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The paralysis of the muscles controlling the hand dramatically limits the quality of life of 22 
individuals living with spinal cord injury (SCI). Here, we present a non-invasive neural interface 23 
technology that will change the lives of individuals living with cervical SCI (C4-C6). We 24 
demonstrate that eight motor- and sensory-complete SCI individuals (C5-C6, n = 7; C4, n = 1) 25 
are still able to task-modulate in real-time the activity of populations of spinal motor neurons 26 
with spared corticospinal pathways. In all tested patients, we identified groups of motor units 27 
under voluntary control that encoded a variety of hand movements. The motor unit discharges 28 
were mapped into more than 10 degrees of freedom, ranging from grasping to individual hand 29 
digit flexions and extensions. We then mapped the neural dynamics into a real-time controlled 30 
virtual hand.  The patients were able to match the cue hand posture by proportionally controlling 31 
four degrees of freedom (opening and closing the hand and index flexion/extension). These results 32 
demonstrate that wearable muscle sensors provide access to voluntarily controlled neural activity 33 
in complete cervical SCI individuals.  34 

Impaired hand function is arguably one of the most severe motor deficits in subjects with SCI, especially 35 
when bilateral1. There are currently no effective treatments for regaining control of the hand after 36 
muscle paralysis. Hand surgery is established, although not possible in every case, and with several 37 
limitations2. Restoration of hand function has so far been achieved by neural interfaces recording the 38 
activity of the motor cortex3, either through closed-loop electrical stimulation of the muscle4 or by 39 
controlling external devices5. However, besides the relatively poor control, invasive cortical implants 40 
are also an option limited to a small proportion of patients because of the surgical risks and long-term 41 
stability of the implant. Other neural interfaces involve the delivery of electrical stimulations in the 42 
spinal cord that indirectly targets the activity of the alpha motor neurons6.  43 

The neural information most directly associated with behavior is the activity of spinal alpha motor 44 
neurons, which are the final common pathways of the neuromuscular system7. The activity of spinal 45 
motor neurons encodes movement through a simple linear transformation (the dynamics of the twitch 46 
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forces of the muscle units) and therefore movement intent can be decoded directly. Almost all SCI are 47 
due to contusions of the spinal cord, which could leave some spared connections above and below the 48 
level of the injury8. While this spared neural activity is not sufficient to drive muscles for the generation 49 
of detectable forces, it can be used to infer motor intent and therefore to decode movements. 50 
Accordingly, we have recently reported in a single motor-complete SCI (C5-C6) individual, as a case 51 
study, the presence of a significant number of task-modulated motor units encoding the flexion and 52 
extension of individual fingers through a wearable, non-invasive neural interface9. That case study was 53 
a proof of concept in a single patient, and it was limited to offline analysis without any demonstration 54 
of patient-in-the-loop control. Here, we provide for the first-time evidence of voluntarily controlled 55 
spinal motor neurons in a relatively large group of SCI individuals (motor and sensory complete ranging 56 
from C4 to C6, Figure 1, Table 1, Video 1, 2). Through the decomposition of the high-density 57 
electromyogram (HDsEMG)10–12, we observed the presence of active motor neurons in all tested 58 
patients (Figure 1).   59 

Figure 1 shows an overview of the offline experiments where subjects were asked to match the visual 60 
cue displayed through a virtual hand. The virtual hand displayed hand opening and closing, two and 61 
three-finger pinch, and individual digits movement (flexion and extension) at 0.5Hz movement velocity. 62 
Figure 1a shows the experimental setup, with 320 electrodes placed on the proximal and distal forearm 63 
muscles and tendons. Figure 1b shows six EMG channels and a motor unit waveform superimposed on 64 
a heatmap based on the root mean square activity (Figure 1c). In all tested patients, we observed clear 65 
motor unit action potentials with high signal-to-noise ratios (>30dB13). We then looked at how these 66 
motor units were controlled by studying the association between motor unit activation times (Figure 67 
1d) and the movement trajectories of the digit tip of the virtual hand (grey lines in 1d). The raster plot 68 
in Figure 1d shows a clear grouping of motor units encoding flexion and extension movements during 69 
the two-finger pinch task. As in our previous experiment9, we used a factorization method to retrieve 70 
the motor dimension (flexion and extension of the motor units, 1e-f).  71 

For all tested individuals, we were able to consistently identify some motor neurons that were 72 
controlling the flexion and extension movements (Supplementary Figs.). Figure 1g-h shows a summary 73 
of all subjects and tasks. For all the tasks (Fig. 1g-h), we identified a specific subpopulation of motor 74 
units that encoded that specific movement, with an average of 9.8 ± 0.7 motor units per task. Because 75 
of the large number of units, we were able to identify unique units virtually in all recorded tasks, which 76 
gives a perfect classification accuracy for all these motor dimensions. Therefore, after years of cervical 77 
spinal cord injuries leading to motor and sensory complete paralysis (ranging from 5.0 to 24.2 years, 78 
Table 1), these subjects still had spared connections from motor cortex impinging the activity of spinal 79 
motor neurons. This is evidenced by the fact that these motor units showed high voluntary modulation 80 
that matched with high degrees of accuracy the virtual hand movements (Fig. 2a). Figure 2a shows all 81 
the identified motor units for two individuals and all tasks. These previous results are based on the 82 
prediction accuracies and number of motor dimensions from the offline decomposition of the HDsEMG.  83 

 84 
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85 
In a second experiment, which was collected on average 3-5 months after the first session, six subjects 86 
were tested again with a similar experimental procedure but tuned for real-time control. The subjects 87 
were asked to proportionally control a moving cursor on a screen based on the real-time decoding of 88 
the discharge timings of motor neurons (Figure 2c-d). Moreover, the tested individuals also controlled 89 
a virtual hand (Figure 2f-i, Video 2), demonstrating full voluntary control of the decoded neural activity.  90 

We developed a real-time mapping of the discharge timings of motor neurons so that the patients could 91 
control a virtual hand and a cursor on the screen with the motor unit discharge activity and the HDsEMG 92 
signal (Figure 2, Video 1). After a few seconds of training (see Fig. 2d), the subjects were able to control 93 

   

   

  

Figure 1 | a. Experimental setup consisting of 320 surface EMG electrodes placed in the forearm 

muscles. The movement instructions were guided by a virtual hand video displayed on a monitor in 

front of the subject. b. A few example electrodes show raw HDsEMG signals while the subject 

attempts a grasp task (flexion and extension of the fingers, 0.5Hz). c. Example of spatial mapping 

based on the root mean square values of the motor unit action potential. d. Raster plot of motor unit 

firings (color-coded) identified during 10s of the two-finger pinch task. e. Neural modules extracted 

for the same task, using factorization analysis. f. Pearson correlation values (r) of the individual motor 

units with the two neural modules. g. Number of identified motor units (MUs) across all tasks and 

subjects (each dot represents one subject). h. Percentage of explained variance by the two neural 

modules (M1 – blue and M2 – red) averaged across all subjects for each task. 
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the motor unit firing patterns and progressive recruitment of motor units at different target forces and 94 
with high accuracies (Fig. 2b-d). In this experiment, we also used a supervised machine learning 95 
algorithm to control a virtual hand (Fig. 2f-i, Video 2). 96 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.09.22279611doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.09.22279611


5 
 

 97 

Figure 2 | a. Raster plot for all motor units identified during the respective task (color-coded) and the 

virtual hand movement trajectories (grey line). Note the task-modulated activity of the motor unit firing 

patterns, that encoded flexion and extension movements. b. Real-time tasks for two participants (S1 and 

S6). c. The participants were asked to follow a trajectory on a screen (green line) by imagining a grasp 

movement. The motor unit were decomposed online, and the cumulative smoothed discharge rate (yellow 

line) was used as biofeedback. After few seconds of training (d), the subjects could track the trajectories 

with very high accuracies and at different target levels (c). e. Cross-correlation coefficient (R) between the 

smoothed discharge rate and the requested tasks for 4 subjects. f. After the online motor unit 

decomposition, we used a supervised machine learning method to proportionally control the movement of 

a virtual hand. Four out of six subjects were able to proportionally open and close the hand (g-i), and 

proportionally control in both movement directions (flexion and extension) the index finger (h-i). These 

subjects were able to control four degrees of freedom (DoFs) that corresponded to hand opening, closing, 

index flexion and extension.  
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Video 1 shows a subject that controls the activity of groups of motor units in real-time, modulating the 98 
recruitment and discharge rate to proportionally hit two different target levels of activation. The motor 99 
neuron discharge times were summed and normalized in real time to the number of active neurons so 100 
that the patients could modulate a moving object (yellow cursor, Fig. 2c-d) by increasing/decreasing 101 
the discharge rates. Figure 2c shows the proportional control of two target levels that was mediated by 102 
both the concurrent recruitment of additional units (grey raster plot) and higher discharge rates. Figure 103 
2d shows a complete recording set that lasted 120 seconds. Note that just after 50 seconds of training 104 
the subject was able to move the cursor on relatively high levels of normalized motor unit activity. The 105 
scaling of the motor unit activity is based on a simple equation that considers the maximal motor unit 106 
discharge activity and the highest number of motor units that were identified during an off-line 107 
calibration trial, that lasted 10 seconds for each trained task. 108 

We then trained the subjects to move a virtual hand that was displayed on a monitor and to match the 109 
movement of a control hand (Fig. 2f-i, Video 2). After this training, the subjects were able to 110 
proportionally open and close the hand with high levels of accuracy, when compared to the control hand 111 
instructions (Fig. 2i, Video 2). Most of the subjects were able to proportionally flex and extend the 112 
index finger (two degrees of freedom) and open and close the hand (two degrees of freedom). Figure 2f 113 
shows the subject’s view: the monitor displayed two hands, a control hand (white color), and a second 114 
hand that was controlled by a regression-based machine learning algorithm. Four out of 6 subjects (Fig. 115 
2g) were able to control four degrees of freedom consisting of proportional control of index flexion and 116 
extension and hand opening and closing (Fig. 2h-i, Video 2). It is important to note that each experiment 117 
across all patients did not last more than 3 hours, with most of the time used for placing the electrodes 118 
and explaining the tasks. Although we did not measure the time it took for the subject to control the 119 
virtual hand and 2D cursor control, it surely did not take more than 30 minutes accounting even for the 120 
subjects with the highest level of wrist and hand paralysis. This can be further improved once the 121 
subjects are trained with the task. In sum, the presented technology has a direct clinical translation for 122 
both home and hospital use for restoring and monitoring the spared corticospinal connections after 123 
traumatic SCI.  124 

The results presented above provide for the first-time evidence of voluntarily controlled spinal motor 125 
neurons in a relatively large group of SCI subjects (motor and sensory complete ranging from C4 to 126 
C6) that have been paralyzed for decades. We observed the presence of active modulation of motor 127 
neuron activity in all tested patients. We then developed a real-time mapping of the discharge timings 128 
of motoneurons so that the patients could control a virtual hand. The tested patients performed virtual 129 
hand tasks accurately and proportionally, demonstrating full voluntary control of the decoded neural 130 
activity. The results indicate that motor- and sensory-complete SCI patients maintain relevant neural 131 
activity as output of the spinal cord circuits below the lesion and that they can accurately control this 132 
activity to regain hand function. Wearable muscle sensors are therefore a technology that may compete 133 
in terms of clinical viability and efficacy with invasive brain or spine implants for restoring hand 134 
function in complete SCI patients. We contend that the proposed non-invasive approach is a clinically 135 
superior solution to hand function restoration in SCI than the current invasive brain and spinal neural 136 
interfaces. 137 

 138 
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Methods 180 

Eight participants with spinal cord injury (SCI) were recruited for this study (Seven individuals with 181 
chronic motor complete SCI and one with motor incomplete SCI). The inclusion criteria were: (1) injury 182 
level C4-C6 and (2) age between 18 and 60 years old (3) absence of voluntary movement of one hand 183 
or both hands. Participants S6 and S7 presented movement of the left hand. All participants gave their 184 
written informed consent to take part in the study. The study was conducted in agreement with the 185 
Declaration of Helsinki, and it was approved by the Friedrich-Alexander-Universität Ethics Committee 186 
(application 22-138-Bm). 187 

  188 

Table 1 – Characteristics of research participants, including the average number of motor units (MUs) 189 
identified per task (mean ± SD) for each subject 190 

Subject 

 

Age range 

(years) 
Gender 

Injury 

level 
AIS 

 

Wrist 

movement 

Time 

since 

injury 

(years) 

Number 

of 

MUs/task 

S1 36-40 M C6 B yes 18.8 14.5 ± 2.0 

S2 31-35 M C5 B yes 9.1 8.1 ± 1.2 

S3 41-45 F C6 B yes 24.2 3.5 ± 1.4 

S4 36-40 F C5 A yes 24.2 7.3 ± 2.3 

S5 31-35 M C4 A no 22.2 8.4 ± 0.7 

S6 56-60 M C5 A no 6.9 22.8 ± 4.2 

S7 41-45 M C6 C no 18.2 7.4 ± 2.0 

S8 36-40 F C5 B yes 5.0 5.9 ± 1.2 

  191 

Study overview/Experimental protocol 192 

This study was conducted in two sessions. In the first session, subjects were instructed to attempt 193 
movements shown by videos of a virtual hand while high-density electromyographic (HDsEMG) 194 
signals from their forearm were recorded. For the second session, 6 subjects returned after 3-5 months 195 
of the first session, in which a regression model (based on global EMG) and/or an online decomposition 196 
method was used to decode movement intention, according to their HDsEMG signals.  197 

In the first session, 320 HDsEMG electrodes were placed in the forearm of the participants’ dominant 198 
hand (subject 7 was paralyzed only on the non-dominant hand). The subjects were then asked to stay in 199 
a comfortable position with their arm (Fig. 1a and 2b,f). With a computer monitor in front of them, 200 
videos of a virtual hand performing different tasks were displayed and the participants were instructed 201 
to attempt the movements accordingly. The tasks included movement of the individual digits, grasp, 202 
two-finger pinch, and three-finger pinch at two different speeds (0.5Hz and 1.5Hz), and lasted 42s each. 203 
Two trials were performed for each movement. Only data from 0.5Hz movements were analyzed due 204 
to the difficulty of the subjects in performing fast movements. 205 

In the second session, using the same electrode configuration as the first visit, first, an EMG-to-206 
activation regression model was built: subjects were asked to attempt a full flexion of their fingers 207 
according to the tasks that were easier for them to perform, and their EMG signals were acquired and 208 
associated to synthetic ground truth representing maximal activation for the relevant degrees of 209 
freedom. After that, the participants attempted the flexion/extension of the digits, and the predicted 210 
activation was shown to them in real time through a virtual hand interface (‘predicted hand’). A virtual 211 
hand showing a predefined movement (referred here as ‘control hand’, Fig. 2f,h-i) was used to help the 212 
subjects to perform the movements and for further analysis.  213 
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Also in this session, we tested a real-time EMG decomposition approach (offline decomposition 214 
followed by online decomposition). We used 128 HDsEMG electrodes to assess if the subjects would 215 
be able to follow a digital trajectory with their motor units smoothed cumulative discharge rate. First, 216 
during the offline decomposition, HDsEMG data were recorded while the participants were asked to 217 
attempt a maximum flexion of the digits (10s per task). The recorded data is decomposed as described 218 
in the ‘Online decomposition’ section and the decomposition results are stored for the online task. 219 

Subsequently, in the online decomposition step, the subjects were instructed to follow a periodic 220 
rectangular waveform trajectory shown on a monitor, with 10s period (5s of rest in between), for 60-221 
120s. For two consecutive periods, the subjects were asked to attempt flexion and extension of the same 222 
digits as performed in the offline decomposition. The motor unit firings detected with this method 223 
(smoothed motor unit firings) were also shown as feedback to the subjects. 224 

Lastly, we also tested if the subjects would be able to increase their discharge rate and progressive 225 
recruitment of motor units by increasing the height of the ramp. The rectangular trajectories have two 226 
different activation levels, 20% and 30% of maximum neural activation. The discharge rate was 227 
normalized using the maximum discharge rate obtained during the brief offline decomposition step.  228 

Virtual hand videos and interface 229 

The 3D model of the hand used to instruct the subjects during the recordings was developed in Blender 230 
(Blender 3.0, Blender Foundation). The appearance of the virtual hand was modified to resemble a real 231 
human hand, a texture was applied to provide a better experience to the participants. Thirteen videos of 232 
the hand model were generated in Blender, each of them corresponding to one task/hand movement 233 
(individual digits flexion/extension at 0.5 Hz and 1.5Hz, grasp, two-finger pinch, and three-finger 234 
pinch). Figure 1a shows an example of the virtual hand that was displayed to the subjects. 235 

The virtual hand interface was created to communicate with the regression model. This interface was 236 
generated using the software Unity (Unity Software Inc). An improved virtual hand model (mesh object 237 
from VIVE Wave SDK - https://hub.vive.com/storage/docs/en-us/index.html) was used, which allows 238 
more degrees of freedom for the right hand (with 17 bones). The interface shows two virtual hands: the 239 
former shows the movements to be performed (control hand) and the latter (predicted hand) is connected 240 
to the regression model and shows the output obtained directly from the HDsEMG signals. Therefore, 241 
by comparing the control and the predicted hand, we can understand the amount of flexibility of control 242 
that is spared after the injury.  243 

HDsEMG recordings  244 

For electrode placement, the forearm skin was shaved and cleansed with 70% ethyl alcohol. The ulna 245 
bone was marked with a skin marker. Five grids of 64 surface EMG electrodes were placed over the 246 
forearm muscles (3 squared grids of 8 rows x 8 columns configuration, with interelectrode distance 247 
(IED) of 10mm; 2 rectangular grids - 13x5, IED = 8mm; OT Bioelettronica, Turin, Italy). The squared 248 
grids were placed aligned to the ulna bone, while the rectangular ones were placed posterior and anterior 249 
in the forearm, above the wrist joint. The grids were attached to the skin using bi-adhesive foam, that 250 
was placed aligned to the electrodes and filled with conductive paste (SpesMedica, Battipaglia, Italy). 251 
The grids were then secured with tape. The reference for the electrode grids was placed on the elbow 252 
joint, and the main ground electrode was placed on the styloid process of the ulna. The HDsEMG signals 253 
were recorded using a multichannel amplifier 16-bit A/D (Quattrocento, OT Bioelettronica). The signals 254 
were recorded in monopolar mode using the software OT BioLab+, with sampling frequency of 2048Hz 255 
and a bandpass filter 10-500Hz. The recordings were synchronized with the start of the virtual hand 256 
videos. For the second part of the experiments, HDsEMG signals were streamed in real-time using a 257 
Transmission Control Protocol/Internet Protocol (TCP/IP) for communication. For this, the software 258 
OT BioLab Light was used, with the following settings: 2048Hz sampling frequency, bandpass filter 259 
10-500Hz, and 8Hz refresh rate (for online decomposition) or 16Hz refresh (for the regression model).  260 
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Online decomposition 261 

To decompose the EMG signal into individual motor units, we used a combination of fast independent 262 
component analysis (fastICA) and convolutive kernel compensation (CKC). This method involves a 263 
convolutive sphering (extension and whitening) of the measurement matrix, followed by an iterative 264 
optimization of separation vectors that maximizes the non-gaussianity. This approach allows an 265 
automatic decomposition of the sources. Video 1 shows the real-time decomposition and the modulated 266 
motor unit activity for a subject with SCI and Figure 2c-e the performance of the subjects to track a line 267 
on a screen by modulating the discharge rates of the motor units.  268 

A script in Python was developed to show the motor unit firings detected with this method (smoothed 269 
motor unit firings) as feedback to the subjects, while they were requested to follow a rectangular 270 
trajectory of 10s period (Video1 and Figure 2c-e).  A cross-correlation was applied between the target 271 
levels and the normalized cumulative discharge rates (Figure 2c). The average correlation coefficient 272 
of every 20s trials for each subject was used as a metric.  273 

The online decomposition is divided into two parts. The first part is the offline decomposition, in which 274 
the EMG data is recorded for each task the subject was asked to perform in real-time. The length of the 275 
recorded signal is 10s, and the subjects were asked to perform a full flexion of one or more digits during 276 
the recording (in separate trials). Then, the recorded data is decomposed using fastICA, which is based 277 
on the convolutive blind source separation method (described below in detail). The results of fastICA 278 
are the individual extracted sources and their respective separation vector. The separation matrix and 279 
the individual action potentials of the motor units (MUAPs) are stored for the online task. The individual 280 
MUAPs are computed by the spike-triggered average (STA) using the extracted sources. Before the 281 
real-time decomposition begins, the individual separation matrices are merged into a single matrix, and 282 
duplicates are flagged by calculating the Pearson correlation coefficient between the MUAPs.  283 

During real-time decomposition, a periodic rectangular waveform trajectory (10s period, 5s of rest in 284 
between) is displayed continuously to the subject for one to two minutes. The waveforms have two 285 
different required activation levels with 20% and 30% of maximum neural activation. For each period, 286 
the subject was asked to perform one of the tasks from the offline decomposition. To circumvent the 287 
computational complexity obstacle of whitening in real-time, the observations from the same controlled 288 
task are expanded and then directly multiplied by the stored separation matrix from the offline part. The 289 
results of this multiplication are considered as the extracted sources and then correlated with the MUAP 290 
templates (template matching). To distinguish between noise and neural activity, the maximum noise 291 
power is calculated in the first data frame where the subject is assumed not to move (no ramp). If the 292 
calculated correlation coefficient is above a predefined threshold and the signal has an SNR higher than 293 
a scalar multiple of the maximum noise level (see below), it is classified as a spike. 294 

To decompose the HDsEMG signal into the individual motor units in real-time, the general approach 295 
of offline decomposition followed by online decomposition described by Barsakcioglu and Farina 296 
(2018) was adopted14. The offline decomposition method is based upon the iterative extraction of 297 
sources from the convolutive sphering (extension and whitening) of observations described in Negro et 298 
al. (2016)15 and Holobar and Zazula16. We have tailored the current general structure of the algorithm 299 
for the current data from SCI individuals, as described below.  300 

We can model the HDsEMG generation process as a convolutive mixture of the pulse trains and the 301 
action potentials of motor units, in matrix form: 302 

𝑥(𝑘) =  ∑ 𝐻(𝑙)𝑠(𝑘 − 𝑙)

𝐿−1

𝑙=0

+ 𝑛(𝑘) 303 

where 𝑥(𝑘) =  [𝑥1(𝑘), 𝑥2(𝑘), 𝑥3(𝑘), … , 𝑥𝑚(𝑘)]T are the HDsEMG signals recorded from m EMG 304 
channels (number of observations) with  𝑥𝑖(𝑘) being the signal recorded from the ith channel, 𝑠(𝑘) =305 
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 [𝑠1(𝑘), 𝑠2(𝑘), 𝑠3(𝑘), … , 𝑠𝑛(𝑘)]T are the firing patterns of n motor units (number of sources). H is the 306 
mixing matrix of dimension m × n which carries the information of motor unit action potentials 307 
(MUAP), with L being the during of the action potentials and l each sample; n(k) is the unidentified 308 
noise term for each channel. With the motivation of increasing the ratio between the number of 309 
observations and the number of sources, the observations are extended using R-lagged samples, where 310 
R=1000/m15. From the extended observations, a whitening matrix is derived by performing eigenvalue 311 
decomposition of the covariance matrix of the extended observations. Then a fixed-point iterative 312 
algorithm with Gram-Schmidt Orthogonalization is used to maximize the number of uniquely identified 313 
sources. Next, a silhouette score-based K-means driven approach is adopted to detect the spikes from 314 
the decomposed source that involves the second iteration of the CKC approach to remove the unreliable 315 
sources, as described in15. This offline decomposition prior to online decomposition can be 316 
conceptualized as a training phase from which the separation matrix is extracted which contains the 317 
separation vectors. Also, the MUAP templates from the extracted sources are generated using spike-318 
triggered-averaging (STA) from the offline decomposition and stored in a matrix. 319 

In the real-time (online decomposition phase), the observations obtained from the same controlled task 320 
are extended and then directly multiplied with the separation matrix to avoid the impediment of 321 
computational complexity due to whitening. The outcomes of this multiplication are considered to be 322 
extracted sources and then subjected to a further 2D cross-correlation template matching technique 323 
where the MUAPs extracted for each of the sources were used as the template. Since the MUAPs are 324 
the results of the convolution of the action potential and Dirac delta pulses, we can obtain MUAP shapes 325 
from their discharge times as having a repetition of the action potential at the time instances of the Dirac 326 
pulses. Therefore, we used the shapes of the action potentials to perform a cross-correlation between 327 
each of the samples of the extracted single MUAP and the MUAP of the corresponding channels in 328 
real-time, for a further validation step. The Pearson's normalized cross-correlation coefficient is defined 329 
as, 330 

𝑟ℎ𝑦 =  

∑ (hi − h̅)(y
i

− y̅)
K

i=1

√∑ (hi − h̅)2(y
i

− y̅)
2

K

i=1

 331 

where, h is the template, i.e. the MUAP shape, and y is the windowed segment of size K of the single 332 
MUAP which has to be correlated to the MUAP shape to detect the spikes. This window is rolled over 333 
the entire signal to find the correlation coefficient concerning the MUAP. From the outcome of the first 334 
frame of the real-time sEMG decomposition, the maximum noise power was also calculated because 335 
the first frame in our experimental setup contained no physical activity. The samples in the extracted 336 
sources of the real-time decomposition which showed a cross-correlation coefficient more than a 337 
predefined threshold and exhibit SNR higher than a scalar multiple times the maximum noise level was 338 
sorted as a spike. This approach allows an automatic decomposition of the sources. 339 

The spike sorting in the offline decomposition task was performed using the Silhouette threshold of 0.9. 340 
In order to set up the real-time decomposition, a range of cross-correlation coefficients between 0.50-341 
0.70 was chosen to perform the template matching-based spike sorting. To perform the template 342 
matching, MUAPs of the length of 30 samples, i.e. approximately 15ms long MUAPs were extracted 343 
through spike-triggered averaging using the spike time instances and the decomposed SMUAPs. The 344 
performance of the real-time EMG decomposition was evaluated both qualitatively, i.e. through 345 
visualization of the overall shape of the envelope of the firings, and quantitatively by computing the 346 
rate of agreement (ROA). The ROA is defined as: 347 

     348 
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𝑅𝑂𝐴 =  
𝑐𝑗  × 100%

𝑂𝐹𝑗 + 𝑅𝑇𝑗 + 𝑐𝑗  
 349 

Where cj is the total number of firings of the jth motor unit identified by both offline and online 350 
decomposition, RTj is equal to the total number of firings of the jth motor unit identified in online 351 
decomposition only, OFj is the total number of firings of the jth motor unit identified by offline 352 
decomposition only. The choice of the hyperparameters rhy  and SNR threshold required to perform 353 
spike-sorting was made from an isometric ramp task experiment with 64 channel HD-sEMG signal 354 
collected from the tibialis anterior muscle of a healthy individual by picking up the combination yielding 355 
the best ROA obtained by performing online decomposition. The correlation coefficient of 0.60 and 356 
SNR threshold of 10 was selected to set up the real-time decomposition framework as they indicated 357 
high accuracy between offline and online decomposition14. 358 

Regression-based simultaneous and proportional control 359 

A regression-based machine-learning method was used to simultaneously and proportionally estimate 360 
the amount of required activation of each degree of freedom of the virtual hand. Namely, we used 361 
Incremental Ridge Regression 17. Ground truth was provided by artificially associating minimal and 362 
maximal activation values to EMG signals gathered from the participants while they were being asked 363 
to minimally and maximally perform specific actions (i.e., flexion and extension of the digits)18. The 364 
bandpass filtered EMG signals from the Quattrocento were processed as follows: first, a non-365 
overlapping moving window FIR low pass filter was applied (cut-off frequency 200Hz). In order to 366 
improve visualization, the signal was multiplied by a factor of 35. Then, the absolute value of the signal 367 
was extracted. Then, the signal was low-pass filtered again through a first-order IIR filter with a 368 
response of the form 𝑦(𝑘) = 𝛼𝑥(𝑘) + (1 − 𝛼)𝑦(𝑘 − 1) (cutoff frequency 1Hz). After this, an adaptive 369 
filter was employed. This is a first-order IIR filter, the cutoff frequency 𝐹𝑐 of which is determined by 370 

the instantaneous value of the signal 𝑠(𝑡) itself and of its first-order time derivative according to 𝐹𝑐 =371 
exp( 8|𝐼𝐼𝑅𝛼=0.6(𝑥(𝑘) − 𝑥(𝑘 − 1))| − 7 |𝑥(𝑘)|), where 𝐼𝐼𝑅𝛼=0.6(|𝑠̇(𝑡)|) represents the first-order time 372 

derivative of the signal low pass filtered through an IIR filter with 𝛼 = 0.6. The signal was then 373 
subsampled at 25Hz. An adaptive IIR filter like the one described above was also applied to the 374 
prediction from the ridge regression model. The values for all the coefficients used for signal filtering 375 
were set empirically following a series of pre-tests. 376 

Despite its simplicity, Ridge Regression has recently been proven highly effective when applied to the 377 
problem of multi-DoF simultaneous and proportional prosthetic myocontrol using high-density surface 378 
electromyography19–21. The adaptive filter is used here to exploit the heteroscedasticity of the EMG 379 
signal, which tends to be noisier if the mean value is higher.  380 

Offline HDsEMG decomposition 381 

The monopolar HDsEMG signals were first band-pass filtered (20-500Hz) with a Butterworth second-382 
order filter. The data from all 5 electrode grids were concatenated into one matrix. To identify the 383 
individual motor units, these HDsEMG signals were decomposed through a blind source separation 384 
method (convolutive kernel compensation algorithm). The software DEMUSE (v. 4.5; The University 385 
of Maribor, Slovenia) was used for that16, which automatically detects the motor unit discharge times. 386 
After that, a visual inspection of the identified motor unit spike trains was performed, to account for 387 
false positive/false negative detected spikes, as described previously22. Only the motor units with a 388 
pulse-to-noise ratio > 26dB before manual inspection were kept. 389 

Factor analysis 390 

A dimension-reduction technique, factor analysis, was applied to the smoothed discharge rate of all 391 
motor units identified for a task. The discharge rate was first low-pass filtered with a Hann window of 392 
1s (1Hz). Afterward, the function factoran from Matlab was applied to the matrix with the smoothed 393 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.09.22279611doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.09.22279611


13 
 

discharge rates without any orthogonality constraint. This function uses the maximum likelihood 394 
method to estimate the common factors associated to the observed data (motor units discharge times). 395 
The Pearson correlation between the motor units' discharge rate and the fitted factors was then 396 
calculated. The observed data are assumed to be based on a linear combination of the common factors 397 
that explain most of the data variance. The percentage of the total variance explained by these factors 398 
was also calculated for each task from each subject and later averaged across all subjects for each one 399 
of the tasks.  400 

 401 
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