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ABSTRACT 

Polygenic risk scores (PRS) for breast cancer (BC) have a clear clinical utility in risk prediction. 

PRS transferability across populations and ancestry groups is hampered by population-specific 

factors, ultimately leading to differences in variant effects, such as linkage disequilibrium (LD) 

and differences in variant frequency (AF-diff). Thus, locally-sourced population-based 

phenotypic and genomic datasets are essential to assess the validity of PRS derived from 

signals detected across populations. Here, assess the transferability of a BC PRS composed 

of 313 risk variants (313-PRS) in two Brazilian tri-hybrid admixed ancestries (European, African 

and Native American) whole-genome sequenced cohorts. We computed 313-PRS in both 

cohorts (n=753 and n=853) versus the UK Biobank (UKBB, n=264,307) as reference. We show 

that although the Brazilian cohorts have a high European (EA) component, with AF-diff and to 

a lesser extent LD patterns like those found in EA populations, the 313-PRS distribution is 

inflated when compared to that of the UKBB, leading to potential overestimation of PRS-based 

risk if EA is taken as a standard. Interestingly, we find that case-controls lead to equivalent 

predictive power when compared to UKBB-EA samples with AUROC values of 0.66-0.62 

compared to 0.63 for UKBB.  
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INTRODUCTION 

Assessing polygenic risk scores (PRS) transferability across ancestries is crucial if genetic risk 

stratification at the clinical level is to be implemented in populations with ancestry profiles that 

differ from those assessed in genome-wide association studies (GWAS) 1. PRS derived by 

using individuals from a given genetic ancestry yield reduced predictions when tested in 

individuals of other ancestries, including those with admixed genomes, due to a complex 

interaction between differences in linkage disequilibrium (LD) and allele frequencies (AF) 

among populations, as well as population specific gene-environment and epistatic effects - all 

of which contribute to each disease or trait’s genetic architecture. The consequences of 

different populations having these population-specific parameters ultimately lead to differences 

in variant effects, and overall PRS performance. To address this issue, novel statistical genetic 

techniques are being applied 2,3 and diverse new genetic databases are becoming available 

4,5. Moreover, improvements to this performance discrepancy outside of the tested ancestry 

have been proposed 6 and a few studies have focused on admixed cohorts 3,7, but none 

provided a definitive solution. 

The potential use of PRS for improvements in disease prevention and management has been 

a prolific area of scientific investigation in the past decade, enabled by the availability of large 

datasets such as the UK BioBank (UKBB). While an essential resource, the UKBB and other 

major Biobanks are heavily biased in their ancestry representation 1,3,8. Thus, much of the 

aforementioned assessments of transferability of PRS across ancestries rely on smaller 

cohorts that contain a majority of underrepresented ancestry groups such as 

Latino/Latinx/Hispanic, African/Black/African-American, Native American, and East Asian.  

As cohorts of over 1,000 admixed individuals with comprehensive phenotypic characterization 

and high-coverage whole–genome sequencing (WGS) data arise in Brazil 4,5, evaluating the 

distribution of PRS derived from large European GWAS becomes an important first step prior 

to clinical implementation. Breast cancer (BC) is the worldwide leading cause of death in 

women and a complex disorder of multifactorial inheritance. While up to 10% of BC cases are 
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attributed to large effect pathogenic variants segregating in families, most affected individuals 

are not carriers, suggesting that sporadic occurrence is influenced by a polygenic combination 

of small to moderate effect variants 1 with familial aggregation and heritability reaching 55% 9.  

For BC, PRS derived from European ancestry (EA) individuals do have predictive ability even 

in African ancestry (AA) populations, but performance dropped significantly compared to the 

EA population 10 . A 313-SNP BC PRS (“313-PRS”)  trained in EA populations was shown to 

have improved predictive power compared to previously described breast cancer PRS 11. 

Moreover, the 313-PRS has greater discriminatory power compared to risk prediction models 

based only on classical risk factors in EA populations and its incorporation in BC predictive 

models provide a greater level of risk stratification in the general population 12. Thus, “risk-

stratified” breast cancer screening could potentially contribute to breast cancer early detection  

and the 313-PRS have been proposed as a useful tool to improve screening efficiency 13. 

Here, we investigate the potential for the 313-PRS 11 as a screening tool for BC in two Brazilian 

admixed cohorts. We compare the PRS distributions between these Brazilian cohorts and the 

UKBB (composed largely of EA individuals) and evaluate the predictive power of a model 

including 313-PRS as predictor. We find that even though the Brazilian cohorts have a 

relatively high EA component mirrorer by both LD and AF-diff, the overall PRS distribution was 

inflated when compared to the UKBB, leading to potential overestimation of PRS-based risk if 

these cohorts are assumed to have similar PRS distributions as the UKBB.  Nevertheless, 

stratification by outcomes led to an equivalent area under the receiver operator curve (AUROC) 

values when compared to UKBB. We discuss the limitations and implications of these findings 

below. 

MATERIALS & METHODS 

Genotypic and phenotypic data. Data for the present study comes from female samples of 

two Brazilian cohorts: 1) The Health, Well-being and Aging Study (SABE, acronym in 

Portuguese), a census-based sample of individuals aged above 60 years old living in São 
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Paulo, Brazil, with 21 cases of BC and 732 controls5; 2) The Rare Genomes Project (GRAR)4 

, a nationwide sample of probands ascertained by being at risk for Mendelian disorders 

recruited after clinical evaluation, comprising 322 cases of BC and 531 controls. To address 

potential confounders in GRAR, we removed individuals with related cancers such as ovarian 

and pancreatic cancer and BC-cases with causative monogenic variants. We also used the 

UKBB imputed dataset 14 (Project 74348), with 11,245 cases and 253,062 controls for 

comparison. See Supplementary Methods for details.  

Data processing. We mapped SABE and GRAR WGS data to the human reference genome 

hg38 with DRAGEN-GATK (Illumina, version 3.6.4 or superior) and genotyped using Illumina’s 

DRAGEN DNA pipeline as previously described 4,5. Of 313 BC-related SNPs, 308 were present 

in all cohorts and used for downstream analyses. We call this set 313-SNPs for ease of 

reading.  

Ancestry, LD, PRS, and modeling. We inferred global ancestry for all cohorts using Principal 

Component Analysis (PCA) and supervised ADMIXTURE 15. We used 1000 Genomes Project 

Phase 3 (1KGP3) individuals classified as African (AFR), European (EUR) and East Asian 

(EAS) for ancestry-specific PRS distributions comparisons (see Supplementary Methods). 

We collected overlapping variants in all sets of individuals within a region of 500 kbp upstream 

and downstream of the 313-PRS and used varLD16 to perform LD comparisons between SABE 

and GRAR, as well as with 1KGP3 individuals grouped according to the three main continental 

ancestries (AFR, EUR, EAS). 

We calculated the 313-PRS separately for all cohorts and 1000KGP3 populations, including 

both unaffected and affected women from SABE, GRAR, and the UKBB. Each individual’s 

PRS was calculated as the sum of the risk alleles dosage, G, times its effect-size (w) for every 

variant (i) (PRS = ∑iwiGi), using previously inferred weights from an EA- cohort11. 

To evaluate the PRS regression models performance in the Brazilian and UKBB cohorts we 

calculated area under receiver operator curve (AUROC), odds-ratio per standard deviation 
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(ORperSD) and Partial-R2 between models with and without the PRS. Confidence intervals 

were calculated using 1,000 bootstraps. Scripts to replicate these analyses are available at: 

https://github.com/Varstation/313prs-bc-grar-sabe 

RESULTS 

Since the two Brazilian cohorts were sampled differently, we explored in a comparative way 

variables that are known to affect PRS transferability across cohorts: global ancestry 

composition, 313-PRS risk allele frequency (RAF), and LD patterns in genomic regions linked 

to risk variants.  

Patterns of global ancestry inferred both by PCA (Figure 1A) and supervised ADMIXTURE 

(Supplementary Figure 1) show that GRAR and SABE share similar ancestry patterns, with 

most individuals distributed as a continuum between AFR and EUR ancestries and a small 

number of individuals with higher proportions of EAS ancestry. Additionally, both cohorts share 

similar patterns of genome-wide principal components (Supplementary Figure 2). 

GRAR and SABE have similar RAFs for the BC 313-SNPs (Figure 1B), and both cohorts have 

an overall higher correlation with RAFs calculated for the EA subset of 1KGP3 individuals 

(Figure 1C) than with the AFR or EAS ancestry subsets (Pearson’s cor >= 0.95 in both 

comparisons). Both cohorts share the same correlation with the EUR 1KGP3 subset (cor = 

0.80), whereas GRAR has a higher RAF correlation with AFR than SABE (cor=0.84 and 

cor=0.78, respectively). LD patterns surrounding the 313 risk SNPs are more similar between 

SABE and GRAR than any of the other pairwise comparisons (Figure 1D).  
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Figure 1. Allelic frequency and LD patterns for two Brazilian cohorts (SABE and GRAR) (A) 

Principal component (PC) analysis of GRAR (left) and SABE (right). Plots show PC1 and PC2 in the x- 

and y-axis, respectively. Different colors refer to 1KGP3 ancestry-specific subsets of individuals.  (B) 

Risk allele frequency (RAF) for GRAR (x-axis) and SABE (y-axis); r, Pearson’s correlation coefficient. 

(C) RAF correlation between Brazilian cohorts and 1KGP3-EUR, -AFR, -EAS (from left to right). GRAR 

(top row); SABE (bottom row); r, (Pearson’s correlation coefficient). 1KGP3. (D) Raw varLD scores for 

1Mbp windows centered across the 313-PRS BC risk SNPs. Lines show varLD calculated between 

SABE and 1KGP3-EUR; 1KGP3-AFR; 1KGP3-EAS; GRAR (dark blue).; x-axis, 0 represents the risk 

SNP coordinate. In panels A, C, D, AFR (red), EUR (green), and EAS (orange) refer to the African, 

European, and East Asian subsets of individuals from the 1,000 Genomes Phase 3 (1KGP3). 

 

Prior to PRS analyses, we explored potential effects of different demographic characteristics 

between the cohorts (Supplementary Table 1). Because the SABE cohort has a small number 
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of cases (n=21), we simulated sampling and case-control balances of SABE with bootstrap 

analyses on UKBB (Supplementary Figure 3) and did not observe bias regarding the small 

case numbers present in SABE data. 

Next, we calculated 313-PRS for GRAR, SABE, GRAR+SABE (G+S) and UKBB cohorts. We 

compared the 313-PRS PRS distribution obtained from all individuals in GRAR (n=853), SABE 

(n=753) and UKBB (n=264,307). The Brazilian cohorts and non-European ancestry 1KGP3 

populations – AFR (n=258) and EAS (n=260) – had a distribution of 313-PRS values shifted 

towards higher values than the  UKBB and EUR-1KGP3 (n=263), which had similar 

distributions (Wilcoxon sum rank test, ) between them and statistically significant 

differences from all other cohorts (  for all comparisons (Figure 2A).  

In both Brazilian cohorts, the mean 313-PRS was significantly higher in cases than controls 

(Wilcoxon rank sum test, GRAR: , SABE: ). When we performed a Z-

score normalization using the UKBB mean and standard deviation (SD) we found that the third 

quartiles of SABE and GRAR surpassed the top 10% UKBB PRS (Figure 2B), suggesting that 

PRS assessment without the specific population mean and sd will inflate the number of 

individuals inferred to be in higher risk categories. 

SABE had a wider range of odds-ratio (OR) values while G+S, GRAR and UKBB share scales 

of OR values (up to OR~2) distributed along PRS quantile bins (Figure 2C). In all cohorts, the 

comparison of OR between quantiles showed that higher PRS quantiles are associated with 

higher BC OR. 

We found similar PRS predictive power for GRAR, G+S, and UKBB cohorts, considering 

AUROC (only 313-PRS). Whereas SABE showed a higher AUROC (Figure 2D) it has a lower 

predictive power according the Partial-R2 metrics (full model including age+5PCs compared to 

model without 313-PRS) with bootstrap analysis (Supplementary Figure 4). It is important to 

note that SABE cohort is on average older (72 yrs vs. 40 yrs) and less affected than the GRAR 
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cohort (2.8% cases vs. 38% cases) and the potential effects of these differences could 

contribute to the results. 

 

 

 

Figure 2. Overall PRS distribution and model assessment. (A) 313-PRS distributions for SABE, 

GRAR, UKBB, and three subsets from the 1KGP3 (AFR, EUR, EAS).  (B) Normalized 313-PRS based 

on G+S (on the left) and UKBB (on the right). The black line represents the top 10% UKBB-PRS 

threshold. (C) Odds-ratios based on 313-PRS values for SABE, GRAR, SABE and GRAR combined 

(G+S), and UKBB. (D) Receiver-operator curves (ROC) of the predictive power of a logistic regression 

model with 313-PRS as the sole predictor of breast cancer. Numbers in the figure indicate the AUROC 

and values in parenthesis are the 95% confidence intervals. 
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DISCUSSION 

We observed that the BC 313-PRS values were on average higher in the two Brazilian cohorts 

and non-European ancestry groups from the 1KGP3 compared to the UKBB and 1KGP3-EUR. 

Similar findings have been reported in other BC PRS and specifically for the BC 313-PRS.  

One study assessed the transferability of a standardized 313-PRS 17 to East Asian ancestry 

cohorts.   The standardization was based on EA values and aimed at enabling comparisons of 

the PRS performance across populations. However, the authors concluded that a better 

approach is to standardize the 313-PRS to Asian ancestry values instead, thus minimizing 

overfitting. We performed a similar approach, by standardizing the 313-PRS to both the EA 

and Brazilian distributions. We find that, indeed, the former would lead to an inflated number 

of individuals placed in the high risk groups compared to the latter.  

Fritsche and colleagues constructed a BC PRS specifically for the EA subset of UKBB 

individuals using a sparse set of 334 SNPs (similar to our approach) and a different approach 

leveraging the weight of 1.1 million SNPs based on population-specific LD patterns for the 

score and tested both PRSs in UKBB individuals from Asian and African ancestry groups. They 

observed different distributions in group means of tested BC PRS across European, South 

Asian, African and East Asian ancestry groups. Their BC-PRS for both PRS approaches were 

on average higher in non-EUR groups, which we also describe here, but the PRS distribution 

was nevertheless right-shifted in cases compared to controls and associated with increased 

continuous ORs when standardized to one SD within each ancestry group 18. 

Our classification performance was moderate (AUROC=0.60), with an increasing proportion of 

cases in the top 20% percentile of the 313-PRS distributions in both Brazilian cohorts. A study 

using the eMERGE network 19 to assess the transferability of BC PRS models, including the 

313-PRS, compared cohorts with  a predominance of EA ancestry to cohorts  including women 

with African and also various proportions of admixed European-African ancestry and self-
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identified (e.g. not based on genomic ancestry) Latinx women. The AUROCs in self-identified 

Latinx women for different BC PRS ranged from 0.53 to 0.56 19, compared to 0.63 for the EA 

cohort. An increasing number of other studies, as well as our own observations, highlight the 

need to improve the representation of diverse population groups in genomic research cohorts 

so that population-specific effect sizes can improve PRS prediction power. 

Our study has limitations inherent to a general paucity of genomic-level datasets that also 

include phenotypic data. SABE and GRAR were sampled with different designs and thus they 

differ in at least two important aspects. The median age of SABE (72 years) is higher than the 

BC median age of onset (61.8 years) 20 and higher than the median age in GRAR (40 years) 

and the UKBB (58 years). Thus, a survival effect is likely to play a role in differences seen 

between these cohorts. In fact, unaffected elderly can be considered super-controls, meaning 

that at a given statistical power, less individuals are required to obtain equivalent effect sizes 

in case-control setups 21. Moreover, the restricted number of cases may affect the results due 

to low sampling power.  

Our findings showed that combining GRAR and SABE led to a loss of predictive power. We 

interpret this as being due to the important differences highlighted above (age, recruitment 

approach, family history) and different proportions of cases and controls given that, as shown 

here, their patterns of LD and RAF are remarkably similar. If large-scale cohorts such as GRAR 

and SABE are planned and designed in an integrated way, such discrepancies would likely be 

reduced. On the other hand, our findings also highlight how much the performance metric 

depends on the sample (cohort), even when ancestry profiles are similar, as highlighted by 

others. 

Our study ultimately provides insights of extreme samples, which may not reflect the expected 

ancestry-driven reduction in PRS transferability. Given the absence of a valuable large 

Brazilian population-based biobank, the approach of using available samples with targeted 

design is an alternative to test PRS transferability. With these important caveats in mind, we 

note that neither age nor family history (GRAR cases inclusion criterium) are correlated with 
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ancestry components in those cohorts and, as we showed here, the ancestry profiles are 

remarkably similar. 

A reduced PRS predictive power compared to the population or ancestry group from the 

original is expected due to differences in ancestry composition, allele frequencies and LD 

patterns across populations. Although both target samples are Brazilian, it is important to 

consider that the GRAR and SABE cohorts were collected for different purposes and from 

regions with different demographic histories. Even with different backgrounds both cohorts 

bear a Brazilian signature being closer to each other than with any other ancestry, suggesting 

the results could be observed in other Brazilian admixed cohorts. Additional validation on these 

findings, in particular in correctly ascertaining cases within the highest PRS percentiles, might 

advocate towards clinical applications on transferred PRS, while large GWAS on each 

ancestral groups are performed and crucial non-European population-based biobanks are 

constructed.  
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