially distributed latent times, may also overestimate the numbers of individuals whose infection
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period is much shorter or longer than its average (13, 14). Several investigations have, indeed,

revealed that the shape of the probability density function of latent times may have a huge im-

pact on the predicted infection dynamics (14,16–30). Aware of these limits, we present a theory

of infection spread, where the transition from the susceptible compartment to the exposed one

is still governed by a reaction-like equation, but the flow of individuals to any other subsequent

compartment (e.g., from exposed to infectious or from infectious to removed) is rather governed

by integral equations that express the fact that individuals, who enter a certain compartment at

a given time will move to the subsequent one after a generic stochastically distributed latent

time. The present theory does not pose any restriction on the functional form of the latent times

probability density functions. Thus, real distributions, obtained by tracing real data, can be

easily utilized. The present theory is employed to describe the evolution of COVID-19 infec-

tion (31–35) in Italy during the first 120 day.

1 The Model

We assume homogenous mixing of the population. Accordingly, the effect of the topological

structure of the individuals contact network is not considered in this study. However, the the-

ory can be easily generalized to the case of disease spreading on networks or in the case of

heterogeneous mixing (36–38).

Our model consists of six compartments: (i) susceptible, (ii) exposed, (iii) infectious, (iv)

removed, (v) healed, (vi) deceased individuals as shown in Fig. 1. Let be N the total and

constant number of individuals in the population, s (t) the number of susceptible individuals,

e (t) the number of exposed individual, i (t) the number of infectious individuals, r (t) the

number of removed (isolated) individuals, h (t) the number of recovered (healed) individuals,

and d (t) the number of deceased individuals. We also define n (t) = N − s (t) the cumulative

number of cases, i.e. the total number of individual that have been infected. Mass conservation
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Figure 1: The compartments of the proposed model.

requires s (t) + e (t) + i (t) + r (t) + h (t) + d (t) = N , i.e.

e (t) + i (t) + r (t) + h (t) + d (t) = n (t) (1)

We assume that all the above defined quantities are zero for negative times, i.e. we assume

that n = e = i = r = h = d = 0 for t < 0. Moreover at t = 0 only n (t), s (t) and e (t)

undergoes a step change so that n (0+) = e (0+) = n0 and s (0+) = s0 = N − n0. By defining

the Heaviside step function H (t) as H (t ≤ 0) = 0 and H (t > 0) = 1, we can write that the

time derivative ṅ (t) = n0δ (t) + H (t) ṅ (t), and analogously ė (t) = n0δ (t) + H (t) ė (t),

ṡ (t) = s0δ (t) + H (t) ṡ (t), where δ (t) is the Dirac delta function. Now we assume that

transition from the susceptible compartment to the exposed one is governed by the standard

reaction-like equation

ṡ (t) = −νi (t)
s (t)

N
+ s0δ (t) (2)

Note that the forcing term s0δ (t) is included to account for the condition s (0+) = s0. In

fact integrating both hand sides from t = 0− to t = 0+ one gets s (0+) − s (0−) = s0 and

recalling that s (0−) = 0 we retrieve the initial condition s (0+) = s0. In Eq. (2) the infection

rate ν is the average number of contacts per person per unit time, multiplied by the probability

of disease transmission in a single contact between a susceptible and an infectious individual.

Here we assume, since the beginning, that the infection rate of each individual does not depend

on the time when the he/she got infected. However the extension to this case is straightforward.
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Incidentally we notice that in general Kermack and McKendrick (9) model this assumption was

enforced at the beginning of their argument. Eq. (2) can be rephrased as

ṅ = ν
(
1− n

N

)
i (t) + n0δ (t) (3)

Now consider a single individual that has been infected at time t. Such an individual will

become infectious after a certain randomly distributed latent period τk ≥ 0 and therefore will

move from the exposed to the infectious compartment at time t + τk. Let us call δmk (t) the

number of individuals in the time interval δt, having latent time τk, which move out from the

exposed compartment at time t. Of course δmk (t) equals the number of individuals δnk (t− τk)

that have been infected (during the same time step δt) at time t− τk. Hence, the increase δe (t)

of individuals in the exposed compartment at time t is just given by the number δn (t) of newly

infected individuals at time t diminished by the number of individuals δm (t) =
∑

k δmk (t) =∑
k δnk (t− τk), i.e.

δe (t) = δn (t)−
∑
k

δnk (t− τk) (4)

or dividing by the infinitesimal time step δt

ė (t) = ṅ (t)−
∑
k

ṅk (t− τk) (5)

Recalling that the latent time τ individuals spend in the exposed compartment is a continuous

stochastic variable, one can write that the fraction of individuals that have latent time ranging

in the interval τk ≤ τ < τk +∆τ is

δnk

δn
=

ṅk

ṅ
= pE (τk)∆τ (6)

where pE (τ) is the density probability function of latent times τ > 0. We assume that pE (τ) is

independent of time t. This yields

ė (t) = ṅ (t)−
∑
k

pE (τk) ṅ (t− τk)∆τ (7)
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and by letting ∆τ → 0 we get

ė (t) = ṅ (t)−
∫ +∞

0−
pE (τ) ṅ (t− τ) dτ (8)

Eq. (8) can be easily t-integrated to get

e (t) = n (t)−
∫ +∞

0−
pE (τ)n (t− τ) dτ (9)

Observe that Eq. (9) is Volterra equation. A similar argument applies to the number i (t) of

individuals in the infectious compartment (see Sec. A) to give

i (t) =

∫ +∞

0

pE (τ)n (t− τ) dτ −
∫∫

dτdτ1pEI (τ, τ1)n (t− τ − τ1) (10)

where pEI (τ, τ1) is the joint probability density function of the latent times τ and τ1 in the

exposed and infectious compartments respectively (τ1 is the time the single individual spends

into the infectious compartment). Note that to simplify the notation we have used the symbol
∫

in place of
∫ +∞
0−

. Consider that the lower limit of integration 0−can be replaced with −∞ since

the probability density functions must vanish when at least one of the arguments is negative.

Using the same arguments for the case of individuals in the removed compartment, and

defining the latent time τ2 as the time a removed individual takes to recover and τ3 the latent

time a removed individual takes to enter the deceased compartment we get

r (t) = n (t)− e (t)− i (t) (11)

−γ

∫∫∫
dτdτ1dτ2pEIH (τ, τ1, τ2)n (t− τ − τ1 − τ2)

−β

∫∫∫
dτdτ1dτ3pEID (τ, τ1, τ3)n (t− τ − τ1 − τ3)

and

h (t) = γ

∫∫∫
dτdτ1dτ2pEIH (τ, τ1, τ2)n (t− τ − τ1 − τ2) (12)

d (t) = β

∫∫∫
dτdτ1dτ3pEID (τ, τ1, τ3)n (t− τ − τ1 − τ3) (13)
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where pEIH (τ, τ1, τ2) is the joint probability density function of latent times τ , τ1 and τ2, and

pEID (τ, τ1, τ3) is the joint probability density function of latent times τ , τ1 and τ3. The quantity

γ is the total fraction of infected people that has recovered in the long term (i.e. for t → +∞)

and β = 1 − γ is the fraction of infected people that, for t → +∞, has entered the deceased

compartment. Also note that summing up Eq.(9-13) yields, as expected, Eq. (1). Note that in

order to derive the dynamic equations of the infection diffusion we never had the need to refer

to the concept of rate of removal, which was a crucial point in the Kermack and McKendrick

argument (9). Evolution equations are, instead, naturally derived by enforcing mass conser-

vation laws, once known the probability density functions of latent times. The present theory

does not pose any restriction to the functional form of the probability density functions pE (τ),

pEI (τ, τ1), pEIH (τ, τ1, τ2), pEID (τ, τ1, τ3). This is a great advantage as it is widely recognized

that the such probability distributions very often do not obey the exponential distribution law.

Attempts, indeed have been made to overcome this limitation by resorting to gamma-distributed

or to the sub-class of the Erlang-distributed latent times, which allow the splitting of the prob-

lem in a sum/sequence of compartments each with a specific exponential distribution of latent

times (39–41). However, many real latent time distributions cannot be accurately described by

means of the aforementioned distributions, which that cannot either account for the statistical

dependence of latent times. Recalling that pE (τ) =
∫
dτ1pEI (τ, τ1), Eqs. (3, 9, 10) show that,

beside the quantity ν (t), the infection spreading is governed by the joint probability density

function pEI (τ, τ1), which needs to be accurately measured to guarantee reliable predictions

and suggest effective epidemic mitigation policies. Note that the dynamics of the removed,

healed and deceased compartments can be solved a posteriori, once known the distributions

pEIH (τ, τ1, τ2), pEID (τ, τ1, τ3).
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2 The large class of SIR/SEIR-type models as a particular
case of the present theory

In this section we show that the present theory contains as a subclass the classical SIR/SEIR

and similar compartmental models, which implicitly assume that latent times are exponentially

distributed. So let us make the hypothesis that pE (τ) = µ exp (−µτ), replacing in Eq.(9) and

using integration by parts we obtain

e (t) =

∫ +∞

0

exp (−µτ) ṅ (t− τ) dτ (14)

Noting that ∫ +∞

0

f (τ) g (t− τ) dτ =

∫ t

−∞
f (t− τ) g (τ) dτ (15)

yields

e (t) = exp (−µt)

∫ t

−∞
exp (µτ) ṅ (τ) dτ (16)

taking the time derivative and recalling Eq. (3)

ė (t) = −µe (t) + ṅ (t) = −µe (t) + ν (t) i (t)
s (t)

N
(17)

which is the classical equation for the exposed compartment in the classical SIR/SEIR model.

Now let us assume that the latent times τ and τ1 are statistically independent i.e.

pEI (τ, τ1) = pE (τ) pI (τ1) (18)

and the τ1 is exponentially distributed, then we have

pI (τ1) = ρ exp (−ρτ1) (19)

i (t) = n (t)− e (t)−
∫

dτpE (τ)

∫
dτ1ρ exp (−ρτ1)n (t− τ − τ1) (20)

recalling Eq. (15), integration by parts yields

i (t) = exp (−ρt)

∫ +∞

0

dτpE (τ) exp (ρτ)

∫ t−τ

−∞
dτ1 exp (ρτ1) ṅ (τ1) (21)
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Taking the time derivative of both hand sides and recalling Eqs. (8, 17) lead to

di (t)

dt
= −ρi (t) + ṅ (t)− ė (t) = −ρi (t) + µe (t) (22)

which is the classical SEIR equation for the infectious compartment. Following the same path,

we now take

pEIH (τ, τ1, τ2) = pEI (τ, τ1) pH (τ2)

pEID (τ, τ1, τ2) = pEI (τ, τ1) pD (τ3)

with

pH (τ2) = λ exp (−λτ2)

pD (τ3) = η exp (−ητ3)

replacing in Eq. (11), using integration by parts and recalling Eq. (15) yields

r (t) =

∫∫
dτdτ1pEI (τ, τ1) (23)

×
{
γ exp [−λ (t− τ − τ1)]

∫ t−τ−τ1

−∞
dτ2 exp (λτ2) ṅ (τ2) +

β exp [−η (t− τ − τ1)]

∫ t−τ−τ1

−∞
dτ3 exp (ητ3) ṅ (τ3)

}
Let us introduce the auxiliary variables

r1 (t) =

∫∫
dτdτ1pEI (τ, τ1) exp [−λ (t− τ − τ1)]

∫ t−τ−τ1

−∞
dτ2 exp (λτ2) ṅ (τ2)

r2 (t) =

∫∫
dτdτ1pEI (τ, τ1) exp [−η (t− τ − τ1)]

∫ t−τ−τ1

−∞
dτ3 exp (ητ3) ṅ (τ3)

so that r = γr1 + βr2. Taking the time derivative and recalling Eqs. (10, 11) we get

ṙ1 (t) = −λr1 (t) + ρi (t) (24)

ṙ2 (t) = −ηr2 (t) + ρi (t) (25)

ṙ (t) = −λγr1 (t)− βηr2 (t) + ρi (t) (26)

9
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and similarly

ḣ (t) = λγr1 (t) (27)

ḋ (t) = βηr2 (t) (28)

We then have shown that the entire class SIR/SEIR and similar models are a particular case of

the present theory.

3 The basic and the effective reproduction numbers

Now let us calculate the number of secondary infections χ (τ1), at the beginning of infection

out-break, caused by a newly infectious individual (with infectious latent time τ1) in a totally

susceptible population. This number is χ (τ1) =
∫ τ1
0

ν (t) dt, where we have assumed that the

infection rate depends on time t. Then, the average number of secondary infections caused by

a single newly infectious individual, i.e. the so called basic reproduction numbers R0, is

R0 =

∫ +∞

0

dτ1pI (τ1)χ (τ1) =

∫ +∞

0

dτ1pI (τ1)

∫ τ1

0

ν (t) dt = ⟨τ1νm (τ1)⟩ (29)

where νm (τ1) = τ−1
1

∫ τ1
0

vm (t) dt and pI (τ1) =
∫
dτpEI (τ, τ1) is the density probability func-

tion of latent times τ1 in the infectious compartment. The symbol ⟨ ⟩ stands for the statistical

average. Note that the above definition is consistent with the usual definition in terms of sur-

vival function FI (τ1) = P (t ≥ τ1), where P (t ≥ τ1) is the probability for a newly infectious

individual to be infectious up to time τ1. In fact, let us observe that FI (τ1) = 1−
∫ τ1
−∞ pI (θ) dθ,

which yields
dFI

dτ1
= F ′

I (τ1) = δ (τ1)− pI (τ1) (30)

Replacing Eq. (30) in Eq. (29) we get

R0 =

∫ +∞

0

dτ1ν (τ1)FI (τ1) > 0 (31)

10

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.09.12.22278744doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.12.22278744


where we used integration by parts. Eq. (31) is the usual first principle formulation of the basic

reproduction number (42, 43).

In order to monitor the evolution of infection spreading it could be useful to define an in-

stantaneous effective reproduction number as

Rt (t) =

∫ +∞

0

dτ1p1 (τ1)

∫ t+τ1

t

σ (ζ) ν (ζ) dζ (32)

where σ = s/N = (1− n/N) is the instantaneous fraction of susceptible population. Using

Eq. (30) and integrating by parts one obtains

Rt (t) =

∫ +∞

0

dτ1σ (t+ τ1) ν (t+ τ1)FI (τ1) (33)

The reproduction number defined as in Eq. (33) can be also defined as the cohort reproduction

number (44).

4 Deriving the Kermack and McKendrick integro-differential
equations

Here we show that the present theory allows for an clear physical interpretation of the kernels

of the integro-differential equations presented by Kermack and McKendrick (9). To this end

note that Eqs. (9, 10, 11, 12, 13) can be rephrased as (see Sec. B for the detailed derivation)

e (t) =

∫
dτFE (τ) ṅ (t− τ) (34)

where the survival function is FE (τ) = 1−
∫ τ

−∞ pE (t) dt so that F ′
E (τ) = δ (τ)− pE (τ), and

we have used integration by parts. Following the same argument Eq. (10), can be recasted as

i (t) =

∫
dτ {F1 (τ)−FE (τ)} ṅ (t− τ) (35)

where we have changed the integration variable from τ1 to θ1 = τ + τ1 and used that the

probability density function p1 (θ1) of the quantity θ1 is p1 (θ1) =
∫
dτpEI (τ, θ1 − τ). The
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corresponding survival function is F1 (τ) = 1 −
∫ τ

−∞ p1 (t) dt. Note that θ1 is the stochastic

time span from the occurrence of infection to the time of removal. Analogously we get

r (t) =

∫
dτ {γF2 (τ) + βF3 (τ)−F1 (τ)} ṅ (t− τ) (36)

where F2 (θ2) is the survival function of the time variable θ2 = τ + τ1 + τ2 and F3 (θ3) is the

survival function of θ3 = τ + τ1 + τ3. Now replacing Eq. (10) in Eq. (2) we get for t > 0

ṅ (t) = ν
(
1− n

N

)∫
dτ {F1 (τ)−FE (τ)} ṅ (t− τ) + n0δ (t) (37)

Eqs. (35, 36, 37) are formally equivalent to Eqs. (15, 14, 13) reported by Kermack and McK-

endrick in their paper (1927) (9). So we can interpret the Kernels of the Kermack and McK-

endrick model in terms of survival functions of latent times. Such distribution are crucial quan-

tities which govern the infection spreading and can be measured from observed data (see for

example Ref. (45)). Note also that for the healed and deceased compartments the following

equations hold true

h (t) = γn (t)− γ

∫
F2 (τ) ṅ (t− τ) dτ (38)

d (t) = βn (t)− β

∫
F3 (τ) ṅ (t− τ) dτ (39)

It is worth noticing that all the equations are time-invariant linear equations except for Eq. (37)

which is non linear.

5 Linearized equations and stability analysis

In order to study the stability of the infection spreading it is enough to look at the Eq. (37) under

the assumption that the ratio n/N ≪ 1. This allows to look at the linearized the equation to get

ṅ (t) = ν

∫
dτ {F1 (τ)−FE (τ)} ṅ (t− τ) + n0δ (t) (40)
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Note that F1 (τ) > FE (τ), limτ→0+ {F1 (τ)−FE (τ)} = 0, limτ→+∞ {F1 (τ)−FE (τ)} = 0,

and
∫
dτ {F1 (τ)−FE (τ)} = ⟨θ1⟩ − ⟨τ⟩ = ⟨τ1⟩. These conditions allow us to define the

probability density function q (ζ) of the positive stochastic time variable ζ > 0, as

q (ζ) =
F1 (ζ)−FE (ζ)

⟨τ1⟩
> 0 (41)

Note in fact that
∫
q (ζ) dζ = 1. Also observe that q (ζ = 0) = 0 and q (ζ → +∞) = 0. The

moment mk of q (τ) are

mk =

∫
dζq (ζ) ζk =

1

⟨τ1⟩
1

k + 1

∫
dζ {p1 (ζ)− pE (ζ)} ζk+1 (42)

=
1

⟨τ1⟩

〈
θk+1
1

〉
−

〈
τ k+1

〉
k + 1

> 0; k = 0, 1, 2, ...

where we used integration by parts and considered that the survival function exponentially

decreases at large ζ . The positiveness of mk follows directly from the binomial theorem and

considering that both τ and τ1 are larger than zero. Note in fact that

⟨θn1 ⟩ − ⟨τn⟩ =
n∑

h=1

n!

h! (n− h)!

〈
τn−hτh1

〉
> 0

Eq. (40) can be, then, recasted in the following form

ṅ (t) = R0

∫
dτq (τ) ṅ (t− τ) + n0δ (t) (43)

where we used that R0 = ν ⟨τ1⟩ or equivalently as

n0δ (t) = (1−R0) ṅ (t) +R0

∫
dτ [δ (t)− q (τ)] ṅ (t− τ)

Then integrating over time t and recalling that F ′
q (τ) = δ (τ)− q (τ),

n0H (t) = (1−R0)n (t) +R0

∫
dτF ′

q (τ)n (t− τ)

Integrating by parts and using the commutativity of the convolution product we get

n0H (t) =

∫
dτGR0 (t) ṅ (τ) (44)
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where

GR0 (t) = (1−R0)H (t) +R0Fq (t) (45)

Being Fq (t < 0) = 0, i.e. Fq (t) satisfies the causality principle, and considering that Fq (τ → +∞) =

0, Fq (τ) can be re-interpreted, in mechanical terms, as the relaxation function of linear fluid

with memory. The term (1−R0)H (τ) represents instead a linear spring with stiffness 1−R0.

So let us consider the linear system

F (t) =

∫
dτGR0 (t− τ) u̇ (τ) (46)

where the input is u (t) = n (t) can be interpreted as a displacement, and the output F (t) can

be interpreted as a force. By taking the Laplace transform of both hand sides we have

F (s) = KR0 (s)u (s) (47)

where KR0 (s) is complex stiffness of the system, i.e.

KR0 (s) = sGR0 (s) = (1−R0) +R0sFq (s) (48)

We also have

u (s) = CR0 (s)F (s) (49)

where the complex compliance is

CR0 (s) =
1

1−R0 +R0sFq (s)
(50)

Focusing on Eq. (47) stability requires that the poles of the complex stiffness have all strictly

negative real parts. This is indeed the case for the quantity sFq (s). In fact recalling that Fq (t)

satisfies causality principle, i.e., Fq (t < 0) = 0, it follows that the Laplace transform of Fq (t)

i.e. Fq (s) = L [Fq (t)] (s), is analytic in the right half of the complex plane, i.e. all the poles of

Fq (s) have strictly negative real parts. Regarding the spring term (1−R0) in Eq. (48) stability
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also requires that the stiffness of the spring is positive, that is R0 < 1. One concludes that,

when the controlled variable is the displacement u (t), the linear system defined by the equation

F (s) = KR0 (s)u (s) is stable provided that R0 < 1. In such a case it is easily shown that also

the quantity

CR0 (t) = L−1 [CR0 (s)] (t) =
1

2πj

∫ 0++i∞

0+−i∞
dsCR0 (s) e

st (51)

(where j =
√
−1) satisfies the causality principle, so that CR0 (s) is analytic in the right half of

the complex plane. Note that in terms of CR0 (t) we can write

u (t) =

∫
dτCR0 (t− τ)F (τ) (52)

The stability of the system is then only governed by the basic reproduction number R0 and is

guaranteed for 0 < R0 < 1. In such conditions being F (t) = n0H (t), i.e. F (s) = n0/s, the

epidemic will vanish in the long term with a total number of infected individuals equal to

n∞ = lim
t→+∞

n (t) = lim
s→0

sn (s) = lim
s→0

sCR0 (s)F (s) = n0 lim
s→0

CR0 (s) =
n0

1−R0

(53)

We will also have i∞ = e∞ = r∞ = 0 and h∞ = γn∞ and d∞ = βn∞.

6 The case R0 = 1

In this section we focus on what happens when R0 = ν ⟨τ1⟩ = 1 under the hypothesis that

n (t) /N ≪ 1. In such a case we have

KR0=1 (s) = K1 (s) = sFq (s) (54)

CR0=1 (s) = C1 (s) =
1

sFq (s)
(55)

Therefore the system will behave as linear fluid with memory. Being lims→0 sFq (s) = Fq (t → +∞) =

0, the complex compliance C1 (s) has a pole at s = 0, all the others being in the left-half of the

15
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complex plane. Now, recalling that sFq (s) = 1− q (s) and considering that

q (s) =

∫
dτq (t) e−st = ⟨exp (−st)⟩ =

∞∑
k=0

(−1)k

k!
mks

k = 1−m1s+
1

2
m2s

2 − ...

for s → 0 at first order in s we have sFq (s) = 1− q (s) = m1s. Then, C0 (s) = 1/ (m1s) and

u (s) = F (s) / (m1s). Recalling that, in our case, F (t) = n0H (t), i.e. F (s) = n0/s, we get

that in the long term the number of infected people n (t) will increase linearly with a rate

ṅ∞ = lim
s→0+

s2u (s) = s2C0 (s)
n0

s
=

n0

m1

=
2 ⟨τ1⟩n0

⟨θ21⟩ − ⟨τ 2⟩
(56)

Eq. (56) shows that the first moment m1 of the probability density function q (τ) governs the

velocity of spreading when R0 = 1. In the long term we also have

e∞ =

∫
dτFE (τ) ṅ∞ = ⟨τ⟩ ṅ∞ (57)

Similarly

i∞ =

∫
dτ {F1 (τ)−FE (τ)} ṅ∞ = ⟨τ1⟩ ṅ∞ (58)

and

r∞ =

∫
dτ {γF2 (τ) + βF3 (τ)−F1 (τ)} ṅ∞ = ⟨γτ2 + βτ3⟩ ṅ∞ (59)

Regarding the healed individuals, taking the time derivative of

h (t) = γn (t)− γ

∫
F2 (τ) ṅ (t− τ) dτ (60)

and observing that in the long term n̈∞ = 0 yields

ḣ∞ = γṅ∞ (61)

Similarly for the deceased people

ḋ∞ = βṅ∞

16

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.09.12.22278744doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.12.22278744


7 Case study: the COVID-19 epidemic in Italy

In this Section we use the proposed model to simulate the spread of COVID-19 disease in Italy

during the first 120 days from the first COVID-19 outbreak in the country. As already observed,

the knowledge of the infection rate ν (t) and joint probability density function pEI (τ, τ1) is

crucial to described the spreading of the disease. To estimate pE (τ) we use data reported in

Ref. (45) (for the China case), which allow an estimation of the following probability density

functions: (i) qIN (t1) where t1 is the incubation period (i.e., the time from infection to illness

onset), and (ii) qIR (t2) with t2 being the time interval from illness onset to first medical visit.

In particular, assuming that on the average an individual becomes infectious λ days before the

appearance of the symptoms, we can estimate the distribution pE (τ) from qIN (t1) by simply

scaling the time axis of the quantity a = ⟨t1⟩−1 (⟨t1⟩ − λ), where ⟨t1⟩ =
∫
dt1t1qIN (t1), to get

pE (τ) = a−1qIN
(
a−1τ

)
(62)

Now note that the sum of the incubation period t1 plus the period t2 from illness to first medical

visit (we assume that at the first medical visit the infected individual is isolated) obeys the

relation t1 + t2 = τ + τ1 (where τ is the latent time in the exposed compartment and τ1 the

latent time in the infectious compartment), then we have that

p1 (θ1) =

∫
dt1qIN (t1) qIR (θ1 − t1) (63)

Fig. 2(a) shows the probability density function pE (τ) of the latent time τ in the exposed

compartment for λ = 2 days (note that researchers estimate that people who get infected with

the coronavirus are most contagious 2 days before the illness onset). Fig. 2(b) reports the

probability density function p1 (θ1) of the latent time θ1 = τ + τ1 obtained using Eq. (63).

Now let us focus on the latent times τ2 (i.e. the sojourn time the individuals spend into

the removed compartment before healing) and τ3 (i.e. the time period spent in the removed
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Figure 2: The probability density function pE (τ) of the latent times τ (sojourn time in the
exposed compartment) for λ = 2 days (a); the probability density function p1 (θ1) of the times
θ1 = τ + τ1 (latency time from infection to isolation).

compartment before death). In this case the density probability functions pH (τ2) and pD (τ3)

have been estimated from the data available from Refs. (46–48). In particular the distribution

of latent time frequencies have been fitted through a double Gaussian distribution

p (τ) =
1√
2πσ2

1

erf
(
µ/

√
2σ2

) {
exp

[
−(τ − µ)2

2σ2

]
− exp

[
−(τ + µ)2

2σ2

]}
τ ≥ 0; (64)

The fit parameters are µ and σ. Fig. 3(a) shows the probability density function pH (τ2) of the

latent time τ2 from isolation to recovery (µH = 34, σH = 17), whereas Fig. 2(b) reports the

probability density function pD (τ3) of the latent time τ3 from isolation to death (µD = 7, σD =

3.5). We also report the trend of the probability density functions p2 (θ2) of θ2 = θ1 + τ2 [see

Fig. 4(a)] and p3 (θ3) where θ3 = θ1 + τ3 [see Fig. 4(b)]. Table 65 reports the average values

and the standard deviation of the probability density function of times τ , θ1, τ2, θ2, τ3, θ3.

Prob. dens. function average (days) standard deviation (days)
pE (τ) 3.08 2.07
p1 (θ1) 9.66 4.68
pH (τ2) 34.0 17.0
pD (τ3) 7.00 3.50
p2 (θ2) 42.99 18.14
p3 (θ3) 16.67 5.77

(65)
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Figure 3: The probability density function pH (τ2) of the latent times τ2 (latency time from
isolation to healing) (a); the probability density function pD (τ3) of the latent times τ3 (latency
time from isolation to death), (b).
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Figure 4: The probability density function p2 (θ2) of θ2 = τ + τ1 + τ2 (latency time from
infection to healing) (a); the probability density function p3 (θ3) of θ3 = τ + τ1 + τ3 (latency
time from infection to death), (b).
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In order to simulate the effect of the control measures undertaken by the government (e.g.

lockdown, quarantine and mask obligation) to limit the diffusion of the infection, we implement

an exponential decrease of the infection rate ν = ν (t) (49, 50), which takes place starting from

the time TQ at which control measure are enforced, i.e.

ν (t) = ν0; t ≤ TQ (66)

ν (t) = ν0 (1− α) exp

(
−t− TQ

τe

)
+ ν0α; t > TQ

where τe is a time constant and ν0α is the latent infection rate originating from imperfect social

distancing.

The set of parameters used to run the model for the Italy case is n0 = n (t = 0) = 117, ν0 =

0.503, TQ = 25.7 days, τe = 10.41 days, α = 0.167, γ = 0.86, β = 0.14. Figure 5(a) shows the

time evolution of the cumulative number n (t) of infected cases during the first 120 days from

the first COVID-19 outbreak in Italy, whereas Fig. 5(b) shows the daily new infected cases

∆n/∆t ≈ ṅ (t) during the same period of time. Model predictions are in very good agreement

with the real data, this can be accessed at the URL: https://opendatadpc.maps.arcgis.com/apps/

dashboards/b0c68bce2cce478eaac82fe38d4138b1 Let us estimate the basic reproduction num-

ber R0. To this end we first consider that pI (τ1) is vanishing small for latent times τ1 > TQ

therefore the contribution to the τ1-integral in Eq. (29) is limited to times τ1 < TQ. Thus,

considering that ν (t) = ν0 for t ≤ TQ we get

R0 ≈ ν0

∫ ∞

0

dτ1pI (τ1) τ1 ≈ ν0 ⟨τ1⟩

Recalling that ⟨τ1⟩ ≈ 7 days, we get R0 ≈ 3.5 which is close the value found in other stud-

ies (51, 52). Figure 6(a) shows the time evolution of the cumulative number e (t) of exposed

cases, whereas Fig. 6(b) shows the cumulative number i (t) of individuals in the infectious com-

partment. Figure 7(a) shows the time evolution of the number r (t) of individuals in the removed
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Figure 5: The time evolution of the cumulative number of infected cases n (t) during the
first 120 days of the first COVID outbreak in Italy, (a); the daily new infected cases ṅ (t) ≈
∆n (t) /∆t during the same period of time, (b).
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Figure 6: The time evolution of the number of individuals in the exposed compartment e (t),
(a); The time evolution of the number of individuals in the infectious compartment i (t), (b).
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Figure 7: The time evolution of individuals in the removed compartment r (t), (a); the time
evolution of the daily removed individuals ṙ (t) ≈ ∆r (t) /∆t, (b). Model predictions are
compared with real data.

compartment and Figure 7(b) the evolution of the daily removed individuals ∆r/∆t ≈ ṙ (t).

Model predictions are compared with real data. We notice a certain time-lag between the model

predictions and the real data set for the removed compartment, the theoretical and real curve

run, indeed, parallel to each-other. The reason for such a difference does not have a clear inter-

pretation. However, we believe the discrepancy should be related to an asynchronous recording

of the number of infected individual and the number removed ones. Figure 8(a) shows the time

evolution of the number h (t) of recovered (healed) individuals and Figure 8(b) the number d (t)

of the deceased individuals. Also in this case a time-lag is observed similar to the one observed

for the compartment of removed individuals.

8 Conclusion

We present a general theory of infection dynamics, leading to Volterra like equations where

the kernels have a clear physical interpretation in terms of probability density function or in

terms of survival function of latent time distributions, thus overcoming the main difficulty of

Kermack and McKendrick model (1927), where the interpretation of the physical meaning of
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Figure 8: The time evolution of healed individuals h (t), (a); the time evolution of deaths d (t),
(b). Model predictions are compared with real data.

the kernels was really unclear and difficult to interpret in terms of real data. Our theory contains

as a particular case the whole class of SIR, SEIR. Beside the infection rate ν (t), a very central

role is played by the joint probability density function pEI (τ, τ1) of the latent times τ and τ1

the individuals spend in the exposed and infectious compartments respectively. The quantity

pEI (τ, τ1) is then a crucial information needed to predict how the infection will develop in

time. The theory does not pose any restriction to the functional form of the probability density

functions of compartmental latent times, which usually do not obey the exponential distribution,

as, instead, implicitly assumed in classical SIR and SEIR-type models. When the number of

infections is negligible with the entire population, the equations can be solved in general and

their stability studied by resorting their representation in the Laplace domain. The particular

case of R0 = 1 is also investigated to show that the moments of the probability density functions

of latent times, govern the asymptotic infection rate in this case. The present theory has been

employed to simulate the spreading of COVID-19 infection in Italy during the first 120 days

subsequent to the identification of the first cases. We found a very good agreement between

theoretical predictions and real data. Our estimation of the basic reproduction number is R0 ≈
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3.5 in agreement with other studies.

A Compartmental dynamic equations

Consider the number δmk of exposed individuals with latent time τk which enters, during a time

interval δt, the infectious compartment at time t. Of such newly infectious individuals a certain

number δlkh, will leave the infectious department after a latent time τ ′h, the fraction δlkh/δmk is

δlkh
δmk

= pI (τ
′
h|τk)∆τ ′ (67)

where pI (τ
′|τ) is the conditional probability density function of the infectious latent times τ ′

given the exposed latent time τ . Therefore the increase δik of infectious individuals at time t

due to the contribution of exposed individuals δmk with latent time τk is

δik = δmk −
∑
h

δlkh = δmk −
∑
h

pI (τ
′
h|τk) δmk (t− τ ′h)∆τ ′ (68)

= δnk (t− τk)−
∑
h

pI (τ
′
h|τk) δnk (t− τ ′h − τk)∆τ ′

= pE (τk) δn (t− τk)∆τ −
∑
h

pI (τ
′
h|τk) pE (τk) δn (t− τ ′h − τk)∆τ ′∆τ

and summing up over the index k

δi (t) =
∑
k

δik =
∑
k

pE (τk) δn (t− τk)∆τ −
∑
kh

pI (τ
′
h|τk) pE (τk) δn (t− τ ′h − τk)∆τ ′∆τ

(69)

or

di (t)

dt
=

∑
k

dik
dt

=
∑
k

pE (τk) ṅ (t− τk)∆τ −
∑
kh

pI (τ
′
h|τk) pE (τk) ṅ (t− τ ′h − τk)∆τ ′∆τ

(70)

Taking the limit of vanishing ∆τ and ∆τ ′ gives

di (t)

dt
=

∫
dτpE (τ) ṅ (t− τ)−

∫∫
dτdτ ′pEI (τ, τ

′) ṅ (t− τ − τ ′) (71)
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where we have used that pI (τ ′|τ) pE (τ) = pEI (τ, τ
′), with τ and τ ′ both greater or equal to

zero. Integrating over time t and renaming τ ′ → τ1 give

i (t) =

∫
dτpE (τ)n (t− τ)−

∫∫
dτdτ1pEI (τ, τ1)n (t− τ − τ1) (72)

Recalling Eq. (9) we then get Eq. (3).

A similar argument applies to the removed compartment. Let us consider δlkh individuals

with latent time τk and τ ′h entering, during the time step δt, the removed compartment at time

t. Of such individuals a number δq′khs will recover after a latent time τ ′′s and another number

δq′′khp with latent time τ ′′′p will enter the deceased compartment. We now consider that in the

long term a fraction γ of the individuals will recover and the fraction β = 1− γ will move into

the deceased compartment. The we can write

δq′khs
γδlkh

= pH (τ ′′s |τ ′h, τk)∆τ ′′ (73)

δq′′khp
βδlkh

= pD
(
τ ′′′p |τ ′h, τk

)
∆τ ′′′ (74)

therefore the increase δrkh of individuals in the removed compartment at time t due to the

contribution of infectious individuals δlkh with latent times τk and τ ′h is

δrkh = δlkh −
∑
s

δq′khs −
∑
p

δq′′khp (75)

= δlkh − γ
∑
s

pH (τ ′′s |τ ′h, τk) δlkh (t− τ ′′s )∆τ ′′ − β
∑
p

pD
(
τ ′′′p |τ ′h, τk

)
δlkh

(
t− τ ′′′p

)
∆τ ′′′

consider now that δlkh (t) = pI (τ
′
h|τk)∆τ ′δmk (t− τ ′h) and δmk (t− τ ′h) = pE (τk)∆τδn (t− τ ′h − τk).

Then, recalling that pEI (τk, τ ′h) = pI (τ
′
h|τk) pE (τk) we have δlkh (t) = pEI (τk, τ

′
h) δn (t− τ ′h − τk)∆τ∆τ ′,

and replacing into the above equation we get

δrkh = pEI (τk, τ
′
h) δn (t− τ ′h − τk)∆τ∆τ ′ (76)

−γ
∑
s

pH (τ ′′s |τ ′h, τk) pEI (τk, τ ′h) δn (t− τ ′h − τk − τ ′′s )∆τ∆τ ′∆τ ′′

−β
∑
p

pD
(
τ ′′′p |τ ′h, τk

)
pEI (τk, τ

′
h) δn

(
t− τ ′h − τk − τ ′′′p

)
∆τ∆τ ′∆τ ′′′
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Also recalling that pH (τ ′′s |τ ′h, τk) pEI (τk, τ ′h) = pEIH (τk, τ
′
h, τ

′′
s ) and pD

(
τ ′′′p |τ ′h, τk

)
pEI (τk, τ

′
h) =

pEID
(
τk, τ

′
h, τ

′′′
p

)
we obtain

δrkh = pEI (τk, τ
′
h) δn (t− τ ′h − τk)∆τ∆τ ′ (77)

−γ
∑
s

pEIH (τk, τ
′
h, τ

′′
s ) δn (t− τ ′h − τk − τ ′′s )∆τ∆τ ′∆τ ′′

−β
∑
p

pEID
(
τk, τ

′
h, τ

′′′
p

)
δn

(
t− τ ′h − τk − τ ′′′p

)
∆τ∆τ ′∆τ ′′′

then by taking the sum over the indexes k and h and in the limit of vanishing ∆τ , ∆τ ′, ∆τ ′′,

∆τ ′′′ one obtains

ṙ =

∫∫
dτdτ1pEI (τ, τ1) ṅ (t− τ − τ1) (78)

−γ

∫∫∫
dτdτ1dτ2pEIH (τ, τ1, τ2) ṅ (t− τ − τ1 − τ2)

−β

∫∫∫
dτdτ1dτ3pEID (τ, τ1, τ3) ṅ (t− τ − τ1 − τ3)

Recalling Eq. (10) we get Eq. (11).

B Rephrasing the equations

Consider Eq. (9), which describes the evolution of the number of individuals in the exposed

compartment. It can be rephrased as

e (t) =

∫
{δ (τ)− pE (τ)}n (t− τ) dτ (79)

and recalling that F ′
E (τ) = δ (τ)− pE (τ) we also have

e (t) =

∫
F ′

E (τ)n (t− τ) dτ =

∫
FE (τ) ṅ (t− τ) dτ

where we use integration by parts and considered that the survival function FE (τ) is zero for

τ < 0 and decreases exponentially as τ → +∞. Now consider Eq (10)

i (t) =

∫
pE (τ)n (t− τ) dτ −

∫∫
dτdτ1pEI (τ, τ1)n (t− τ − τ1) (80)
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By intoducing the new integration variable θ1 such that θ1 = τ + τ1, the double integral at

the right hand side of the equation can be rephrased as
∫∫

dτdθ1pEI (τ, θ1 − τ)n (t− θ1) and

recalling that
∫
dτpEI (τ, θ1 − τ) = p1 (θ1) one gets

i (t) =

∫
[pE (τ)− p1 (τ)]n (t− τ) dτ (81)

Moving to the survival functions F1 (τ) and FE (τ) of the probability density functions pE (τ)

and p1 (τ) respectively we get

i (t) =

∫
[F ′

1 (τ)−F ′
E (τ)]n (t− τ) dτ (82)

and integrating by parts

i (t) =

∫ +∞

0

[F1 (τ)−FE (τ)] ṅ (t− τ) dτ (83)

Then Eq. (3) can be rephrases as

ṅ− ν (t)
(
1− n

N

)∫ +∞

0

[F1 (τ)−FE (τ)] ṅ (t− τ) dτ = n0δ (t) ; (84)

Using the same argument and setting θ2 = τ + τ1 + τ2 we also have

h (t) = γ

∫
dθ2n (t− θ2) dτdτ1pEIH (τ, τ1, θ2 − τ − τ1) (85)

and recalling that

p2 (θ2) = dτdτ1pEIH (τ, τ1, θ2 − τ − τ1) (86)

we get

h (t) = γ

∫
dτ {δ (τ)−F ′

2 (τ)}n (t− τ) (87)

= γn (t)− γ

∫
dτF2 (τ) ṅ (t− τ)
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where F2 (θ2) is the survival function of p2 (θ2). Analogously we have

d (t) = β

∫
dτ {δ (τ)−F ′

3 (τ)}n (t− τ) (88)

= βn (t)− β

∫
dτF3 (τ) ṅ (t− τ)

where F3 (θ3) is the survival function of p3 (θ3), where θ3 = τ + τ1 + τ3.
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