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Abstract 

 

In the two and half years since SARS-CoV-2 was first detected in China, hundreds of millions of 

people have been infected and millions have died. Along with the immediate need for treatment 

solutions, the COVID-19 pandemic has reinforced the need for mathematical models that can 

predict the spread of the pandemic in an ever-changing environment. The susceptible-infectious-

removed (SIR) model has been widely used to model COVID-19 transmission, however, with 

limited success. Here, we present a novel, dynamic Monte-Carlo Agent-based Model (MAM), 

which is based on the basic principles of statistical physics. Using data from Israel on three 

major outbreaks, we compare predictions made by SIR and MAM, and show that MAM 
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outperforms SIR in all aspects. Furthermore, MAM is a flexible model and allows to accurately 

examine the effects of vaccinations in different subgroups, and the effects of the introduction of 

new variants.  

 

Introduction 

In the 18th century, Swiss mathematician Daniel Bernoulli developed mathematical models to 

study how variolation could be used to control smallpox [1]. Since then, researchers have used 

many approaches to develop models that can examine and explore the dynamics of infectious 

disease transmission. Nowadays, mathematical modelling of disease spread has become essential 

for decision-making on the national and international level, especially during the COVID-19 

pandemic [2-5]. Globalization had, however, changed geography, social conditions, and 

transportation across countries, even compared to twenty years ago when SARS-CoV-1 was first 

detected. Consequently, mathematical models need to be adapted to a world that is not static but 

varies from place to place and over time. 

The main metric for assessing the spread of a disease is 𝑅, the reproduction rate; when 𝑅 is 

above 1, one individual infects, on average, more than one other individual, which indicates the 

disease is spreading. A virus usually is represented by the basic reproduction rate, 𝑹𝟎, the 

transmission rate without any measures, while we denote with 𝑹𝒆 the observed reproduction rate 

in the population]. 𝑹𝒆 is affected by pharmaceutical and non-pharmaceutical interventions 

(NPIs), and by the level of protection against infection in the population (i.e., the recovered and 

vaccinated populations). It is important to note that there are many factors that affect assessment 

of 𝑹𝒆, and for example, testing policies, which vary across countries over time, directly impacts 
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the assessment of 𝑹𝒆. Thus, relying solely on daily case numbers as a measure of spread is 

problematic, especially when comparing spreads among different countries. 

The availability of vaccines, which started by the end of 2020, add another layer to the 

complexity of assessing spread. We now differentiate between 𝑹𝒕 the theoretical reproduction 

rate of the virus, and 𝑹𝒆, the effective reproduction rate of the virus. 𝑹𝒕 estimates the rate of 

encounters between infected and non-infected individuals that would have resulted in an 

infection if the vaccines had not been available. 𝑹𝒆, on the other hand, is affected also by 

vaccination rates and the vaccine’s effectiveness. Since vaccination rates vary not only 

internationally but also by age group, and since vaccine effectiveness decreases over time, and 

different variants differ in their resistance to the vaccine, one needs to consider all the above 

when attempting to predict 𝑹𝒆. Such predictions must consider the unique conditions in the 

country, including the dominant variant, the current restrictions (e.g., NPIs), the vaccination rate 

for various age groups, and the effectiveness of the vaccine. 

There are two main approaches to model disease spread: empirical and mathematical models. 

Empirical, or statistical, models use available data and statistical and machine-learning-based 

approaches to make predictions on future spread dynamics or the temporal evolution of the 

disease in terms of severe morbidity [6-13]. The main drawback of such models in COVID-19 is 

their inability to predict future outbreaks in the presence of changing conditions, for example, a 

scenario of a new variant or the vaccination of the population. Statistical models, however, had a 

major role in clinical outcome predictions of COVID-19 patients since disease progression was 

associated with individuals' health conditions more than with the particular variant [14]. 
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Mathematical models are sets of coupled differential equations to predict the spread of disease. 

The SIR methodology [15] and its refinements, such as the SEIR model [16] are the main known 

examples of this class. They have been the dominant approach in the scientific literature for 

studying infectious diseases and have been applied widely over the last decades. In general, 

SEIR stands for “Susceptible, Exposed, Infected, Removed,” which serves to decompose the 

population. The model describes an epidemic via the movement of the population from one 

compartment to another. Susceptible individuals become exposed, infected, and finally removed 

from the population. Removal can be either by recovery or by death. Transitions from one state 

to another are governed by rate equations. According to the SIR model, the spread rate is 

determined primarily by 𝑹𝒆, the effective reproduction rate, where there is a population of 

susceptible individuals, and the number of infectious cases directly resulting from one infected 

individual is 𝑹𝒆.  

One disadvantage of population-level mathematical models is that they are limited in the ability 

to model system dynamics, especially when various population subgroups have different 

dynamics. We argue that a model that can accurately predict the spread must be able to model 

subpopulations that may have different spread dynamics. Since Nonpharmaceutical Interventions 

(NPIs) are essential in controlling COVID-19, a geography-based model is necessary because 

these NPIs fluctuate across regions and countries. Also, a successful model should divide the 

population into several age groups, matching their varying patterns of social interactions. A 

realistic model would require writing a different equation for each subgroup, which complicates 

the model greatly. 
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Agent-based models representing individuals separately can be an effective alternative to 

mathematical models in dealing with these issues [17]. Each individual can be represented by a 

particle, and interaction between particles can represent social interactions. Microsimulation 

modeling approaches can then be used with rules governing those interactions depending on the 

characteristics of the particles (such age and vaccination status). This model allows all the 

individuals to behave and interact according to separate characteristics and we can than observe 

the resulting macroscopic and microscopic impact on society. 

Here we present MAM, Monte-Carlo, Agent-based Model, a novel method to model infections 

and disease spread. We show that MAM provides a high level of flexibility in modeling 

heterogeneous populations and, in turn, outperforms SIR-based models in predicting COVID-19 

outbreaks in Israel. We show predictions for the number of confirmed cases and the prevalence 

of variants in Israel for three major outbreaks, which were dominated by different variants and 

different social behaviors. 
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Methods 

The Monte Carlo Agent-based Model (MAM) 

Here we provide a short description of MAM and a pseudo code for the algorithm. The approach 

is to generate a spatial model of the population by using a set of interacting classical particles, as 

in an agent-based model [18, 19]. We then apply standard Monte Carlo (MC) procedures of 

sampling the transition among subsequent states, which are sampled from a statistical 

distribution as in MC methods for electron transport [20-22].  

 

For modeling the spread of the disease, each particle can be in one of four states: (i) susceptible 

and unprotected (unvaccinated), (ii) susceptible and protected (vaccinated), (iii) currently 

infected and contagious, and (iv) recovered/dead. On any given day, the probability of a 

susceptible particle becoming infected depends on how far it is from every infected particle 

around it, and whether the particle is protected. Particles move in the space and change their 

position every day using an MC procedure. Since the infection probability is a function of the 

relative distance between particles/individuals, we can use different baseline spatial 

characteristics, that may represent a scattered city suburb or a dense university classroom. 

Moreover, the spatial features of the model allow simultaneous modeling of multiple geographic 

areas, each of which has unique vaccination rates and allows modeling infection for different 

infection circuits, such as families and close and remote communities [23]. 

 

The main difference between the SIR and MAM is that in MAM each particle can be tuned 

individually, as opposed to SIR, where there are limited number of subgroups that can be 

modeled together. In MAM, inputs such as 𝑹𝒕 (which is essentially the particle density), 
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vaccination rates and vaccine effectiveness (VE), can be tuned for as many subgroups as needed. 

Therefore, this modeling approach offers high flexibility for modelling spread in populations that 

have different dynamics in age groups, geographical areas, etc., and in adapting the model to 

different VE scenarios. 
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The Monte Carlo Agent-based Model (MAM) pseudocode 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


Where:  

● 𝐻 is the health status (0 for susceptible and 1 for infected) of each particle.  

● 𝑡𝐼 donates the particle day of infection.  

● 𝑓(𝑡, 𝑡𝐼) is a binary function for the infection period. During the Alpha and Delta variants, the 

infectious period for a particle is between the fourth and seventh day after infection. During 

the Omicron variant, the infectious period for a particle is between the second and fifth day 

after infection.  

● 𝑁 is the total number of particles, 𝑁𝐼 is the initial number of infected particles and 𝑁𝑅𝐶 is the 

initial number of recovered particles. Here the simulation is set with 1.1 ⋅ 104 particles, in 

which the serial number of the particle denotes its age, i.e., the top 17% numbers are the 60+ 

population, and the bottom 20% numbers are the 0-11 population. For simulating the 

population in Israel (9.2 ⋅  106 people), the simulation runs ~ 800 times.  

● 𝐿0 is the initial length of the simulation area, 𝐴, such that 𝑹𝒕 is represented by the particles’ 

density. For the case of 𝑁 = 1.1 ⋅ 104 particles we find that for 𝑹𝒕 ≈  1.25, 𝐿 = 𝐿0 = 124 

meter and 𝐿 = 𝐿0 ⋅ √
1.25

𝑹𝒕
.  

● 𝑇𝑉 indicates the day of immunization for each particle (𝑇𝑉 = ∞ for unvaccinated particles). 

We us here actual daily immunization rate by age groups taken from 

https://data.gov.il/dataset/covid-19.  

● 𝑇𝑠𝑝𝑎𝑛 is the simulation duration time 

● 𝑉𝐸𝑑𝑎𝑦𝑠 are the days after the first dose when vaccine effectiveness changes with 𝑉𝐸𝑙𝑒𝑣𝑒𝑙 

being the maximal vaccine effectiveness, i.e., for this work 𝑉𝐸𝑑𝑎𝑦𝑠(1) = 7 days, 
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𝑉𝐸𝑑𝑎𝑦𝑠(2) = 28 days, 𝑉𝐸𝑑𝑎𝑦𝑠 (3) = 150 days and 𝑉𝐸𝑑𝑎𝑦𝑠(4) = 180 days with 𝑉𝐸𝑙𝑒𝑣𝑒𝑙 =

90% (see Figure S2 A).  

● 𝑋 and 𝑌 are the daily x and y positions for each particle where Δ𝑥 and Δ𝑦 distribute 

normally with 𝜇 = 0 and 𝜎 =
𝐿0

2
. For each direction, we apply a periodic boundary 

condition such that: 𝑋 = {
𝑋

𝑋 − 𝐿
 
𝑋 ≤ 𝐿
𝑋 > 𝐿

. 

 

Modelling COVID-19 spreads in Israel for three outbreaks 

To model the spread, for both SIR and MAM models, there are several parameters that must be 

tuned. The main metric required for modelling the spread of COVID-19 is 𝑹𝒕, the theoretical 

reproduction rate of the disease, which is an estimation of the average amount of encounters 

between a carrier and healthy individuals that would have resulted in an infection if the vaccines 

had not been available. 𝑹𝒕 is a function of the level of infectiousness of the variant, 𝑹𝟎 (the virus 

basic reproduction rate) and NPIs used to control the spread of the disease, notably mandatory 

isolation for individuals with confirmed infections and those exposed to a confirmed case, and 

face mask-covering indoors. It is thus a dynamic metric, that changed throughout 2021 with 

relaxing and stringing restrictions, and the introduction of new variants (Figure S1A). The Alpha 

variant, which was dominant in Israel in the beginning of 2021, had an 𝑹𝟎 of approximately 4, 

while the Delta variant, which became prevalent in Israel at the beginning of May 2021, had an 

𝑹𝟎 of 5-8 (Figure S1B) [24]. It should be noted that testing-availability and testing-policy vary 

not only by country but also by time (Figure S1C), and thus, confirmed cases is a problematic 

metric for comparing disease spread across countries and across time. In MAM, 𝑹𝒕 is 

represented by the particle density or the size of the area for the particles (𝐴). In this work, we 
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estimate 𝑹𝒕 in Israel from January 2021 to February 2021 (the first outbreak) to be 1.2, similarly 

to a previous study we performed [25]. For the case of the delta and omicron outbreaks, as a 

result of the removal of most social restrictions in Israel, we estimate 𝑅𝑡 for the delta and 

omicron outbreaks to be 2.2-2.5 (see Table S1 and S2). 

For modelling with SIR, we also need to tune 𝑹𝒆. 𝑹𝒆 reflects not only 𝑹𝟎 and the NPIs used to 

control disease spread but also the population vaccination rate and the vaccine effectiveness 

(VE) in protecting against infection. Therefore, to tune 𝑹𝒆 we need to have an estimation of VE, 

which might be non-trivial as it is also a dynamic measure that changes over time. Here, VE was 

set to 0% on days 0-7 after the first dose of vaccination and increases linearly up to 90% on the 

next 21 days, which is also one week after the second dose (Figure S2A) [26, 27]. We next 

assume reduction to 60% 180 days later, and following the booster dose (third dose), we assume 

increase back to 90% seven days after the vaccination. Since 𝑹𝒆 is a function of vaccination rates 

that change over time, for each age group, we need to define a time-dependent 𝑹𝒆 which is a 

function of both protection level as a function of time and of the vaccination rate of the relevant 

age group. In MAM, no need to estimate 𝑹𝒆, but VE is provided as input.  

 

Vaccination rates differ among different populations and age groups (Figure S2B). In Israel, by 

the end of 2020, in parallel with a major COVID-19 outbreak, a massive vaccination campaign 

was initiated. Elderly individuals were offered to vaccinate first, and every couple of weeks the 

age limit was reduced. By early January 2021, over 60% of those 60 years old and over were 

vaccinated with at least one dose. It was later offered to younger individuals to vaccinate, but this 

was a much slower process. This exemplifies, that 𝑹𝒆 cannot be tuned correctly to the whole 

population but is a measurement that is specific to subgroups of the population.  
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In this work, for modeling the spread, we first used a “naïve” SIR model, which assumes 

homogeneous protection for all the population without age-based divisions. Next, we used a 

multi-age SIR [30, 29] and MAM models such that we divided the population into three age 

groups: Group A represents the 0-11 years old population, which is 20% of the population who 

was not vaccinated until the end of 2021; Group B represents the 12-59 years old population, 

which is 63% of the population; and Group C which represents the 60 years old and over 

population, which is 17% of the population (Figure S2A).  

 

To exemplify how this affects modeling, assume a theoretical case that the entire age group is 

vaccinated on Feb 1st. We would expect that after 28 days, the average protection against 

infection of that age group would be 90% (Figure S2B), and therefore, their chance of infection 

is 10%. As a result, effective reproduction rates should vary for each group based on vaccination 

rates (Figure S2C-D), despite the assumption that populations mix homogeneously, and 

everyone is susceptible to infection without vaccinations (Figure S2C-D). Therefore, we have a 

system of 9 coupled differential equations (3 health status for each of three age groups) which we 

need to solve simultaneously (Supplementary Data 1) [30]. 

 

In the MAM model, all the particles have a serial number, and thus the population is divided into 

subgroups based on the particle rank using similar proportions: the 17% highest ranked particles 

represent the 60+ age group, the next 63% represent group B, and the last 20% particles 

represent group A based on the age distribution in Israel [31]. 
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Both models were used to predict the daily confirmed cases of three major outbreaks: December 

1, 2020, to February 20, 2021 (third outbreak in Israel, Alpha); July 15, 2021, to October 31 

(Delta) and Jan 1st, 2022, to March 1st, 2022. In both models, the population was divided into 

three age groups, and for all outbreaks, the vaccination rates inputs were obtained from the 

Ministry of Health until January 8 only (https://data.gov.il/dataset/covid-19). In all simulations, 

starting January 8 and on, we use different assumptions on vaccination rates and not the actual 

vaccination rates. 

 

Statistical analysis 

To provide statistical measurement for the accuracy of the modeling predictions compared to the 

actual real-world data, we used the mean absolute percentage error (MAPE) [32]. This relative 

error measure uses absolute values to prevent positive and negative errors from canceling each 

other out and uses relative errors to compare forecast accuracy between time-series models. For 

each model, we examine the accuracy of the prediction in three age groups: the total population, 

the youngest and unvaccinated population, and the elderly population.  

 

Error estimation 

To provide sample-distribution error in MAM we use the relationship between 𝑹𝒕 and 𝐴, the 

simulation area. This relationship is as follows: 𝑹𝒕 ∝
1

𝐴
, where 𝑹𝒕 is an input to the simulation 

(see P2). We add 10% uncertainty error for MAM. However, MAPE values for the MAM model 

were calculated using its mean value.  
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Data 

All the data that was used in this work was taken from public data sources. Daily confirmed 

cases in Israel was taken from https://datadashboard.health.gov.il/COVID-19/general and 

vaccination rates were taken from https://data.gov.il/dataset/covid-19, all stratified by age groups 

and available from the Ministry of Health from December 2020 to February 2022. In Addition, 

for the Omicron outbreak, we used data from https://covariants.org/ to examine the prediction for 

variants distribution over time. 
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Results 

 

Outbreak 1: First vaccination campaign in Israel (Alpha variant) 

We present the predictions of SIR and MAM modelling of the COVID-19 outbreak in Israel that 

started in mid-December 2020, parallel to the vaccination campaign. The Alpha variant 

dominated this outbreak. Data on confirmed cases and vaccination rates were collected until 

January 8, 2021 (dashed horizontal line in Figure 1), and predictions were made from this day 

forward. Vaccination rates from this date forward were estimated using an exponential function 

(Figure 1A). All the details for calculating this outbreak for both SIR and MAM models are 

given in Table S1. 

 

Figure 1. Modelling the outbreak spread in Israel during the first vaccination campaign. A. Vaccination rates for 

two age groups based on real data up to January 8th, 2021, and predicted rates from this day forward. Actual 

vaccination rates are in dots. B-D. Predictions for the number of confirmed cases in Israel from Dec 1st, 2020, until 

Feb 20, 2021 (7-days moving average) for the whole population (B), ages 0-11, which are all unvaccinated 

currently (C); and for 60+ years old (D). For all panels: real data in dots, SIR predictions in solid red line and 

MAM predictions in blue band. Solid black line on January 8th, 2021, shows the index date from which predictions 

begin. Green line in B is a prediction made with SIR without breaking down age groups. MAPE statistics are 

presented in the legend. 
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First, we apply a naïve SIR model, assuming average protection of the total population (Figure 

1B). Interestingly, a naive SIR approach fails and overestimates cases since the average 

protection of the total population is lower than the average protection for each vaccinated 

individual, as it considers the unvaccinated. This causes 𝑹𝒆 to be overestimated, and in turn 

overestimate the number of expected confirmed cases. 

 

We, therefore, applied multi-age SIR and MAM models to predict the number of confirmed 

cases from January 9th to mid-February 2021 in three age groups (Figure 1B-D). Both SIR and 

MAM models were able to accurately predict the peak, the date when the number of confirmed 

cases peaked and started to decline ( 𝑹𝒆 < 1). However, MAM consistently outperformed SIR in 

predicting the decline in all three predictions. Across all three analyses, MAM outperformed SIR 

in terms of accuracy (MAPE = 84%-86% for SIR versus 93% for MAM). 

 

Outbreak 2: Waning immunity and booster dose (Delta variant) 

This outbreak, which started in June 2021, was characterized by three factors that overlapped: 

relaxation of NPIs, the introduction of the more infectious Delta variant, and waning immunity 

half a year after the first vaccination campaign. The combination of all the above resulted in a 

higher 𝑹𝒕 than that of the first outbreak [33]. On July 31, 2021, Israel initiated another 

vaccination campaign for a booster dose, which similarly took place to the first campaign: the 

elderly population first, and later opened it for the rest of the population.  

 

Here, we modeled the outbreak according to information gathered until August 1st, 2021, as the 

vaccination campaign has just started. Since vaccination dynamics were unknown then, we 
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assumed similar dynamics, by age groups, as in the first vaccination campaign (Figure 2A). We 

first applied the naive SIR model to the whole population, assuming only the average protection 

for the whole population (Figure 2B). As a result of the assumption that the unvaccinated 

population has a higher 𝑹𝒆 than that of the first outbreak, the number of daily confirmed cases 

was significantly overestimated. This significant deviation results from the exponential nature of 

pandemic spread, a 10% increase in 𝑹𝒆 can result in a 50% increase in the number of total cases.  

It is clear that a naive model cannot be applied to accurately predict the spread in scenarios 

where the infection potential for the unvaccinated is significantly higher than for the vaccinated. 

(All the details for calculating this outbreak for both SIR and MAM models are given in Table 

S2). 

 

Both multi-age SIR and MAM models were able to predict the dynamics of this outbreak well, 

yet MAM predicted the peak better and had an overall accuracy of 88% compared to 84% with 

SIR (Figure 2B). At the young age group (ages 0-11), MAM accurately predicted the peak, but 

compared to the real data, the decrease of this outbreak was much sharper than predicted (Figure 

2C). A possible explanation is that the peak of the outbreak intersected with the Jewish high-

holidays, which is a time of school closing, and later, a program of mandatory rapid testing 

before return to school, and both together made the outbreak subside quickly in young children. 

Both models did not perform well in the age group of 60+ years old, but both had relatively good 

estimation for the end of this outbreak. Similar to all other comparisons, MAM was more 

accurate than SIR here as well (Figure 2D). 
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Figure 2. Modelling the outbreak spread in Israel during the booster vaccination campaign. A. Vaccination rates 

of the booster dose for two age groups based on real data and predictions from August 1st, 2021. Actual vaccination 

rates are in dots. B-D. Predictions for the number of confirmed cases in Israel from July 21st, 2021, until Oct 30, 

2021 (7-days moving average) for the whole population (B), ages 0-11, which are all unvaccinated at this time (C); 

and for 60+ years old (D). For all panels: real data in dots, SIR predictions in solid red line and MAM predictions 

in blue band. Solid black line on August 1st, 2021, shows the index date from which predictions begin. Green line in 

B is a prediction made with SIR without breaking down age groups. MAPE statistics are presented in the legend. 

 

Outbreak 3: Competing variants 

This outbreak, which started in December 2021, was characterized by the highly infectious 

Omicron variant. This variant rapidly became dominant, with individuals arriving from abroad 

with Omicron, while Delta was also on the rise. It is important to note that Delta and Omicron 

differ significantly in their 𝑹𝟎: here we assume that Omicron 𝑹𝟎 is double of Delta’s 𝑹𝟎 and in 

addition, we assume a shorter incubation time for Omicron (Table S3) [34, 35]. A similar 

scenario happened later on in February, where Omicron BA.1 was replaced by the BA.2 variant, 

again because of higher 𝑹𝟎 (we assume here 50% higher 𝑹𝟎 for BA.2 compared to BA.1) [36] . 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


It is unclear how to model such situations with multiple 𝑹𝟎 and different incubation times with 

SIR; therefore, the variants analyses are modelled with MAM solely. 

 

Using data on number of infected individuals that arrived in Israel in the first half of December 

(assuming all are Omicron) and number of confirmed cases in Israel in that time frame 

(assuming all are Delta), we attempted to predict the proportion of the variants in the next 30 

days. By using MAM modelling, where each particle represents an individual, such a task is 

feasible, and MAM was able to accurately predict the dynamics of variants transition (Figure 

3A). We also repeated this modelling for the BA.1-BA.2 transition, using data of influx from 

January 19, 2022, to the mid of February, and predicted variants distributions in February-mid 

till April 2022 (Figure 3B). 

 

We next used data collected up to January 11, 2022, to model the outbreak from then forward, 

and predict daily confirmed cases under the assumption that from that day and on, Omicron is 

the dominant variant, which enable the use of the multi-age SIR model. Based on the data 

gathered up to the index date, we assumed here 𝑹𝒕   =  2.5. In MAM, since there are competing 

variants, we also assumed that Omicron is twice is infectious as Delta.  
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Figure 3. Modelling the outbreak spread in Israel during the Omicron outbreak. A. Percentages of Delta variant 

from December 1st, 2021, and prediction with MAM from December 15th, 2021, as it was replaced by Omicron. 

Red dots are actual data. B. Percentages of Omicron BA.1 variant from January 19th, 2022, and prediction with 

MAM from February 15th, 2022, as it was replaced by the BA.2 variant. Red dots are actual data. C-F. Predictions 

for the number of confirmed cases in Israel from January 1st, 2022, until February 28, 2022 (7-days moving 

average) for the whole population (C), ages 0-11, which are all unvaccinated at this time (D); for 60+ years old 

(E); for 60+ years old with knowledge on the protective effect of dose 4 for three different vaccine effectiveness 

against infection (F). For all panels: real data in dots, SIR predictions in solid red line and MAM predictions in 

blue band. Solid black line on January 11th, 2022, shows the index date from which predictions begin. Green line in 

C is a prediction made with SIR without breaking down age groups. MAPE statistics are presented in the legend.  

For F, the magenta, green and red bands are the MAM model with 50%, 80% and 90% vaccine effectiveness, 

respectively, against infection for the fourth dose. 

 

Similar to the previous outbreaks, we first employ the naive SIR model (Figure 3C). The naive 

model again overestimated the actual data, but not extreme overestimation as in in outbreak 2. 

This is because in this outbreak the vaccinations provided only little protection. We next applied 

MAM and multi-age SIR to the three age groups. Both models successfully predicted the number 
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of cases in the whole population and the young populations, with MAM predicting better the 

peak and with better MAPE (Figure 3C-D). However, both models did not predict well the peak 

and the rapid decrease in cases in the 60+ year old population (Figure 3E).  

 

On January 2, 2022, Israel started another vaccination campaign, this time for a fourth dose, and 

this time only for individuals over 60 years old. By January 10, 2022, 15% of the 60+ year-old 

population received the fourth does, and two weeks later, this figure went up to about a quarter. 

Based on the deviation between our predictions and the number of daily confirmed cases, which 

begun after January 18th, we hypothesized that this vaccination campaign was the primary reason 

for the early drop in cases. It should be noted that there is yet a debate of how effective this 

campaign was and whether it had an effect and the outbreak. Also, other possible explanation for 

this deviation between the prediction and the actual data is that the older population have taken 

extra precautions during a major outbreak. 

 

There have been several empirical studies to determine the effectiveness of the fourth vaccine 

dose against infection [37, 38], which found that for there is the effectiveness of the fourth dose 

against infection is around 50%, which waned in later weeks. Here, we attempted to predict VE 

just from vaccination rates and aggregated data of confirmed cases. We performed MAM 

predictions for the 60+ population using three different VE levels and found that the best fit to 

the actual data was with 𝑉𝐸 = 95%, which is much higher that the estimations received from 

rigorous studies using individual-level data (Figure 3F). Nevertheless, a model that assumes 

50% effectiveness of the fourth dose shows a significant decline in confirmed cases compared to 

a non-booster scenario (Figure 3F). Hence, the model results, actual data, and effectiveness tests 
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of the fourth dose suggest that the older population took additional precautions to prevent 

infection. This, together with the effectiveness of the fourth dose, resulted in a lower incidence of 

morbidity for this population. 

 

Finally, an important question is how changes in 𝑹𝒕, possibly by enforcement of more stringent 

NPIs, may affect the dynamics of the outbreaks. We used MAM to compare how a reduction of 

20% in 𝑹𝒕 will affect the number of daily confirmed cases and, possibly more importantly, the 

number of total severe cases in hospitals in parallel. This was the primary metric used by the 

government to decide whether enforcing stringent NPIs is required, as the main goal was to 

prevent hospital overflow. We compared three scenarios: A) no change in 𝑹𝒕 ; B) Temporary 

reduction in 𝑹𝒕 for two weeks starting January 15, which may reflect two-weeks school closure 

and C) Reduction of 𝑹𝒕 by 20% from January 15 (Figure 4A-B). For scenario C, the analyses 

predicted 40% fewer total infections and severe cases from January 15 until February 28 in 

comparison to scenario A (Figure 4A-B). Importantly, in both scenarios B and C, our prediction 

suggested that the peak of active severe cases would not have crossed 900 severe cases in 

parallel (Figure 4B), which was the limit in Israel before a significant decrease in the level of 

care [39].  
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Figure 4. Comparing effects of alternative scenarios of enforcing restrictions. A-B. Comparison of predictions for 

three scenarios for the daily number of confirmed cases (A) and parallel severe cases (B) in Israel from January 1st, 

2022, until February 28, 2022 (7-days moving average) for the whole population. Scenario A is no change in Rt, 

scenario B is temporary 20% reduction in Rt for two week and scenario C is 20% reduction in 𝑹𝒕 s. Solid black line 

on January 11th,, 2022, shows the index date from which predictions begin. For both panels, the inner plot is the 

cumulative number of cases from Jan 15th t until Feb 28 for the three scenarios. The dashed line is the actual data 

taken from https://data.gov.il/dataset/covid-19. 

 

Another insight from these analyses is the divergence that we observe between the actual data 

and predictions from around January 24. We only observe sharp reduction compared to the 

prediction in confirmed cases, but not in severe cases. During that time, testing policy in Israel 

changed, and there was arguably undercount of number of actual cases. However, since the 

number of severe cases is not affected by changes in testing policies, and therefore the model 

was more accurate in that prediction. 

 

Discussion 

We learned over the past two and a half years that the reality of SARS-CoV-2 is rapidly 

changing, with the introduction of numerous variants, each with its own unique characteristics, 

vaccination campaigns, waning immunity, and ever-changing decisions regarding NPIs and 

testing requirements. For this reason, modeling disease dynamics requires a dynamic model that 
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can take all these factors into account. We presented here a novel particle-based approach to 

model disease outbreaks, which we named MAM, that provides high flexibility in modelling 

such complex situations. We showed its superiority over the widely used multi-age SIR model in 

predicting the dynamics of outbreaks in Israel. It should be noted that we used similar 

assumptions for SIR and MAM in all the analyses. We also showed here that MAM is highly 

flexible, allowing to easily define different vaccination rates in subgroups of the population, 

changes in NPIs, and competing variants.  

We found that a naive SIR model significantly overestimates outbreaks, especially when 

vaccines are in effect. This could be by the Simpson paradox, as vaccines are effective on the 

individual level, but when merging all age groups together, which have different vaccination 

rates, the average protective effect seems low. Another reason for this failure is that when 

vaccines provide high level of protection, unvaccinated individuals benefit from the indirect 

protection [40, 41]. In Israel, since vaccination campaigns were conducted by age groups, there 

was cumulative protection in groups that were vaccinated early in addition to the protection from 

the vaccine itself. This, an assumption of uniform protection across the population is not 

sufficient to correctly model the spread of the disease. For these reasons we applied a multi-age 

approach using both SIR and MAM. In this approach each age group has its own characteristics 

based on vaccine effectiveness and vaccination rate, and assuming homogenous mixing across 

the three age groups. Both approaches provided relatively good predictions in the three outbreaks 

we modeled from Israel; however, MAM was consistently more accurate. It is important to note 

that here we used only three age groups and not more, as adding additional age groups to SIR is 

complex and prawn to errors. In MAM, this is straightforward. 
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Another complication we introduced here is modelling outbreaks when there are competing 

variants. We showed here that such situations can be modeled efficiently from the very early 

stage of the outbreak with MAM, since we can provide each particle different adhesion 

characteristics, such as adhesion potential and incubation time.  

Finally, dynamics of infection can vary across different groups and geographies. The MAM 

approach has a built-in spatial structure since the particles move in space and change their 

position with average daily displacement. Thus, adding spatial characteristic, such as households, 

neighborhoods, cities etc. can easily be applied to this model, and provide additional precision to 

modelling the disease spread. 

In summary, we presented here a novel approach for modelling the spread of the pandemic and 

exemplified its accuracy and flexibility across different scenarios. We hope that this tool will be 

utilized in the future to make informed decision-making on how to deal with disease outbreaks 
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Supplementary materials: 

 

Supplementary figures: 

 

Figure S1. Time-dependent features of COVID-19 spread and detection Panel A: The normalized number of 

confirmed cases as a function of time in various countries (data was taken from https://ourworldindata.org/covid-

cases). Panels B: Variants of COVID-19 in Israel over time (data was taken from https://covariants.org/). Panel C: 

Percentage of the daily tested population (data was taken from https://ourworldindata.org/covid-cases). Panel D: The 

percentage of people who have received at least two doses of vaccination (data was taken from 

https://ourworldindata.org/covid-cases). 
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Figure S2. Data needed for modeling COVID-19 in Israel Panel A: Vaccine effectiveness as function of time [27, 28]. 

Panels B: The rate of vaccination in Israel for different age groups (data was taken from 

https://data.gov.il/dataset/covid-19). Panel C and D: The 𝑅𝑒 was used to model the spread of COVID-19 in Israel using 

naive and multi-age SIR models.  
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Supplementary tables: 

 

Table S1. Parameters needed for modeling the Alpha outbreak in Israel for both sir and MAM models.  

Alpha outbreak 

 MAM SIR 

Initial number of 

susceptible people 

at Dec 1st 2020 

𝑁′ = 𝑁 × 0.95 = 9.2 ⋅ 106 × 0.95 𝑁′ = 𝑁 × 0.95 = 9.2 ⋅ 106 × 0.95 

Initial number of 

infectious people 

at Dec 1st 2020 

𝑁𝐼  = 2000 𝑁𝐼 = 2000 

Initial number of 

recovered people 

at Dec 1st 2020 

𝑁𝑅𝐶 = 𝑁 × 0.05 = 9.2 ⋅ 106 × 0.05 𝑁𝑅𝐶 = 𝑁 × 0.05 = 9.2 ⋅ 106 × 0.05 

Adding vaccines 

𝑅𝑡, Represents the 

number of 

potential 

infections without 

vaccines 

𝑅𝑡 = 1.1 − 1.2, 

Represented by particle density 

𝑅𝑡 = 1.1 − 1.2 

𝑅𝑒 , Represents the 

number of 

potential 

infections without 

vaccines 

There is no adaptation of 𝑅𝑒. 

For each particle is a chance of infection if 

now a function of its age- group’s 

immunization rate which is combined with 

the vaccine effectiveness. 

𝑅𝑒 is pre calculated using the immunization 

rate and the vaccine effectiveness for each 

age group. 

𝑅𝑒 as function of time serves as an input for 

the model )Figure S2) 

Vaccine rate 

Until January 8 2021, the vaccination rate 

was taken from: 

https://datadashboard.health.gov.il/COVID-

19/general. Form January 9 2021 and on, It 

is assumed that population vaccination is at 

a decreasing rate (separate rate for each age 

group) 

Until January 8 2021, the vaccination rate 

was taken from: 

https://datadashboard.health.gov.il/COVID-

19/general. From January 9, 2021, and on, 

it is assumed that population vaccination is 

at a decreasing rate (separate rate for each 

age group) 

Vaccine 

effectiveness 

0% on days 0-7 after the first dose of 

vaccination and increases linearly up to 

90% on the next 21 days. 

0% on days 0-7 after the first dose of 

vaccination and increases linearly up to 

90% on the next 21 days. 
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Table S2. Parameters needed for modeling the Alpha outbreak in Israel for both sir and MAM models.  

 

Delta outbreak 

Initial number of 

susceptible people 

on July 15th 2021 

𝑁′ = 𝑁 × 0.9 = 9.2 ⋅ 106 × 0.9 𝑁′ = 𝑁 × 0.9 = 9.2 ⋅ 106 × 0.9 

Initial number of 

infectious people 

on July 15th 2021 

𝑁𝐼  = 2000 𝑁𝐼 = 2000 

Initial number of 

recovered people 

on July 15th 2021 

𝑁𝑅𝐶 = 𝑁 × 0.1 = 9.2 ⋅  106 × 0.1 𝑅𝑅𝐶 = 𝑁 × 0.1 = 9.2 ⋅  106 × 0.1 

Adding waning immunity and booster dose 

𝑅𝑡 Represents the 

number of 

potential 

infections without 

vaccines 

𝑅𝑡 = 2.2 − 2.5, 

Represented by particle density 

 

𝑅𝑡 = 2.2 − 2.5 

𝑅𝑒 

Represents the 

number of 

potential 

infections without 

vaccines 

There is no adaptation of 𝑅𝑒. 

For each particle is a chance of infection if 

now a function of its age- group’s 

immunization rate which is combined with 

the vaccine effectiveness and waning 

immunity. 

𝑅𝑒 is pre-calculated using the immunization 

rate and the vaccine effectiveness and 

waning immunity for each age group. 

𝑅𝑒 as function of time serves as an input for 

the model )Figure S2) 

Vaccine rate 

Assuming the same rate as the alpha 

outbreak 

(https://datadashboard.health.gov.il/COVID-

19/general.) 

Assuming the same rate as the alpha 

outbreak 

(https://datadashboard.health.gov.il/COVID-

19/general.) 

Vaccine 

effectiveness 

0% on days 0-7 after the first dose of 

vaccination and increases linearly up to 90% 

on the next 21 days 

Decline to 60% effectiveness starting from 

180 days after the first dose. 

0% on days 0-7 after the first dose of 

vaccination and increases linearly up to 90% 

on the next 21 days 

Decline to 60% effectiveness starting from 

180 days after the first dose. 

Vaccine 

effectiveness – 

booster dose 

Increase to 90% 7 days after the booster 

dose. 

Increase to 90% 7 days after the booster 

dose. 
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Omicron outbreak 

 MAM SIR 

Initial number of 

susceptible people 

at Dec 1st 2021 

𝑁′ = 𝑁 × 0.95 = 9.2 ⋅ 106 × 0.95 

Assuming that there is less protection 

from infection for recovered people with 

Omicron 

𝑁′ = 𝑁 × 0.95 = 9.2 ⋅ 106 × 0.95 

Assuming that there is less protection 

from infection for recovered people with 

Omicron 

Flux of new 

infected people 

with the BA.1 

variant from Dec 

1st to Dec 14th 

(BA.1) 

𝐹𝑜𝑚𝑖𝑐𝑟𝑜𝑛(𝑡) = 

30 exp (
𝑡 − 𝐷𝑒𝑐 1𝑠𝑡  

10
) 

Assuming only Omicron form Jan 1st, 

2022, with I=4000 

Initial number of 

recovered people 

at Dec 1st, 2021 ( 

𝑅𝐶 = 𝑁 × 0.05 = 9.⋅ 106 × 0.05 
- 

𝑅𝐶 = 𝑁 × 0.05 = 9.⋅ 106 × 0.05 

BA.1 Infection 

time, 𝑡𝐼 

{
1 5 ≥  (𝑡 − 𝑡𝐼) ≥ 2
0 𝑒𝑙𝑠𝑒

 

 

1

𝜇
 =4 days 

𝑅𝑡 

Represents the 

number of 

potential 

infections without 

vaccines 

𝑅𝑡 = 2.2 − 2.5 

Represented by particle density 

 

𝑅𝑡 = 2.2 − 2.5 

 

Risk of infection 

from the BA.1 

variant 

Twice as the Delta variant Twice as the Delta variant 

Vaccine 

effectiveness 

against the BA.1 

variant 

Protection against infection reduced to 

30% (compared to Delta) 

Protection against infection reduced to 

30% (compared to Delta) 

Flux of new 

infected people 

with the BA.2 

variant from Jan 

19th to Feb 2nd 

𝐹𝑜𝑚𝑖𝑐𝑟𝑜𝑛(𝑡) = 

80 exp (
𝑡 − 𝐽𝑎𝑛 19𝑡ℎ  

10
) 

- 
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Table S3. Parameters needed for modeling the Alpha outbreak in Israel for both sir and MAM models.  

 

 

  

BA.2 Infection 

time, 𝑡𝐼 

{𝑓(𝑡, 𝑡𝐼) = {
1 5 ≥  (𝑡 − 𝑡𝐼) ≥ 2
0 𝑒𝑙𝑠𝑒

 

 

- 

𝑅𝑡 

Represents the 

number of 

potential 

infections without 

vaccines 

𝑅𝑡 = 2.5 

Represented by particle density 

 

- 

Risk of infection 

from the BA2 

variant 

50% more than BA.1 - 

Vaccine 

effectiveness 

against the 

BA.12variant 

As BA.1 - 

Modeling the 

daily and active 

severe cases 

Assuming a 0.25% chance of a confirmed 

case to become a severe case with an 

average hospitalization time of 6 days 
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Supplementary data  - pseudocode for multiage SIR model: 

𝑆𝐼𝑅𝑖 =SIR_multi (𝑵𝑰
𝒊 , 𝑵𝑹𝒄

𝒊 , 𝑹𝒆
𝒊 , 𝑿𝒊, 𝑻𝒔𝒑𝒂𝒏, 𝑰𝒑𝒆𝒓𝒊𝒐𝒅, 𝑿): 

 

Input parameters: 

n Number of distinct groups (i.e., age groups) 

[𝑁𝐼 , 𝑁𝑅𝐶] Number of infected and recovered population 

𝑋 =  [𝑥1, . . . , 𝑥𝑛] Fraction of the 𝑖𝑡ℎ group of the total population 

[𝑅𝑒
1(𝑡),… 𝑅𝑒

𝑛(𝑡)] Daily effective reproduction for each age group 

𝑇𝑠𝑝𝑎𝑛 Simulation duration time 

𝐼𝑝𝑒𝑟𝑖𝑜𝑑 Duration of infectious period 

𝑁 Total population 

 

Variables:  

𝜇 =  
1

𝐼𝑝𝑒𝑟𝑖𝑜𝑑
  

𝛽𝑖 = 𝑅𝑒
𝑖 ⋅

𝜇

𝑁
 Infection rate 

𝑁𝐼
𝑖  =  𝐼0 ⋅ 𝑥𝑖 Initial infected population for the 𝑖𝑡ℎ group 

𝑁𝑅𝐶
𝑖  =  𝑁𝑅𝐶

𝑖 ⋅ 𝑥𝑖 Initial recovered population for the 𝑖𝑡ℎ  group 

𝑁′𝑖  =  𝑁′ ⋅ − 𝑁𝐼
𝑖  − 𝑁𝑅𝐶

𝑖  
Initial susceptible population for the 

𝑖𝑡ℎ group 

  

The code: Using solver of coupled equation (such as ode45) for solving 𝑆𝐼𝑅𝑖 for 𝑡𝑠𝑝𝑎𝑛 with the 

defined initial conditions ([𝑁′𝑖 , 𝑁𝐼
𝑖 , 𝑁𝑅𝐶

𝑖 ]): 

𝑆𝐼𝑅𝑖 =

[
 
 
 
 
𝑑𝐼𝑖(𝑡)

𝑑𝑡
= −𝜇 ⋅ 𝐼𝑖(𝑡) + 𝑆𝑖(𝑡) ⋅ 𝛽𝑖 ⋅ ∑ 𝐼𝑗(𝑡)𝑗=1

𝑑𝑆𝑖(𝑡)

𝑑𝑡
= −𝑆𝑖(𝑡) ⋅ 𝛽𝑖 ⋅ ∑ 𝐼𝑗(𝑡)𝑗=1

𝑑𝑅𝑖(𝑡)

𝑑𝑡
= 𝜇 ⋅ 𝐼𝑖(𝑡) ]

 
 
 
 

  

 

Supplementary data 1: Pseudocode for multiage SIR model 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


References: 

 

[1] K. Dietz and J. A. P. Heesterbeek, “Daniel Bernoulli’s epidemiological model revisited,” vol. 180, 

no. 1, pp. 1–21, doi: 10.1016/S0025-5564(02)00122-0. 

[2] Z. S. Al‐Dabbagh, “The role of decision‐maker in crisis management: A qualitative study using 

grounded theory (COVID‐19 pandemic crisis as a model),” vol. 20, no. 4, p. e2186. 

[3] A. Sungheetha, “COVID-19 risk minimization decision making strategy using data-driven model,” 

vol. 3, no. 1, pp. 57–66. 

[4] J. Panovska-Griffiths, C. C. Kerr, W. Waites, and R. M. Stuart, “Mathematical modeling as a tool 

for policy decision making: Applications to the COVID-19 pandemic,” in Handbook of Statistics, 

vol. 44, Elsevier, pp. 291–326. 

[5] “S. Afzal, S. Ghani, H. C. Jenkins-Smith, D. S. Ebert, M. Hadwiger and I. Hoteit, ‘A Visual 

Analytics Based Decision Making Environment for COVID-19 Modeling and Visualization,’ 2020 

IEEE Visualization Conference (VIS), 2020, pp. 86-90, doi: 10.1109/VIS47514.2020.00024.”. 

[6] Y. Zoabi, S. Deri-Rozov, and N. Shomron, “Machine learning-based prediction of COVID-19 

diagnosis based on symptoms,” vol. 4, no. 1, pp. 1–5. 

[7] A. Alimadadi, S. Aryal, I. Manandhar, P. B. Munroe, B. Joe, and X. Cheng, Artificial intelligence 

and machine learning to fight COVID-19, vol. 52. American Physiological Society Bethesda, MD. 

[8] H. B. Syeda et al., “Role of machine learning techniques to tackle the COVID-19 crisis: systematic 

review,” vol. 9, no. 1, p. e23811. 

[9] A. L. Booth, E. Abels, and P. McCaffrey, “Development of a prognostic model for mortality in 

COVID-19 infection using machine learning,” vol. 34, no. 3, pp. 522–531. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


[10] Y. Gao et al., “Machine learning based early warning system enables accurate mortality risk 

prediction for COVID-19,” vol. 11, no. 1, pp. 1–10. 

[11] Y. Gao et al., “Machine learning based early warning system enables accurate mortality risk 

prediction for COVID-19,” vol. 11, no. 1, pp. 1–10. 

[12] D. Assaf et al., “Utilization of machine-learning models to accurately predict the risk for critical 

COVID-19,” vol. 15, no. 8, pp. 1435–1443. 

[13] S. Lalmuanawma, J. Hussain, and L. Chhakchhuak, “Applications of machine learning and artificial 

intelligence for Covid-19 (SARS-CoV-2) pandemic: A review,” vol. 139, p. 110059. 

[14] L. Wynants et al., “Prediction models for diagnosis and prognosis of covid-19: systematic review 

and critical appraisal,” vol. 369. 

[15] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics,” 

vol. 115, no. 772, pp. 700–721. 

[16] J. L. Aron and I. B. Schwartz, “Seasonality and period-doubling bifurcations in an epidemic 

model,” vol. 110, no. 4, pp. 665–679. 

[17] C. C. Kerr et al., “Covasim: an agent-based model of COVID-19 dynamics and interventions,” vol. 

17, no. 7, p. e1009149. 

[18] H. De-Leon and F. Pederiva, “Statistical mechanics study of the introduction of a vaccine against 

covid-19 disease,” vol. 104, no. 1, p. 14132. 

[19] H. De-Leon and F. Pederiva, “Particle modeling of the spreading of coronavirus disease (COVID-

19),” vol. 32, no. 8, p. 87113. 

[20] C. P. Robert, G. Casella, and G. Casella, Monte Carlo statistical methods, vol. 2. Springer. 

[21] G. Fishman, Monte Carlo: concepts, algorithms, and applications. Springer Science & Business 

Media. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


[22] J. S. Liu and J. S. Liu, Monte Carlo strategies in scientific computing, vol. 10. Springer. 

[23] H. De-Leon and D. Aran, “Over-and under-estimation of vaccine effectiveness”. 

[24] Y. Liu and J. Rocklöv, “The reproductive number of the Delta variant of SARS-CoV-2 is far higher 

compared to the ancestral SARS-CoV-2 virus,” vol. 28, no. 7, p. taab124, doi: 10.1093/jtm/taab124. 

[25] H. De-Leon, R. Calderon-Margalit, F. Pederiva, Y. Ashkenazy, and D. Gazit, “First indication of 

the effect of COVID-19 vaccinations on the course of the outbreak in Israel”. 

[26] N. Barda et al., “Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting”. 

[27] F. P. Polack et al., “Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine,” New 

England Journal of Medicine, vol. 383, no. 27, pp. 2603–2615, Dec. 2020, doi: 

10.1056/NEJMoa2034577. 

[28] T. Kuniya, J. Wang, and H. Inaba, “A multi-group SIR epidemic model with age structure,” vol. 21, 

no. 10, p. 3515. 

[29] V. Ram and L. P. Schaposnik, “A modified age-structured SIR model for COVID-19 type viruses,” 

vol. 11, no. 1, pp. 1–15. 

[30] T. Kuniya, J. Wang, and H. Inaba, “A multi-group SIR epidemic model with age structure,” vol. 21, 

no. 10, p. 3515. 

[31] “https://www.cbs.gov.il/EN/Pages/default.aspx”. 

[32] “https://www.statisticshowto.com/mean-absolute-percentage-error-mape/.”  

[33] H. De-Leon and D. Aran, “What pushed Israel out of herd immunity? Modeling COVID-19 spread 

of Delta and Waning immunity”. 

[34] D. Kim et al., “Estimation of serial interval and reproduction number to quantify the 

transmissibility of SARS-CoV-2 omicron variant in South Korea,” vol. 14, no. 3, p. 533. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


[35] D. Kim, J. Jo, J.-S. Lim, and S. Ryu, “Serial interval and basic reproduction number of SARS-CoV-

2 Omicron variant in South Korea”. 

[36] “https://www.reuters.com/article/factcheck-omicron-reproduction-number-idUSL1N2YW1T0”. 

[37] Y. M. Bar-On et al., “Protection by a Fourth Dose of BNT162b2 against Omicron in Israel,” vol. 

386, no. 18, pp. 1712–1720. 

[38] G. Regev-Yochay et al., “Efficacy of a fourth dose of COVID-19 mRNA vaccine against omicron,” 

vol. 386, no. 14, pp. 1377–1380. 

[39] H. Rossman et al., “Hospital load and increased COVID-19 related mortality in Israel,” vol. 12, no. 

1, pp. 1–7. 

[4 -[0  S. Hayek et al., “Indirect protection of children from SARS-CoV-2 infection through parental 

vaccination,” vol. 375, no. 6585, pp. 1155–1159. 

[41] P. Nordström, M. Ballin, and A. Nordström, “Association between risk of COVID-19 infection in 

nonimmune individuals and COVID-19 immunity in their family members,” vol. 181, no. 12, pp. 

1589–1595. 

  

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.11.22279815doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.11.22279815
http://creativecommons.org/licenses/by/4.0/

