
Dynamics of SARS-CoV-2 seroassay sensitivity: a systematic
review and modeling study

Nana Owusu‑Boaitey1,#, Timothy W. Russell2, Gideon Meyerowitz‑Katz3, Andrew T. Levin4,5,6,
Daniel Herrera-Esposito7,8,#,*

Author affiliations:
1. Case Western Reserve University School of Medicine, Cleveland, USA
2. Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene
& Tropical Medicine, London, UK
3. University of Wollongong, Wollongong, Australia
4. Dartmouth College, Hanover, USA
5. National Bureau for Economic Research, Cambridge, USA
6. Centre for Economic Policy Research, London, United Kingdom
7. University of Pennsylvania, Philadelphia, PA, USA
8. Universidad de la República, Uruguay

# These authors contributed equally to the work
* Corresponding author: dherresp@sas.upenn.edu

Abstract

Background
Serological surveys have been the gold standard to estimate the numbers of SARS-CoV-2

infections, epidemic dynamics, and disease severity. Serological assays have decaying

sensitivity with time that can bias their results, but there is a lack of guidelines to account for

this phenomenon for SARS-CoV-2.

Aim
Our goal is to assess the sensitivity decay of seroassays for detecting SARS-CoV-2

infections, the dependence of this decay on assay characteristics, and to provide a simple

method to correct for this phenomenon.

Methods
We performed a systematic review and meta-analysis of SARS-CoV-2 serology studies. We

included studies testing previously diagnosed individuals, without any SARS-CoV-2

vaccines, and excluded studies of cohorts highly unrepresentative of the general population

(e.g. hospitalised patients).

Results
Of the 488 screened studies, 76 studies reporting on 50 different seroassays were included

in the analysis. Sensitivity decay depends strongly on the antigen and the analytic technique
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used by the assay, with average sensitivities ranging between 26% and 98% at 6 months

after infection, depending on assay characteristics. We find that a third of the included

assays depart considerably from manufacturer specifications after 6 months.

Conclusions
Seroassay sensitivity decay depends on assay characteristics, and for some types of assays

it can make manufacturer specifications highly unreliable. We provide a tool to correct for

this phenomenon, and to assess the risk of decay for a given assay. Our analysis can guide

the design and interpretation of serosurveys for SARS-CoV-2 and other pathogens, and

quantify systematic biases in the existing serology literature.

Introduction

Throughout the SARS-CoV-2 pandemic, policymakers have been guided by the inferred

number of past infections based on serological assays. Seroassays have been heavily used

to estimate the proportion of individuals that have been infected, the rate of fatal or severe

infections (1–5); population-wide immunity (6–8); and to anticipate the effect of future

infection waves (9,10), among others.

However, antibody levels wane with time after infection (11), reducing the sensitivity of

serological assays for detecting previous infections (12–14). We refer to the decay of assay

sensitivity (in the context of serosurveillance) with time after seroconversion as

seroreversion (by ‘time’, we refer to the time spanned between COVID-19 diagnosis and

serological testing). Seroreversion is a major potential source of bias when estimating

numbers of infections (1,15,16), and because these estimates guide public health policies

such as vaccination programs, it is important to account for this phenomenon.

More broadly, understanding seroreversion in general is important for the management of

other emerging infectious diseases. For this, the study SARS-CoV-2 presents a unique

opportunity. First, an emergent pathogen with distinct symptoms, widespread diagnosis, and

short incubation times allows for precise timing of epidemic waves and infections. Second, in

some cohorts it can be assumed that reinfections are rare (i.e. serosurveys performed after

first epidemic waves). Third, large numbers of serological surveys were performed for

SARS-CoV-2, using a wide range of assays and cohorts. These features of the SARS-CoV-2

pandemic allow for a rich analysis of seroreversion.

Strikingly, there is a lack of general analyses and guidelines to correct for seroreversion in

the SARS-CoV-2 literature, to the best of our knowledge (15,16,19). Time-varying sensitivity

of seroassays has been evaluated in previous studies, but these are limited to few assays or
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short time spans (13,14,20–23). Other studies analysed the change in quantitative antibody

levels (11,13,24–28), which is informative for other uses of serological assays (e.g. studying

immune protection), but not for infection surveys.

Here we perform a systematic review and meta-analysis of serology studies of

COVID-19, to better characterise seroreversion across assays. We collected and curated

time-specific sensitivity estimates from serological studies testing previously diagnosed

COVID-19 patients who had not received COVID-19 vaccines. We analysed 76 of over 400

screened studies, encompassing 50 seroassays, 290 data points, and 44992 tests.

We present time-varying sensitivity estimates for the assays included in the analysis,

and also the dependence of seroreversion on assay characteristics. Our results can also be

used to approximate the seroreversion of seroassays not included in our sample. Finally, we

compare time-varying sensitivities to manufacturer reported sensitivities, and estimate the

risk of seroreversion bias in the literature, providing an overview of how seroreversion

impacted the performance of emergency-approved seroassays during the SARS-CoV-2

pandemic.

Methods

Literature search

We performed a systematic literature review of seroprevalence studies including studies

identified up to July 13, 2022 using search parameters detailed in a prior publication (29).

We supplemented this analysis with a search on Medrxiv, Biorxiv, PubMed, SSRN,

and Google Scholar, on June 30, 2021 using the key “COVID-19 longitudinal, antibody

waning” and on February 15, 2022 using the key “COVID-19 seroreversion”. Additional

studies were taken from a prior review (30). If a study cited prior publications assessing

seroreversion in the same research cohort, we included those prior publications.

Inclusion and exclusion criteria for studies to be included in the analysis are listed in

Supplementary A. The results of the systematic search are summarised in Figure 1.

Broadly, we excluded studies reporting on vaccinated individuals, on highly unrepresentative

groups. Details of the included study cohorts (e.g. age, sex) are shown in Table S2 and

further discussed in Supplementary A. Most cohorts (90%) were serologically tested during

2020, indicating that reinfection incidence is likely low in the analysed data (31), and that

infections mainly correspond to the original SARS-CoV-2 variant (32). A list of the included

studies and search details is presented in the GitHub repository associated with the project.
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Figure 1. Prisma flow diagram. Flow diagram of the considered studies, showing excluded and
included studies.

Assay characteristics analysed

Serological assays have different characteristics. We considered only some assay

characteristics to keep model complexity low. We did not consider antibody isotype because

IgG is used in all assays, and preliminary did not show effects for including other isotypes

(data not shown). We considered whether the assay is quantitative or a lateral flow assay

(LFA). We did not consider the specific type of quantitative readout technique, guided by

preliminary analyses (data not shown). We considered all 3 antigens: nucleocapsid, spike

protein, and S1-receptor binding protein (RBD). We considered 3 different types of antibody

binding in quantitative assays: indirect, competitive and direct (the latter also called

double-antigen sandwich assays in the literature).

Statistical model

We fitted a hierarchical logistic regression Bayesian model to the data. For a given cohort of

N serologically tested individuals in a study (all which have a previous COVID-19 diagnosis),

we model the likelihood of the number of positive results , with a binomial distribution with𝑥

sensitivity θ:
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(1)𝑃 𝑥|θ( ) ∝ θ𝑥 1 − θ( )𝑁−𝑥

Each cohort of N individuals tested in a study is associated with a time of testing t (i.e. the

average time spanned between COVID-19 diagnosis and serological testing for this cohort).

Throughout the text, we refer to a cohort of individuals tested in a given study s, at a given

time t, with an assay a, as a data point (e.g. a cohort tested across different times

corresponds to multiple data points). We model the sensitivity of data point θa,s,t (assay a,

time t, study s) with the logit function:

(2)𝑙𝑜𝑔
θ

𝑎,𝑠,𝑡

1−θ
𝑎,𝑠,𝑡

( ) = µ + 𝑢
𝑎

+ 𝑢
𝑠( ) + β + 𝑏

𝑎( ) × 𝑡 

Where μ is the mean intercept, ua and us are the random effects on the intercept of assay and

study, β is the mean time-slope, and ba is the random effect of assay on the slope. We set flat

priors for μ and β. We set gamma priors with shape and rate parameters of 4 for the standard

deviations σua, σus and σba of the random effects.

To study the effect of assay characteristics, we modify equation (2) to include their

effects on the slope:

𝑙𝑜𝑔
θ

𝑎,𝑠,𝑡

1−θ
𝑎,𝑠,𝑡

( ) = µ + 𝑢
𝑎

+ 𝑢
𝑠( ) +

β
𝐿𝐹𝐴

𝐿
𝑎

+ β
𝐷𝑖𝑟𝑒𝑐𝑡

𝐷
𝑎

+ β
𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒

𝐶
𝑎

+ β
𝑁𝑢𝑐𝑙𝑒𝑜𝑐𝑎𝑝𝑠𝑖𝑑

𝑁
𝑎

+ β
𝑆𝑝𝑖𝑘𝑒

𝑆
𝑎

+ β
𝑅𝐵𝐷

𝑅𝐵𝐷
𝑎

+ 𝑏
𝑎( ) × 𝑡

Parameters βLFA, βDirect and βCompetitive are the effects on the time slope of using,

respectively, LFA, Quantitative-Direct, or Quantitative-Competitive assay designs. Variables

La, Da and Ca take values of 0 or 1 to indicate whether assay a uses that design. We do not

include an effect for the Quantitative-Indirect design, making it the baseline slope (thus, the

parameters above indicate a difference relative to this design). Similarly, βNucleocapsid, βSpike and

βRBD are the effects of the antigen used on the time slope.

We fitted the models using STAN (33), with 4 chains with 4000 draws each (1000

warmup) and default parameters.

We tested the model fits using a cross-validation analysis, leaving out data points

from model fitting and obtaining sensitivity predictions for the left-out data. We repeated this

procedure to obtain an estimate for every data point. We used a tailored procedure that

required that every prediction involved extrapolation of the model through time (details in

Supplementary B).

Estimation of testing times

When studies did not report the median time between diagnosis and serological testing for

their cohort, we estimated these times using reported case curves for the study’s location

(see details in Supplementary A).
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Data and code availability

All the data, code, literature pointers and review comments are available at the associated

GitHub page https://github.com/dherrera1911/seroreversion_metaanalysis.

Results

Assay variability in seroreversion

First, we fitted a model without considering assay characteristics. In Figure 2 we see the

slope of sensitivity decay obtained for each assay (the corresponding sensitivity-time curves

are shown in Figure S1). Estimated slopes were highly variable across assays (random

effects of the assay were σua=0.26 (95%CrI: 0.19; 0.36) for the intercept and σba=0.66

(95%CrI: 0.31; 1.04) for the slope). Interestingly, although most assays had decreasing

sensitivity as expected (negative slopes), some assays had increasing sensitivities (positive

slopes, shaded region in Figure 2). The positive slopes are not due to a lower starting

sensitivity, or an initial increase followed by a decay (Figure S2 shows that both early and

late changes in sensitivity are increasing). Because reinfection incidence is likely low in our

data, it is unlikely that these results reflect infections. There was also considerable variability

in the intercepts between different studies using a same assay, with a standard deviation of

σus=0.81 (95%CrI: 0.67; 0.97) (larger than the between-assay standard deviation), outlining

the importance of this source of variability.

We note that while some assays had many data points spanning several months,

other assays only had a few time points (several assays with only a few data points can be

seen in Figure S1). For the latter, our models sensitivity estimates involve extrapolation of

sensitivity across time. We tested our model’s performance at extrapolation using a

cross-validation procedure specifically designed for this (method details in Supplementary
B). We found that the 95% credible intervals (CrI) contained the validation data 91.7% of the

time. For assays with fewer than 9 data points (which comprise 99 of the 286 data points),

95.1% of the data points were within the cross validation CrI.
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Figure 2. Assay slopes estimated without assay characteristics. Points show the mean

of the posterior distribution of the slope for each assay, and horizontal bars show the 95%

CrI. The slopes were obtained from the model that does not include effects of assay

characteristics, but colour and point shape indicate the characteristics of the assays. The

blue rectangle marks assays with slopes significantly greater than 0.

Assay characteristics determine seroreversion

Next, we analysed the relation between assay characteristics and sensitivity decay. We fitted

a model with effects of different assay characteristics on the assay-specific slope. We

included terms for each of the 3 antigens (nucleocapsid, spike, and RBD), and for 3 different

assay designs (LFA, Quantitative-Direct, Quantitative-Competitive), leaving the fourth assay

design (Quantitative-Indirect) as the baseline slope.
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Both the analytic technique and the antigen show important effects on seroreversion

(Figure 3, Table 1). The slope term for LFA assays was negative βLFA=-0.23 (95%CrI:

-0.40;-0.07), and βLFA<0 in 99.6% of the posterior samples, indicating that their sensitivity

decays faster than Quantitative-Indirect assays. The slope term for Quantitative-Direct

assays had a value of βDirect=0.31 (95%CrI: 0.15;0.48), and βDirect>0 in 99.9% of the posterior

samples, indicating that they decay more slowly. The term for Quantitative-Competitive

assays had a value of βCompetitive=-0.03 (95%CrI: -0.25;0.20), and βCompetitive>0 in 40.1% of the

posterior samples, showing no clear difference with the Quantitative-Indirect assays (which

may be due to the small number of assays in the Quantitative-Competitive group).

Differences between analytic techniques can be appreciated by comparing the different

columns of Figure 3.

Figure 3. Sensitivity profiles for different assay characteristics. The sensitivity profile

across time for each kind of assay is shown in a different panel. Rows indicate the targeted

antigen (labelled on the left), and columns indicate the analytic technique (labelled on top).

For example, the panel in the second row and second column shows assays that target the

spike protein (second row label), and that use a Quantitative-Indirect design (second column
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label). The red lines show the mean sensitivity for each kind of assay. Shaded regions show

the 95% CrI of the mean sensitivity of the group (i.e. not accounting for variability between

assays). Black lines show the fits for individual assays. Grey dots show the data, with size

proportional to the square root of sample size. Empty panels indicate that no assays with

those characteristics were found for the analysis.

Table 1. Estimated sensitivities (in %) at each time after diagnosis, for each type of assay

fitted in the analysis. Each row corresponds to a different type of test, with characteristics

indicated in the first 3 columns. Parenthesis show the 95% CrI for each estimate. These

estimates do not include the between-assay or between-study variability in their credible

intervals. These sensitivities correspond to the red traces and shaded regions in Figure 3.

Month

Assay type

LFA LFA LFA Q-Indirect Q-Indirect Q-Indirect Q-Direct Q-Direct
Q-Competit

ive

N S RBD N S RBD N RBD RBD

1 84 (79-89) 87 (83-91) 88 (84-91) 87 (83-91) 89 (86-92) 90 (87-93) 90 (87-93) 93 (90-95) 90 (86-93)

2 75 (66-83) 83 (76-88) 85 (78-91) 83 (77-88) 88 (84-92) 90 (87-93) 90 (85-94) 95 (92-96) 90 (85-93)

3 64 (49-76) 78 (67-86) 82 (71-90) 78 (69-85) 87 (82-92) 90 (86-94) 90 (84-94) 96 (94-98) 89 (82-94)

4 50 (32-69) 71 (57-83) 78 (61-89) 72 (60-82) 86 (80-91) 90 (84-94) 90 (82-95) 97 (95-98) 89 (80-95)

5 37 (19-60) 64 (45-80) 73 (51-89) 65 (50-78) 85 (77-91) 90 (83-95) 89 (80-95) 98 (96-99) 88 (76-95)

6 26 (10-50) 57 (34-77) 69 (40-89) 57 (39-74) 84 (73-91) 90 (81-95) 89 (77-96) 98 (96-99) 88 (73-96)

7 18 (5-41) 49 (24-73) 63 (31-88) 49 (30-70) 82 (70-92) 90 (79-96) 89 (74-97)
99

(97-100) 87 (69-97)

8 12 (2-32) 42 (17-69) 58 (22-88) 42 (22-65) 81 (65-92) 89 (77-96) 88 (71-97)
99

(97-100) 86 (64-97)

9 8 (1-24) 35 (11-65) 53 (16-88) 35 (15-60) 79 (61-92) 89 (75-97) 88 (68-97)
99

(98-100) 86 (59-97)

10 5 (1-18) 29 (7-61) 48 (11-87) 29 (10-55) 77 (56-92) 89 (72-97) 87 (64-98)
99

(98-100) 85 (54-98)

11 3 (0-13) 24 (5-57) 44 (7-87) 23 (7-50) 76 (51-92) 89 (69-98) 87 (60-98)
100

(98-100) 84 (49-98)

12 2 (0-9) 19 (3-53) 40 (5-86) 18 (5-45) 74 (46-92) 88 (67-98) 86 (56-98)
100

(99-100) 83 (44-98)

13 1 (0-6) 16 (2-48) 36 (3-86) 15 (3-40) 72 (42-92) 88 (64-98) 86 (52-99)
100

(99-100) 82 (40-99)
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On the antigen effect, nucleocapsid targeting assays showed faster seroreversion

than spike protein (βNucleocapsid<βSpike in 99.7% of the posterior samples). Assays targeting

RBD had on average slower seroreversion than spike protein, although the effect was not

statistically significant (βSpike<βRBD in 87.3% of the samples). Differences between antigens

can be appreciated by comparing the different rows of Figure 3.

To see how the different slopes translate to differences in sensitivity, the reader can

compare the sensitivities of the different types of assays for a given month in Table 1. Note

that there is considerable variability between different assays of the same type (i.e. between

the black lines within a same panel). We provide assay-specific sensitivity profiles in Table
S2. When estimating the extent of seroreversion for a given survey, assay-specific sensitivity

estimates should be preferred over the coarser estimates provided for assay types.

Interestingly, we find that one type of assay, the Quantitative-Direct assays targeting

RBD-binding antibodies (which contain the 3 assays with statistically significant positive

slopes from Figure 2) has an average positive slope in 99.9% of the posterior samples. This

is in line with previous studies reporting assays of this type to have increasing sensitivity

across time, attributing this effect to prolonged antibody maturation (13,14).

All these results were robust to fitting each assay characteristic separately (Figures
S3, S4), and to excluding data points with estimated times from the model fit (Figures S5,
S6). The full model had cross-validation accuracy similar to the original model, with data

points falling in the 95% CrI of their predictions 92.0% of the time, credible intervals were

narrower (more precise) in 81% of the data points.

Finally, we tested whether specificity is also related to assay characteristics. Since

specificity does not have temporal dynamics, we only analysed point estimates (see the

details of the model in Supplementary G). Similar to sensitivity, we found that LFA assays

have on average smaller specificities than quantitative assays (βLFA<0 in 98.4% of the

posterior samples). Unlike sensitivity, we did not find significant differences with quantitative

assays (e.g. βDirect>0 in 85.0% of the posterior samples), or between antigens (e.g. βRBD>βN in

67.2% of the posterior samples). Differences in specificity between types of assays were of

epidemiologically relevant magnitude (e.g. average specificity of 99.9% (95%CrI:

99.7%-100%) RBD/Quantitative-Indirect assays, and 98.8% (95%CrI: 96.6%-99.7%) for

nucleocapsid/LFA assays, see all estimates in Table S4). Like for sensitivity, we found

considerable variability between studies reporting on the same assay (σus=0.61, 95%CrI:

0.20-1.14). Specificity data and the resulting fit are shown in Figure S7.
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Manufacturer sensitivities and risk of bias in the literature

Although quantitatively estimating and correcting the seroreversion bias in the

literature is outside the scope of the present work, we can coarsely estimate the risk of

seroreversion across the literature.

First, we compared our estimates to assay sensitivities provided by manufacturers (if

manufacturer values were missing, we used values reported by the FDA, or reported by

authors). We found that 4 months after diagnosis, 20% of the assays have sensitivities below

75% of the originally specified value. At 6 months after diagnosis, 34% of the assays are

below 75%. Thus, a few months after a COVID-19 wave, some serological assays (mostly

LFA and Quantitative-Indirect assays targeting nucleocapsid antibodies) can severely

underestimate previous infections.

Then, we analysed what percentage of serosurveys reported in the literature are at

high risk of bias by seroreversion. As a reference, we used a comprehensive meta-analysis

of the global evolution of SARS-CoV-2 seroprevalence (19), using the publicly available

SeroTracker dataset (35), which notes the lack of seroreversion adjustment as a limitation.

We estimated what percentage of the data points listed in SeroTracker, aligned with the

WHO Unity protocol (i.e. those studies used in (19)), used assays with high rates of

seroreversion (LFA assays, or nucleocapsid Quantitative-Indirect assays). Because

seroreversion depends on the assay used and on the time elapsed between an epidemic

wave and serosurvey, we segregated the data across semesters.

We see in Table 2 that although the use of serological assays at high risk of

seroreversion decreased throughout the pandemic, they still constituted a considerable

fraction of Unity-aligned data points until mid 2021.

Table 2. Number of Unity-aligned seroprevalence data points of the Serotracker dataset (35)

that use assays at high risk of seroreversion, defined as LFA assays or Quantitative-Indirect

assays for nucleocapsid antibodies.

Period of serological
sampling

SeroTracker data points at
high seroreversion risk (total
data points)

Percentage of assays at high
seroreversion risk (%)

01/01/2020 - 30/06/2020 135 (506) 26.9%

01/07/2020 - 31/12/2020 140 (596) 23.4%

01/01/2021 - 30/06/2021 58 (330) 17.5%

01/07/2021 - 31/12/2021 10 (160) 6.3%
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Discussion

Serology based estimates of infections are important to understand COVID-19. Although it is

known that accounting for seroreversion in these estimates is important, there is a lack of

appropriate data and guidelines to do so. Few studies correct for seroreversion

(1,15,16,29,36,37), and the lack of robust assay-specific seroreversion estimates make it

uncertain how accurate existing adjustments are. We present the first large-scale systematic

analysis of seroreversion across dozens of seroassays for SARS-CoV-2, making three major

contributions to help understand and correct for seroreversion.

First, we provide time-varying sensitivity estimates for 50 assays, and estimates of

the average time-varying sensitivity for different assays types. These estimates can then be

used to adjust for seroreversion in the literature. Knowing the assay identity (or its

characteristics), and the time span between the epidemic wave and the serosurvey date at

the tested location (e.g. which can be estimated from case curves), a seroreversion-adjusted

sensitivity estimate can be selected from our results. Using these sensitivity estimates in the

standard Gladen-Rogan formula will produce seroprevalence estimates that are corrected for

seroreversion. Importantly, this procedure showed good performance at predicting assay

sensitivity in a rigorous cross-validation analysis.

Our second contribution is the quantification of how seroreversion depends on assay

characteristics. We show that seroreversion depends heavily on the antigen and on the

analytical technology. Assays that use LFA technique (qualitative, rapid tests) show faster

sensitivity decay, while quantitative assays with direct antibody binding have the slowest

decay. This is in line with the high sensitivity of direct-binding assays reported for other

pathogens, ascribed to factors such as less sample diluting, or the detection method not

being limited to one class of antibodies (38,39). Then, assays for nucleocapsid-targeting

antibodies tend to decay faster than assays for spike protein antibodies, while assays

targeting S1-RBD antibodies tend to decay more slowly (although this last effect was not

significant at the 95% level).

The striking differences between types of assays (e.g. average sensitivity at 6 months

of 98% for S1-RBD-targeting Quantitative-Direct, against 26% for nucleocapsid LFA assays)

outlines the need for assay-specific corrections. For example two seroreversion-adjusted

analyses of the infection fatality-rate of SARS-CoV-2 use a single seroreversion estimate (5%

monthly decrease (37), and 190 days half-life (1)) are appropriate for some assays, but can

both considerably overestimate and underestimate seroreversion for other assays. These

results are in line with previous reports in the literature (13–15,22), although previous studies
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analysed fewer characteristics in general, and did not quantify their effects. Our analysis also

showed that specificity also depends on assay characteristics.

These results will allow researchers to assess the risk of seroreversion bias in

serosurveys, providing a valuable tool for the design of serological studies. For example, our

results suggest that the strategy of comparing S1-RBD and nucleocapsid antibody

prevalences to distinguish vaccine and infection induced population immunity (10,19,40) can

be affected by the different seroreversion rates of these assays.

Our third contribution is showing that a few months after diagnosis, manufacturer

specifications can be highly unreliable for a considerable fraction of emergency approved

assays. Relatedly, we show that a sizable fraction of Unity-aligned serosurveys used in

recent WHO estimates of global seroprevalence dynamics (19) are at risk of seroreversion

bias. This underscores the potential of decaying sensitivity to bias our epidemiological

understanding of COVID-19, and a potential interest of public health policy makers in

ensuring that assay manufacturers and regulatory organisms provide information and

guidelines regarding seroreversion (41). The sensitivity estimates presented here should

provide a straightforward way to correct for seroreversion in such datasets, and to

quantificate literature bias.

To our knowledge, this is the most comprehensive analysis, for any pathogen, of

assay-specific serological sensitivity decay and its dependence on assay characteristics.

This is because some characteristics of the SARS-CoV-2 pandemic have allowed for a richer

seroreversion dataset than is probably possible for any other pathogen (i.e. well

approximated infection to testing times, multiple seroassays, multiple studies per seroassay,

first exposures to a novel pathogen). Thus, many of the conclusions extracted from this

analysis may serve as a guide for other emerging and endemic pathogens.

Our study has some limitations. First, although we included more assays than

previous studies, many of the included assays counted with data for only a few time points.

Second, we were unable to test the effects of important parameters such as the age or the

disease severity on seroreversion (13,14,27,42). Relatedly, although an ideal dataset would

use a well defined cohort, representative of the general population, with known age, sex

ratio, disease severity, infecting variant, and occurrence of reinfections, the available

literature falls short of this ideal. This has the potential to introduce variability and biases in

our estimates. We note, however, that our modelling framework is flexible, and could be

extended to account for these variables, given appropriate data. Third, as we analysed test

data conditional on individuals having a previous COVID-19 diagnosis, it is likely that

asymptomatic individuals are underrepresented in our sample. Fourth, because our analysis

included only data points on non-vaccinated individuals, and most of the included data points

were sampled in 2020 where variants of concern and reinfections were uncommon, it is
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unclear how our results would extrapolate to antibodies induced by vaccines, reinfections, or

new variants of the virus.

Conclusion
Accounting for seroreversion in serology-based estimates of infection numbers is

important for understanding the COVID-19 pandemic, and for the usefulness of the continued

use of serological testing to monitor the effects of COVID-19. Rapid LFA tests as well as

Quantitative-Indirect tests for nucleocapsid targeting antibodies have a high potential for

seroreversion, and Quantitative-Direct assays are likely to be preferred for long term

serological surveillance. A considerable number of studies in the literature use assays with

high risk of seroreversion, indicating some important potential for bias. We present a simple

method for researchers to account for seroreversion when analysing serological data and

when designing serological studies. This may be of interest to the management of other

pathogens, and serosurveillance more in general, because of the unique opportunity to study

the effects of seroreversion provided by the data generated during the COVID-19 pandemic.

Funding and competing interests
No specific funding or grant was used for this study. Authors declare no competing interests.

Ethics statement
This study exclusively used publicly available aggregate data sets and published research,

and hence no ethics approval was required.

References

1. Brazeau NF, Verity R, Jenks S, Fu H, Whittaker C, Winskill P, et al. Estimating the

COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling.

Commun Med. 2022 May 19;2(1):1–13.

2. Herrera-Esposito D, de los Campos G. Age-specific rate of severe and critical

SARS-CoV-2 infections estimated with multi-country seroprevalence studies. BMC Infect

Dis. 2022 Mar 29;22(1):311.

3. Ioannidis JPA. Reconciling estimates of global spread and infection fatality rates of

COVID‐19: An overview of systematic evaluations. Eur J Clin Invest [Internet]. 2021 May

[cited 2021 Jul 25];51(5). Available from:

https://onlinelibrary.wiley.com/doi/10.1111/eci.13554

4. Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G.

14

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2023. ; https://doi.org/10.1101/2022.09.08.22279731doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.08.22279731
http://creativecommons.org/licenses/by/4.0/


Assessing the age specificity of infection fatality rates for COVID-19: systematic review,

meta-analysis, and public policy implications. Eur J Epidemiol. 2020 Dec

1;35(12):1123–38.

5. O’Driscoll M, Dos Santos GR, Wang L, Cummings DAT, Azman AS, Paireau J, et al.

Age-specific mortality and immunity patterns of SARS-CoV-2. Nature [Internet]. 2020

Nov 2 [cited 2020 Nov 5]; Available from:

http://www.nature.com/articles/s41586-020-2918-0

6. Jones JM, Stone M, Sulaeman H, Fink RV, Dave H, Levy ME, et al. Estimated US

Infection- and Vaccine-Induced SARS-CoV-2 Seroprevalence Based on Blood

Donations, July 2020-May 2021. JAMA. 2021 Oct 12;326(14):1400–9.

7. Madhi SA, Kwatra G, Myers JE, Jassat W, Dhar N, Mukendi CK, et al. Population

Immunity and Covid-19 Severity with Omicron Variant in South Africa. N Engl J Med.

2022 Apr 7;386(14):1314–26.

8. Santos-Hövener C, Neuhauser HK, Rosario AS, Busch M, Schlaud M, Hoffmann R, et al.

Serology- and PCR-based cumulative incidence of SARS-CoV-2 infection in adults in a

successfully contained early hotspot (CoMoLo study), Germany, May to June 2020.

Eurosurveillance. 2020 Nov 26;25(47):2001752.

9. Chapman LAC, Barnard RC, Russell TW, Abbott S, Zandvoort K van, Davies NG, et al.

Unexposed populations and potential COVID-19 hospitalisations and deaths in

European countries as per data up to 21 November 2021. Eurosurveillance. 2022 Jan

6;27(1):2101038.

10. Duarte N, Yanes-Lane M, Arora RK, Bobrovitz N, Liu M, Bego MG, et al. Adapting

Serosurveys for the SARS-CoV-2 Vaccine Era. Open Forum Infect Dis. 2022 Feb

1;9(2):ofab632.

11. Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, et al. Evolution of

antibody immunity to SARS-CoV-2. Nature. 2021 Mar;591(7851):639–44.

12. Choe PG, Kim KH, Kang CK, Suh HJ, Kang E, Lee SY, et al. Antibody Responses 8

Months after Asymptomatic or Mild SARS-CoV-2 Infection. Emerg Infect Dis. 2021

Mar;27(3):928–31.

13. Peluso MJ, Takahashi S, Hakim J, Kelly JD, Torres L, Iyer NS, et al. SARS-CoV-2

antibody magnitude and detectability are driven by disease severity, timing, and assay.

Sci Adv. 2021 Jul 30;7(31):eabh3409.

14. Scheiblauer H, Nübling CM, Wolf T, Khodamoradi Y, Bellinghausen C, Sonntagbauer M,

et al. Antibody response to SARS-CoV-2 for more than one year − kinetics and

persistence of detection are predominantly determined by avidity progression and test

design. J Clin Virol. 2022 Jan 1;146:105052.

15. Lohse S, Sternjakob-Marthaler A, Lagemann P, Schöpe J, Rissland J, Seiwert N, et al.

15

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2023. ; https://doi.org/10.1101/2022.09.08.22279731doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.08.22279731
http://creativecommons.org/licenses/by/4.0/


German federal-state-wide seroprevalence study of 1st SARS-CoV-2 pandemic wave

shows importance of long-term antibody test performance. Commun Med. 2022 May

18;2(1):1–12.

16. Shioda K, Lau MSY, Kraay ANM, Nelson KN, Siegler AJ, Sullivan PS, et al. Estimating

the Cumulative Incidence of SARS-CoV-2 Infection and the Infection Fatality Ratio in

Light of Waning Antibodies. Epidemiology. 2021 Jul;32(4):518–24.

17. MacNeil A, Abel J, Reynolds MG, Lash R, Fonnie R, Kanneh LD, et al. Serologic

evidence of human orthopoxvirus infections in Sierra Leone. BMC Res Notes. 2011 Oct

28;4(1):465.

18. Reynolds MG, Lederman ER, Karem K, Mombouli JV, Moundeli O, Regnery R, et al.

Prevalence of Antibodies against Orthopoxviruses among Residents of Likouala Region,

Republic of Congo: Evidence for Monkeypox Virus Exposure. Am J Trop Med Hyg. 2007

Dec 1;77(6):1150–6.

19. Bergeri I, Whelan MG, Ware H, Subissi L, Nardone A, Lewis HC, et al. Global

SARS-CoV-2 seroprevalence from January 2020 to April 2022: A systematic review and

meta-analysis of standardized population-based studies. PLOS Med. 2022 Nov

10;19(11):e1004107.

20. Bond KA, Williams E, Nicholson S, Lim S, Johnson D, Cox B, et al. Longitudinal

evaluation of laboratory-based serological assays for SARS-CoV-2 antibody detection.

Pathology (Phila). 2021 Oct 1;53(6):773–9.

21. Flower B, Brown JC, Simmons B, Moshe M, Frise R, Penn R, et al. Clinical and

laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19

seroprevalence survey. Thorax. 2020 Dec;75(12):1082–8.

22. McCance K, Wise H, Simpson J, Batchelor B, Hale H, McDonald L, et al. Evaluation of

SARS-CoV-2 antibody point of care devices in the laboratory and clinical setting. PLOS

ONE. 2022 Mar 31;17(3):e0266086.

23. Perez-Saez J, Zaballa ME, Yerly S, Andrey DO, Meyer B, Eckerle I, et al. Persistence of

anti-SARS-CoV-2 antibodies: immunoassay heterogeneity and implications for

serosurveillance. Clin Microbiol Infect. 2021 Nov 1;27(11):1695.e7-1695.e12.

24. Chia WN, Zhu F, Ong SWX, Young BE, Fong SW, Le Bert N, et al. Dynamics of

SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal

study. Lancet Microbe. 2021 Jun 1;2(6):e240–9.

25. Di Germanio C, Simmons G, Kelly K, Martinelli R, Darst O, Azimpouran M, et al.

SARS-CoV-2 antibody persistence in COVID-19 convalescent plasma donors:

Dependency on assay format and applicability to serosurveillance. Transfusion (Paris).

2021;61(9):2677–87.

26. He Z, Ren L, Yang J, Guo L, Feng L, Ma C, et al. Seroprevalence and humoral immune

16

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2023. ; https://doi.org/10.1101/2022.09.08.22279731doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.08.22279731
http://creativecommons.org/licenses/by/4.0/


durability of anti-SARS-CoV-2 antibodies in Wuhan, China: a longitudinal,

population-level, cross-sectional study. The Lancet. 2021 Mar 20;397(10279):1075–84.

27. Lumley SF, Wei J, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, et al. The

Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers.

Clin Infect Dis. 2021 Aug 1;73(3):e699–709.

28. Wheatley AK, Juno JA, Wang JJ, Selva KJ, Reynaldi A, Tan HX, et al. Evolution of

immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat Commun. 2021

Feb 19;12(1):1162.

29. Levin AT, Owusu-Boaitey N, Pugh S, Fosdick BK, Zwi AB, Malani A, et al. Assessing the

burden of COVID-19 in developing countries: systematic review, meta-analysis and

public policy implications. BMJ Glob Health. 2022 May 1;7(5):e008477.

30. Fei Y, Xu H, Zhang X, Musa SS, Zhao S, He D. Seroprevalence and infection attack rate

of COVID-19 in Indian cities. Infect Dis Model [Internet]. 2022 Mar 10 [cited 2022 Mar

16]; Available from:

https://www.sciencedirect.com/science/article/pii/S2468042722000094

31. Cromer D, Juno JA, Khoury D, Reynaldi A, Wheatley AK, Kent SJ, et al. Prospects for

durable immune control of SARS-CoV-2 and prevention of reinfection. Nat Rev Immunol.

2021 Jun;21(6):395–404.

32. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated

transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021

Apr 9;372(6538):eabg3055.

33. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: A

Probabilistic Programming Language. J Stat Softw. 2017 Jan 11;76(1):1–32.

34. Guidotti E, Ardia D. COVID-19 Data Hub. J Open Source Softw. 2020 Jul 10;5(51):2376.

35. Arora RK, Joseph A, Wyk JV, Rocco S, Atmaja A, May E, et al. SeroTracker: a global

SARS-CoV-2 seroprevalence dashboard. Lancet Infect Dis. 2021 Apr 1;21(4):e75–6.

36. Karger AB, Brien JD, Christen JM, Dhakal S, Kemp TJ, Klein SL, et al. The Serological

Sciences Network (SeroNet) for COVID-19: Depth and Breadth of Serology Assays and

Plans for Assay Harmonization. mSphere. 2022 Jun 15;0(0):e00193-22.

37. Axfors C, Ioannidis JPA. Infection fatality rate of COVID-19 in community-dwelling elderly

populations. Eur J Epidemiol. 2022 Mar;37(3):235–49.

38. Freitas NEM, Santos EF, Leony LM, Silva ÂAO, Daltro RT, Vasconcelos L de CM, et al.

Double-antigen sandwich ELISA based on chimeric antigens for detection of antibodies

to Trypanosoma cruzi in human sera. PLoS Negl Trop Dis. 2022 Mar 11;16(3):e0010290.

39. Wu FB, Ouyan HQ, Tang XY, Zhou ZX. Double-antigen sandwich time-resolved

immunofluorometric assay for the detection of anti-hepatitis C virus total antibodies with

17

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2023. ; https://doi.org/10.1101/2022.09.08.22279731doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.08.22279731
http://creativecommons.org/licenses/by/4.0/


improved specificity and sensitivity. J Med Microbiol. 2008;57(8):947–53.

40. Stringhini S, Zaballa ME, Pullen N, Perez-Saez J, Mestral C de, Loizeau AJ, et al.

Seroprevalence of anti-SARS-CoV-2 antibodies 6 months into the vaccination campaign

in Geneva, Switzerland, 1 June to 7 July 2021. Eurosurveillance. 2021 Oct

28;26(43):2100830.

41. Theel ES, Slev P, Wheeler S, Couturier MR, Wong SJ, Kadkhoda K. The Role of

Antibody Testing for SARS-CoV-2: Is There One? J Clin Microbiol. 2020 Jul

23;58(8):e00797-20.

42. Pérez-Olmeda M, Saugar JM, Fernández-García A, Pérez-Gómez B, Pollán M, Avellón

A, et al. Evolution of antibodies against SARS-CoV-2 over seven months: Experience of

the nationwide seroprevalence ENE-COVID study in Spain. J Clin Virol. 2022 Apr

1;149:105130.

18

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2023. ; https://doi.org/10.1101/2022.09.08.22279731doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.08.22279731
http://creativecommons.org/licenses/by/4.0/

