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Abstract
Background: Disability progression is a key milestone in the disease

evolution of people with multiple sclerosis (PwMS). Prediction models of
disability progression have not yet reached the level of trust needed to be
adopted in the clinic. A common benchmark to assess model development
in multiple sclerosis is also currently lacking.

Methods: Data of adult PwMS with a follow-up of at least three years
from 146 MS centers, spread over 40 countries and collected by the MSBase
consortium was used. With basic inclusion criteria for quality requirements,
it represents a total of 15, 240 PwMS. External validation was performed
and repeated five times to assess the significance of the results. TRIPOD
guidelines were followed.

Confirmed disability progression after two years was predicted, with a
confirmation window of six months. Only routinely collected variables were
used such as the expended disability status scale, treatment, relapse infor-
mation, and MS course.

To learn the probability of disability progression, state-of-the-art machine
learning models were investigated. The discrimination performance of the
models is evaluated on their area under the receiver operator curve (ROC-
AUC) and under the precision recall curve (AUC-PR), and their calibration
via the Brier score and the expected calibration error.

Findings: A temporal attention model was the best model. It achieved
a ROC-AUC of 0·71 ± 0·01, an AUC-PR of 0·26 ± 0·02, a Brier score of
0·1 ± 0·01 and an expected calibration error of 0·07 ± 0·04. The history of
disability progression is more predictive for future disability progression than
the treatment or relapses.

Interpretation: Good discrimination and calibration performance on an
external validation set is achieved, using only routinely collected variables.
This makes these models ready for a clinical impact study. All our prepro-
cessing and model code is available at https://gitlab.com/edebrouwer/
ms_benchmark, making this task an ideal benchmark for predicting disability
progression in MS.
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1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of the central
nervous system [1]. A recent census estimated more than 2·8 million people
are currently living with MS [2]. It causes a wide variety of symptoms such
as mobility problems, cognitive impairment, pain and fatigue. Importantly,5

the rate of disability progression is highly variable among people with MS
(PwMS) [3]. This heterogeneity makes the personalization of care difficult
and prognostic models are thus of high relevance for medical professionals, as
they could contribute to better individualized treatment decisions. Indeed, a
more aggressive treatment could be prescribed in case of a negative prognosis.10

Moreover, surveys indicate that PwMS are interested in their prognosis [4],
which could help them with planning their lives.

There is a large amount of literature on prognostic MS models [5, 6, 7, 8,
9]. Some prognostic models are or were at some point available as web tools.
However, with the exception of Tintore et al. [9] that focuses on conversion15

to MS, none have been integrated into clinical practice and no clinical impact
studies have been performed [5, 6]. Because MS is a complex chronic disease
that is often treated within a multidisciplinary context, the performance of
a prognostic model studied in isolation from its clinical context gives limited
information on its clinical relevance [10, 11]. Recent systematic reviews have20

highlighted several methodological issues within the current literature [5, 6],
such as the lack of calibration or a possible significant bias in the cohort
selection. Moreover, the investigated data sets are rarely made available.
They furthermore often contain variables that are not routinely collected
within the current clinical workflow (e.g. neurofilament light chain) or are25

not readily available for digital analysis (e.g. MRI).
In this article, we develop and externally validate a model to predict

disability progression after two years for PwMS, using commonly-available
clinical features.

This work was supported by a large project (Flanders AI), with all part-30

ners implementing different models. The best model was a temporal atten-
tion model with continuous temporal embedding.
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Importantly, and in contrast with the available literature on disease pro-
gression models for MS (except for one model to predict relapses [12]), our
data pre-processing pipeline and our models check all the boxes of the TRI-35

POD checklist. Our work therefore provides an important step towards the
integration of artificial intelligence (AI) models in MS care.

2. Materials and Methods

2.1. Data source
In this multi-center international study, we used data of people with40

MS from 146 centers spread over 40 different countries and collected in the
MSBase registry [13] as of September 2020. All data were prospectively col-
lected during routine clinical care predominantly from tertiary MS centres
[14]. The MSBase data set can be requested through MSBase that facilitates
data sharing agreements with each individual center.45

2.2. Inclusion criteria
The inclusion criteria for the initial extraction of the data from MSBase

were at least 12 months of follow-up, aged 18 years or older, deceased or living
and diagnosed with relapsing remitting (RR) MS, secondary progressive (SP)
MS, primary progressive (PP) MS or clinically-isolated syndrome (CIS). This50

initial data set contained a total of 44,886 patients.
In order to ensure data quality, some patients were removed from that

cohort. Exclusion criteria include:
• Visits of the same patient that happened on the same day but had

different expanded disability status scale (EDSS) values were removed.55

All duplicate visits with the same EDSS for the same visit date were
removed (i.e., only one of the visits was retained). Visits from before
1970 were discarded.

• Patients with the CIS MS course at their last visit were discarded. For
those patients the relevant question is whether or not they will progress60

to confirmed MS, which is a different question than the one investigated
in this work.

The complete list of exclusion criteria is available in Supplementary Sec-
tion Appendix D. These criteria resulted in a total number of 40, 827 patients
in the cohort. The details of the cohort construction are represented graph-65

ically in Figure 1.
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2.3. Definition of disability progression
Confirmed disability progression was defined based on the EDSS measure-

ments. EDSS was scored by accredited scorers (Neurostatus certification was
required at each center) and was calculated based on the functional system70

scores.
Because assessing progression requires a baseline EDSS value to compare

with, predictions were made at visit dates where an EDSS measurement was
recorded. In our notation, t0 denotes the time of the visits at which the
prediction is made and the baseline EDSS is thus written as EDSSt=0. Mo-
tivated by the non-linearity of the EDSS, unconfirmed disability progression
(w = 1)1 after two years (t = 2y) is defined as follows [15]:

w =


1 if EDSSt=2y − EDSSt=0 ≥ 1·5 & EDSSt=0 = 0

1 if EDSSt=2y − EDSSt=0 ≥ 1 & 0 < EDSSt=0 ≤ 5·5
1 if EDSSt=2y − EDSSt=0 ≥ 0·5 & EDSSt=0 > 5·5
0 otherwise.

(1)

(2)

EDSSt=2y represent the last recorded EDSS before t = 2 years.
EDSS suffers from inter- and intra-rater variability [16]. The actual state

of the patient also fluctuates, because of e.g. recent relapses from which the
patient could still (partly) recover. We therefore study confirmed disability75

progression (wc) for at least six months. Progression is confirmed if all EDSS
values measured within six months after the progression event and the first
EDSS measurement after two years lead to the same worsening target wu = 1
according to Eq. 1. EDSS measurements within one month after a relapse
are not taken into account for confirming disability progression [15].80

2.4. Definition of clinical episodes
For each patient, all visits can potentially represent a valid EDSS baseline

for a progression episode. More generally, it is possible to divide the available
clinical history of a patient in multiple (potentially overlapping) episodes for
which a disability progression label can be computed. Each episode there-85

fore consists of an observation window, a baseline EDSS (EDSSt=0) and a

1The letter w was chosen because worsening is a shorthand for progression of disability.
wc stands for confirmed worsening.
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confirmation label (wc) as shown on Figure 2. Extracting several episodes
per patient allows to significantly increase the number of data points in the
study.

We define two cohorts of patients, one with a minimum of three EDSS90

measurements, the other with a minimum of six EDSS measurements over
the last three years and three months of the observation window. The final
cohorts resulted in a total of 283,115 valid episodes from 26,246 patients, for
a minimum of three EDSS measurements and 166,172 valid episodes from
15,240 patients, for a minimum of six EDSS measurements.95

Adult (≥ 18y) MSBase patients with at least 12 months of follow-up 𝑛 = 44,886, visits 𝑛 = 655,559

Exclude patients and visits with insufficient data quality.
Excluded: patients 𝑛 = 1233; visits 𝑛 = 133,250

Remaining MSBase patients 𝑛 = 43,653, visits 𝑛 = 522,309

Exclude visits before 1970.
Excluded patients 𝑛 = 0; visits 𝑛 = 12

Remaining MSBase patients 𝑛 = 40,827, visits 𝑛 = 497,586

Select valid samples with at least 3 visits
between t=-3.25 and t=0 years.
Excluded patients 𝑛 = 14,581

Final cohort:
patients 𝑛 = 26,246, samples 𝑛 = 283,115

Exclude patients that are CIS at end of follow-up
Excluded patients 𝑛 = 2,826; visits 𝑛 = 24,711

Remaining MSBase patients 𝑛 = 40,827, visits 𝑛 = 497,598

Select valid samples with at least 6 visits
between t=-3.25 and t=0 years.
Excluded patients 𝑛 = 25,587

Final cohort: 
patients 𝑛 = 15,240, samples 𝑛 = 166,172

Figure 1: Flowchart of patient selection for both at least three and at least six visits in
the last 3.25 years.

2.5. Variables
A set of clinical variables was retained from all available variables and

included in the observation window of each episode. The following static (i.e.,
non-varying over time) variables were selected: birth date, sex, MS onset
date, education status (higher education, no higher education, unknown)100

8
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and the location of the first symptom (i.e., supratentorial, optic pathways,
brainstem or spinal cord).

The following longitudinal variables were also collected in the observation
window (i.e., for times t ≤ 0): EDSS, MS course (RRMS, PPMS, SPMPS,
CIS), relapse occurrence, relapse position (pyramidal tract, brainstem, bowel105

bladder, cerebellum, visual function, sensory), all Kurtzke functional sys-
tem (KFS) scores, Fampridine administration. The disease modifying ther-
apies (DMT) and immunosuppressants were categorized into low-efficacy,
moderate-efficacy and high-efficacy:

• Low-efficacy: Interferons, Teriflunomide, Glatiramer, Azathioprine, Methotrex-110

ate.

• Moderate-efficacy: Fingolimod, Dimethyl-Fumarate, Cladribine, Sipon-
imod, Daclizumab

• High-efficacy: Alemtuzumab, Rituximab, Ocrelizumab, Natalizumab,
Mitoxantrone, Cyclophosphamide.115

Except for Mitoxantrone and Cyclophosphamide, we assumed that only one
DMT was administered at the same time.

MRI variables were not included due to high missingness. Indeed, the
lesion counts were available in less than 1·7% of the clinical episodes. The
variable indicating whether the MRI was normal, abnormal MS typical, or120

abnormal MS atypical was judged as not informative enough.
The above variables were then grouped in three feature sets: static, dy-

namic (summary statistics of the clinical history) and longitudinal [17]. These
represent increasing quantity of information regarding the clinical history of
patients. More details regarding the variables used and the grouping can be125

found in Supplementary Section Appendix H.

2.6. Models
The disability progression was framed as a classification problem. The

following models were used to predict disability progression: a temporal at-
tention model with continuous temporal embeddings [18], a Bayesian neural130

network and a multi-layer perceptron. This work was supported by a large
project (Flanders AI) and those models were selected as the best performing
ones among a larger array of candidate models implemented by the different
partners (see Supplementary Section Appendix G for details). We follow

9
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the TRIPOD guidelines for reporting prognostic models [19]. The checklist135

can be found in Supplementary Figure E.8.
The multi-layer perceptron model is a neural network architecture that

takes as input the static and dynamic features set, represented as a fixed
length vector. The model is composed of five hidden layers of dimension 128.

The Bayesian neural network has a similar architecture as the multi-layer140

perceptron, but provides uncertainty estimates on the weights of the last
hidden layer by incorporating MCdropout [20]. This should confer better
generalization capabilities as well as better calibration.

The temporal attention model relies on a transformer architecture [18].
In contrast to the previous models, this architecture is able to handle the145

longitudinal feature set, as it is able to process the whole clinical time series.
Each visit is encoded as a fixed-length vector along with a mask for missing
features and a continuous temporal embedding. This temporal embedding
allows for arbitrary time differences between measurements, and is therefore
especially suited for clinical time series where irregular sampling is most150

common. The static and the dynamic feature sets were included in the model
as extra temporal features that are repeated over the patient history. Two
temporal attention layers with dimension 128 were used.

2.7. Evaluation
The data set was split into 60% for training, 20% for validation and 20%155

for testing. The validation data was used to optimize the hyperparameters
of the models. Post-hoc calibration methods (Platt scaling [21] and isotonic
regression [22]) were used on the validation set and the performance evalu-
ated on the test set. The test set was not seen during model training and
hyperparameter optimization. To produce a measure of uncertainty of the160

performance of the models, the procedure of splitting the data and training
the models was repeated five times, corresponding to five splits.

As the data set consists of patients from different centers, we split the
data set such that the validation and test sets represent an external valida-
tion. Patients from the same centers were therefore assigned to the same set165

(training, validation or test).
Discrimination was evaluated using the area under the receiving opera-

tor characteristic (ROC-AUC) and the area under the precision recall curve
(AUC-PR). Calibration was evaluated numerically using the Brier score and
the expected calibration error (ECE) with 20 bins. Calibration was evaluated170

visually using reliability diagrams.

10
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Relapses

EDSS

Treatment

Observation window

(a)

Model RiskObservation window

(b)

Figure 2: Problem Setup. (a) For each patient episode, the available data for prediction
consists of the baseline data and the longitudinal clinical data in the observation window.
Disability progression (wc) is assessed based on the difference between the EDSS at time
t = 0 and two years later (t = t2y) as defined in Equation 1. (b) Based on the available
historical clinical data (in the observation time window), we aim at training a model able
to predict the risk p(wc) of disability progression at a two years horizon (t2y).
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3. Results

3.1. Participants
A flowchart of the patient inclusion for the final cohort is shown in Fig-

ure 1. The requirements on data quality and availability led to a final cohort175

of 15,240 and 25,246 for the three and six EDSS measurements criteria re-
spectively. Basic characteristics of the final cohorts are shown in Table 1.

3.2. Model development
The inclusion criteria and pre-processing of the raw data resulted in

283,115 episodes from 26,426 patients in the 3-visits cohort. 11·64% of those180

episodes represent a progression event, hence showing a mild imbalance. We
addressed this imbalance by re-weighing each sample proportionally to its
label occurrence. The code for training the models and the final models are
publicly available and can be found at https://gitlab.com/edebrouwer/
ms_benchmark.185

3.3. Model performance
The performance of the models is reported in Tables 2 to 4. A visual

illustration of the discrimination performance is shown in Figure 3. The
attention-based model reaches a ROC-AUC of 0·71± 0·01 and a AUC under
the precision-recall curve of 0·26±0·02 with a calibration error of 0·07±0·04190

on the external test cohort.
To assess the reliability of those results on specific sub-groups of patients,

we also report the performance for each different MS course at time of predic-
tion (Table 3) and different base EDSS (EDSSt0) (Table 4). The relapsing-
remitting (RR) category shows a performance similar to the full cohort. The195

smaller primary progressive and secondary progressive groups, on the other
hand, suffer from low sample size, resulting in a decreased discrimination
performance. The same effect is to be observed when we segment the per-
formance by disability severity, with the group of higher severity showing a
lower discrimination performance. In the supplementary material, we also200

show a segmentation of the results by the medical center of origin of the
patients (Figure A.5), indicating a higher variability of the results for small
centers.

The calibration of the different models can be assessed from the Brier
score and the expected calibration errors from the results tables. In Figure 4,205

we also show the calibration plot of the longitudinal attention model on the

12
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Variable Cohort 3 EDSS Cohort 6 EDSS
Patients (% female) 26,246 (71·8) 15,240 (72·0)
Age, Yearsa 42·8 (10·8) 41·9 (10·1)
Age at MS onset, yearsa 31·3 (8·9) 30·6 (8·6)
Disease duration, yearsa 11·6 (8·0) 11·4 (7·3)
Education status, % higherc 18·2 (65·1) 16·6 (66·2)
First symptom, none given (%) 13·7 13·0

supratentorial (%) 28·2 30·6
optic pathways (%) 22·6 23·2
brainstem (%) 24·3 25·7
spinal cord (%) 26·4 25·8

MS course / /
CIS (%) 0 0
Relapsing-Remitting (%) 83·5 85·7
Primary Progressive (%) 5·0 4·1
Secondary Progressive (%) 11·5 10·2

EDSSa 3·0 (2·1) 3·1 (2·0)
Annualized relapse rateb 0·82 [0·43, 1·47] 0·86 [0·49, 1·43]
KFS Scores / /

pyramidalb 2 [1, 3] 2 [1, 3]
cerebellarb 0 [0, 2] 0 [0, 2]
brainstemb 0 [0, 1] 0 [0, 1]
sensoryb 1 [0, 2] 1 [0, 2]
sphinctericb 0 [0, 1] 0 [0, 1]
visualb 0 [0, 1] 0 [0, 1]
cerebralb 0 [0, 1] 0 [0, 1]
ambulatoryb 0 [0, 1] 0 [0, 1]

DMT / /
none 23·5 19·0
low-efficacy 51·3 52·0
moderate-efficacy 13·6 14·8
high-efficacy 11·6 14·1
high induction 7·2 7·4

a: mean ± standard deviation
b: median (quartiles)
c: % missing data

Table 1: Summary statistics of the cohort of interest after extraction from MSBase (Ex-
tracted Cohort) and after patient and sample selection (Final Cohort). For all variables
the value at the last recorded visit was used.
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Model ROC-AUC ↑ AUC-PR ↑ Brier ↓ ECE ↓

Ensemble 0·71± 0·01 0·25± 0·02 0·10± 0·01 0·06± 0·05

Attention 0·71± 0·01 0·26± 0·02 0·10± 0·01 0·07± 0·04

Bayesian NN 0·71± 0·01 0·25± 0·01 0·10± 0·01 0·08± 0·04

MLP 0·70± 0·01 0·24± 0·02 0·10± 0·01 0·09± 0·03

Table 2: Summary statistics of the performance measures. Baseline performance are 0·5
for ROC-AUC and 0·11 for AUC − PR. ↑ indicates higher is better. ↓ indicates lower is
better.

Model MSCourse ROC-AUC ↑ AUC-PR ↑ Brier ↓ ECE ↓

Attention PP 0·65± 0·01 0·33± 0·04 0·16± 0·01 0·07± 0·02
Attention RR 0·70± 0·01 0·21± 0·01 0·09± 0·01 0·06± 0·03
Attention SP 0·65± 0·01 0·33± 0·03 0·17± 0·01 0·10± 0·05

Bayesian NN PP 0·66± 0·01 0·34± 0·03 0·16± 0·01 0·09± 0·05
Bayesian NN RR 0·70± 0·01 0·20± 0·01 0·09± 0·01 0·09± 0·03
Bayesian NN SP 0·64± 0·01 0·32± 0·02 0·17± 0·01 0·11± 0·02

MLP PP 0·63± 0·03 0·32± 0·05 0·16± 0·01 0·09± 0·03
MLP RR 0·69± 0·01 0·19± 0·0 0·09± 0·01 0·05± 0·02
MLP SP 0·63± 0·01 0·31± 0·02 0·17± 0·01 0·10± 0·04

Table 3: Results for disability progression prediction per MSCourse, for the best models.
↑ indicates higher is better. ↓ indicates lower is better.

external test cohort. We observe a very good calibration of the predicted
risks in the range between 0 and 0.3, suggesting an excellent reliability of
the predictive model. The calibration curves of other models are given in
the supplementary materials (Figure B.6) along with a segmentation of the210

calibration of the models by clinical subgroups (Figure C.7).

3.4. Feature importance
The importance of the different variables used in our models is inves-

tigated. Table 5 shows the results of a permutation importance test on
the MLP model, by assessing the loss in discrimination performance when215

a variable is shuffled over the test set [24]. Table 5 ranks the features in
decreasing order of importance. The most important variables include the
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Model EDSS ROC-AUC ↑ AUC-PR ↑ Brier ↓ ECE ↓

Attention EDSS ≤ 5·5 0·72± 0·01 0·26± 0·01 0·09± 0·0 0·07± 0·04
Attention EDSS > 5·5 0·65± 0·01 0·27± 0·04 0·15± 0·01 0·07± 0·02

Bayesian NN EDSS ≤ 5·5 0·72± 0·01 0·25± 0·01 0·09± 0·0 0·08± 0·04
Bayesian NN EDSS > 5·5 0·64± 0·02 0·26± 0·03 0·15± 0·01 0·11± 0·03

MLP EDSS ≤ 5·5 0·71± 0·01 0·24± 0·01 0·1± 0·01 0·09± 0·03
MLP EDSS > 5·5 0·63± 0·01 0·26± 0·04 0·15± 0·02 0·09± 0·03

Table 4: Results for disability progression prediction for EDSS ≤ 5·5 and > 5·5. ↑ indicates
higher is better. ↓ indicates lower is better.

baseline EDSS at prediction time, the number of years since 1990 and the
mean EDSS and KFS over the last 3 years.

The baseline EDSS is expected to be important in the prediction, as the220

definition of the progression event directly depends on it (as seen in Eq. 1).
The time since 1990 suggests a change of behavior of the disease over the years
that could be explained by progress in clinical care or enhanced diagnosis of
earlier and milder forms of the disease. Remarkably, the importance of the
previous values of EDSS and KFS demonstrates an added value of considering225

longitudinal data, as already shown in Brouwer et al. [17]. Remarkably, no
variables including DMTs are given any significant importance.

Covariate ROC-AUC AUC-PR Brier ECE
EDSS at 0 0·04± 0·0 0·04± 0·0 −0·0± 0·0 0·07± 0·03
Date reference 0·04± 0·01 0·02± 0·01 −0·0± 0·0 −0·01± 0·03
Mean EDSS last3y 0·02± 0·01 0·02± 0·01 −0·0± 0·0 0·01± 0·03
Mean KFS 1 last3y 0·01± 0·0 0·01± 0·01 −0·0± 0·0 0·02± 0·05
Onset date reference 0·01± 0·01 0·01± 0·0 −0·0± 0·0 0·02± 0·03
MSCOURSE AT VISIT SP 0·01± 0·0 0·01± 0·0 −0·0± 0·0 0·01± 0·02
Mean KFS 2 last3y 0·01± 0·0 0·01± 0·0 −0·0± 0·0 0·02± 0·04
Disease duration at 0 years 0·01± 0·0 0·01± 0·0 −0·0± 0·0 −0·01± 0·03
Std EDSS last3y 0·01± 0·0 0·01± 0·0 −0·0± 0·0 −0·01± 0·02
Mean KFS AMBULATION last3y 0·01± 0·01 0·0± 0·0 −0·0± 0·0 0·01± 0·02
Others < 0·01 < 0·01 < 0·01 < 0·01

Table 5: Features ranked by order of importance for the Dynamic Model. Feature im-
portance is assessed by the average difference in ROC-AUC when the specific feature is
shuffled.
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Figure 3: Visual representation of the discrimination performance: the ROC-AUC curve,
the AUC-PR curve and the distribution of the estimated probability of relapse per group
obtained with the temporal transformer model.

4. Discussion

The models investigated in this study provide a significant advance to-
wards deploying AI in clinical practice in MS. After validation of the results230

in a clinical impact study, they have the potential to let the MS field benefit
from the advantages of advanced predictive modelling capabilities.

Our work confirms that predicting disability progression of MS patients
is feasible. Importantly, it can be achieved with variables that are collected
as part of routine clinical care. Despite MS progression being inherently235

stochastic, we show that relevant historical clinical data can lead to high
discrimination performance combined with a good calibration (Figure 4),
which is crucial in healthcare applications. This points towards a readiness
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Figure 4: Calibration diagram for the Attention model for the first data split. The
val.prob.ci.2 function [23] was used.

of this model to be tested in a clinical impact study. Our external validation
procedure ensures generalizability within centers participating in MSBase, as240

it allows to estimate inter-center variation of the performance.
However, the models also suffer from limitations. First of all, several

countries with good quality MS registries were not included because they
are not part of the MSBase initiative. Since treatment decisions can be
country specific to a significant degree [25], it can result in a difference of245

performance of the proposed models on countries not included in this data
set. Yet, a clinical impact study in MS centers participating in MS Base
would not suffer from such external validity problems.

Second, our inclusion criteria require patients with good follow-up (at
least one yearly visit with EDSS measurement), so stable patients that do250

not visit regularly cannot benefit from this model. Importantly, because
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we rely on at least three years of historical clinical data, our model cannot
be applied for patients who got recently diagnosed with MS. This task for
newly-diagnosed patients would require the design of a dedicated model.

Third, the progression target that we defined in this work cannot real-255

istically fully capture the complexity of the disease and progression in MS
cannot be summarized by EDSS only. Despite its imperfections, this metric
has been proven clinically useful, striking a good balance between abstrac-
tion and expressiveness. Our work therefore builds upon those concepts and
inherits their flaws and advantages.260

Despite these imperfections, our models could potentially help patients in
the planning of their lives and provide a baseline for further research. An em-
phasis on reproducibility was made, in an attempt to provide a strong bench-
mark for this important task. Thanks to the excellent clinically-informed
pre-processing pipeline, researchers can easily extend the current models or265

propose their own, to continuously improve disease progression prediction.
Extensions to our method could include treatment recommendation or inclu-
sion of other biomarkers available in a specific center.

5. Conclusion

In this work, we developed and externally validated machine learning270

models for predicting disability progression of people with MS. The perfor-
mance achieved by these models, along with the availability of the predictors
they rely on, implies that a clinical impact study is feasible. Such an im-
pact study would provide important information regarding how patients use
such model predictions, and how medical professionals interact and use such275

predictions.
Our clinically-informed data processing pipeline and task definition allow

the machine learning community to contribute meaningfully in improving
such prediction models.

Data Sharing280

The data set used in this study is available upon request to the MSBase
principal investigators included in the study. MSBase operates as a single
point of contact to facilitate the data sharing agreements with the individual
data custodians.
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Appendix A. Per-center validation

On Figure A.5, we plot the ROC-AUC of individual centers in the test
set against the size of the center. We observe that as the size of the centers445

grow, the performance converges to the average ROC-AUC. As the size of
centers shrinks, the variability in performance increases, which is statistically
expected due to low sampled size.
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Figure A.5: AUROC scores per center, example from paper. Centers with no progression
are not plotted (because AUC not defined)

Appendix B. Calibration curves

On Figure B.6, we show the calibration curves of the different models450

on the test set (fold (e.g. train-test split) 0). Calibration was performed
using Platt scaling [21]. We observe good calibration for all models. The
discrepancy with the ideal line (dotted) in the larger scores regime can be

24

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.09.08.22279617doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.08.22279617
http://creativecommons.org/licenses/by/4.0/


explained by the lowest number of data points in that region, leading to more
variance.455
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Figure B.6: Calibration diagram for all models. For the 1st data split.

Appendix C. Calibration per clinical group

In Figure C.7, we show the prevalence of progression within different clin-
ical subgroups of patients (Observed proportion) and the average probability
of progression in the subgroup as given by the different models. We observe
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an acceptable discrepancy (of maximum 3 points), and a tendency of the460

models to underestimate the prevalence of disability progression.
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Figure C.7: Predicted percentage of worsening per subgroup, for both MS Courses and
EDSS larger or smaller than 5.5. (In this figure green is the actual prevalence for the age
groups on the x-axis, and red and purple are model predictions. For us this would be MS
course and high or low EDSS). This is a way to assess calibration performance for different
subgroups.

Appendix D. Exclusion criteria

• Patients whose diagnosis date or age at first symptoms (i.e., MS onset
date) was missing or with invalid formatting were removed.

• Patient whose MS course or sex was not available were removed.465

• Patients whose date of MS diagnosis, birth, MS onset, start of progres-
sion, clinic entry or first relapse was higher than the extraction date
were discarded.
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• All visits whose visit date had an invalid format or was after the ex-
traction date were discarded.470

• Visits of the same patient that happened on the same day but had
different expanded disability status scale (EDSS) values were removed.
All duplicate visits with the same EDSS for the same visit date were
removed (i.e., only one of the visits was retained). Visits from before
1970 were discarded.475

• Patients with the CIS MS course at their last visit were discarded. For
those patients the relevant question is whether or not they will progress
to confirmed MS, which is a different question than the one investigated
in this work.

Appendix E. Tripod checklist480

The design of the algorithms carefully followed the TRIPOD checklist as
shown on Figure E.8. All points are checked or are deemed not applicable in
our study. This consists of the following :

• 6b. Report any actions to blind assessment of the outcome to be pre-
dicted.485

• 11. Provide details on how risk groups were created, if done. No risk
groups were identified in this study.

• 14b. This can only be done for statistical models. However, we report
measures of variables importance in section 3.4.

• 17. Model updating. The models proposed here are not updates of490

previous iterations but rather their first development.

Note also that no sample size calculations were performed; the size of this
retrospective data set was fixed.

Appendix F. Full comparison with other machine-learning models

In this section, we report more detailed performance results of the pro-495

posed models along with other machine-learning architecture that were con-
sidered. More information about all considered architectures is to be found
in Appendix G.
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TRIPOD Checklist: Prediction Model Development and Validation 

Section/Topic Item  Checklist Item Page 

Title and abstract 

Title 1 D;V 
Identify the study as developing and/or validating a multivariable prediction model, the 
target population, and the outcome to be predicted. 

OK 

Abstract 2 D;V 
Provide a summary of objectives, study design, setting, participants, sample size, 
predictors, outcome, statistical analysis, results, and conclusions. 

OK 

Introduction 

Background 
and objectives 

3a D;V 
Explain the medical context (including whether diagnostic or prognostic) and rationale 
for developing or validating the multivariable prediction model, including references to 
existing models. 

OK 

3b D;V 
Specify the objectives, including whether the study describes the development or 
validation of the model or both. 

OK 

Methods 

Source of data 

4a D;V 
Describe the study design or source of data (e.g., randomized trial, cohort, or registry 
data), separately for the development and validation data sets, if applicable. 

OK 

4b D;V 
Specify the key study dates, including start of accrual; end of accrual; and, if applicable, 
end of follow-up.  

OK 

Participants 

5a D;V 
Specify key elements of the study setting (e.g., primary care, secondary care, general 
population) including number and location of centres. 

OK 

5b D;V Describe eligibility criteria for participants.  OK 

5c D;V Give details of treatments received, if relevant.  OK 

Outcome 
6a D;V 

Clearly define the outcome that is predicted by the prediction model, including how and 
when assessed.  

OK 

6b D;V Report any actions to blind assessment of the outcome to be predicted.  NA 

Predictors 

7a D;V 
Clearly define all predictors used in developing or validating the multivariable prediction 
model, including how and when they were measured. 

OK 

7b D;V 
Report any actions to blind assessment of predictors for the outcome and other 
predictors.  

NA 

Sample size 8 D;V Explain how the study size was arrived at. OK 

Missing data 9 D;V 
Describe how missing data were handled (e.g., complete-case analysis, single 
imputation, multiple imputation) with details of any imputation method.  

OK 

Statistical 
analysis 
methods 

10a D Describe how predictors were handled in the analyses.  OK 

10b D 
Specify type of model, all model-building procedures (including any predictor selection), 
and method for internal validation. 

OK 

10c V For validation, describe how the predictions were calculated.  OK 

10d D;V 
Specify all measures used to assess model performance and, if relevant, to compare 
multiple models.  

OK 

10e V Describe any model updating (e.g., recalibration) arising from the validation, if done. OK 

Risk groups 11 D;V Provide details on how risk groups were created, if done.  NA 

Development 
vs. validation 

12 V 
For validation, identify any differences from the development data in setting, eligibility 
criteria, outcome, and predictors.  

OK 

Results 

Participants 

13a D;V 
Describe the flow of participants through the study, including the number of participants 
with and without the outcome and, if applicable, a summary of the follow-up time. A 
diagram may be helpful.  

OK 

13b D;V 
Describe the characteristics of the participants (basic demographics, clinical features, 
available predictors), including the number of participants with missing data for 
predictors and outcome.  

OK 

13c V 
For validation, show a comparison with the development data of the distribution of 
important variables (demographics, predictors and outcome).  

OK 

Model 
development  

14a D Specify the number of participants and outcome events in each analysis.  OK 

14b D 
If done, report the unadjusted association between each candidate predictor and 
outcome. 

NA 

Model 
specification 

15a D 
Present the full prediction model to allow predictions for individuals (i.e., all regression 
coefficients, and model intercept or baseline survival at a given time point). 

OK 

15b D Explain how to the use the prediction model. OK 

Model 
performance 

16 D;V Report performance measures (with CIs) for the prediction model. OK 

Model-updating 17 V 
If done, report the results from any model updating (i.e., model specification, model 
performance). 

NA 

Discussion 

Limitations 18 D;V 
Discuss any limitations of the study (such as nonrepresentative sample, few events per 
predictor, missing data).  

OK 

Interpretation 

19a V 
For validation, discuss the results with reference to performance in the development 
data, and any other validation data.  

OK 

19b D;V 
Give an overall interpretation of the results, considering objectives, limitations, results 
from similar studies, and other relevant evidence.  

OK 

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research.  OK 

Other information 

Supplementary 
information 

21 D;V 
Provide information about the availability of supplementary resources, such as study 
protocol, Web calculator, and data sets.  

OK 

Funding 22 D;V Give the source of funding and the role of the funders for the present study.  OK 

 

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are 

denoted by V, and items relating to both are denoted D;V.  We recommend using the TRIPOD Checklist in conjunction with the TRIPOD 

Explanation and Elaboration document. 

Figure E.8: TRIPOD checklist
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Appendix F.1. Overall performance
Tables F.6 and F.7 report the ROC-AUC, AUC-PR, Brier Score and ECE500

of all models. Two cohorts are considered: patients with a least 3 visits with
EDSS in the last 3.25 years and patients with at least 6 visits with EDSS in
the last 3.25 years.

Model ROC-AUC AUC-PR Brier ECE
Ensemble 0.71± 0.01 0.25± 0.02 0.10± 0.01 0.06± 0.05

Attention 0.71± 0.01 0.26± 0.02 0.10± 0.01 0.07± 0.04
RNN 0.71± 0.01 0.25± 0.02 0.10± 0.01 0.04± 0.02

Static Bayesian NN 0.67± 0.01 0.22± 0.02 0.11± 0.01 0.09± 0.05
Dynamic Bayesian NN 0.71± 0.01 0.25± 0.01 0.10± 0.01 0.08± 0.04

Static Baseline 0.67± 0.01 0.22± 0.02 0.11± 0.01 0.09± 0.05
Dynamic Baseline 0.70± 0.01 0.24± 0.02 0.10± 0.01 0.09± 0.03

Static Logistic 0.66± 0.02 0.21± 0.02 0.11± 0.01 0.04± 0.01
Dynamic Logistic 0.7± 0.01 0.24± 0.02 0.11± 0.01 0.06± 0.02

Static DeepMTP 0.66± 0.03 0.21± 0.03 0.11± 0.01 0.23± 0.06
Dynamic DeepMTP 0.68± 0.02 0.23± 0.02 0.11± 0.01 0.17± 0.04

Static FactorizationMachine 0.67± 0.01 0.22± 0.02 0.11± 0.01 0.18± 0.07
Dynamic FactorizationMachine 0.69± 0.01 0.24± 0.02 0.11± 0.01 0.17± 0.02

Table F.6: Summary statistics of the performance measures. Cohort with minimum 3
visits.

Appendix F.2. Performance per MS course
Tables F.8 and F.9 report the the ROC-AUC, AUC-PR, Brier Score and505

ECE of all models on the different MS course subgroups. Primary Progressive
(PP), Relapsing Remitting (RR) and Secondary Progressive are considered
(SP). Two cohorts are considered: patients with a least 3 visits with EDSS
in the last 3.25 years and patients with at least 6 visits with EDSS in the
last 3.25 years.510

Appendix F.3. Performance per EDSS level at baseline
Tables F.10 and F.11 report the the ROC-AUC, AUC-PR, Brier Score

and ECE by severity subgroup. Low severity patients are defined as the ones
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Model ROC-AUC AUC-PR Brier ECE
Ensemble 0.71± 0.02 0.25± 0.03 0.11± 0.01 0.08± 0.03

Attention 0.7± 0.02 0.24± 0.02 0.11± 0.01 0.04± 0.01
RNN 0.7± 0.02 0.24± 0.03 0.11± 0.01 0.05± 0.03

Static Bayesian NN 0.68± 0.02 0.23± 0.02 0.11± 0.01 0.05± 0.03
Dynamic Bayesian NN 0.7± 0.01 0.24± 0.02 0.11± 0.01 0.08± 0.02

Static Baseline 0.67± 0.02 0.22± 0.02 0.11± 0.01 0.05± 0.02
Dynamic Baseline 0.69± 0.02 0.23± 0.02 0.11± 0.01 0.06± 0.03

Static Logistic 0.67± 0.02 0.22± 0.02 0.11± 0.01 0.04± 0.02
Dynamic Logistic 0.69± 0.02 0.25± 0.02 0.11± 0.01 0.04± 0.03

Static DeepMTP 0.66± 0.03 0.21± 0.04 0.12± 0.02 0.24± 0.08
Dynamic DeepMTP 0.67± 0.03 0.22± 0.04 0.12± 0.01 0.24± 0.09

Static FactorizationMachine 0.67± 0.02 0.22± 0.02 0.11± 0.01 0.13± 0.02
Dynamic FactorizationMachine 0.69± 0.02 0.24± 0.03 0.11± 0.01 0.15± 0.05

Table F.7: Summary statistics of the performance measures. Cohort with minimum 6
visits.

with EDSS ≤ 5.5 at baseline, while high severity patients are defined as
having EDSS > 5.5 at baseline.515

Two cohorts are considered: patients with a least 3 visits with EDSS in
the last 3.25 years and patients with at least 6 visits with EDSS in the last
3.25 years.

Appendix G. Machine Learning Models Details

Appendix G.1. Bayesian Neural Networks520

Introduced by Gal et al. [20], Monte Carlo Dropout is an approximate en-
semble method for Bayesian Neural Networks (Bayesian NN or BNN). They
prove that a Neural Network with dropout layers and L2-regularization ap-
proximates the predictive posterior distribution of a Gaussian process for
a given data set. The resulting ensemble is in general well-calibrated [26],525

and more accurate than its non-Bayesian counterpart due to the regulariz-
ing effect. The Bayesian NN implemented in this work is identical to the
baseline neural network previously introduced, with a few key differences.
First, dropout [27] is applied between every layer. Second, the logits of the
network are modeled as Gaussian distributions, rather than point estimates.530
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Model MSCourse ROC-AUC AUC-PR Brier ECE
Attention PP 0.65± 0.01 0.33± 0.04 0.16± 0.01 0.07± 0.02
Attention RR 0.7± 0.0 0.21± 0.01 0.09± 0.0 0.06± 0.03
Attention SP 0.65± 0.01 0.33± 0.03 0.17± 0.01 0.1± 0.05

RNN PP 0.65± 0.02 0.33± 0.05 0.16± 0.01 0.05± 0.02
RNN RR 0.69± 0.0 0.19± 0.01 0.09± 0.0 0.05± 0.02
RNN SP 0.64± 0.01 0.31± 0.02 0.17± 0.01 0.05± 0.02

Static Bayesian NN PP 0.62± 0.01 0.29± 0.04 0.16± 0.01 0.12± 0.07
Static Bayesian NN RR 0.64± 0.01 0.16± 0.01 0.09± 0.01 0.09± 0.05
Static Bayesian NN SP 0.62± 0.02 0.29± 0.02 0.17± 0.01 0.07± 0.02

Dynamic Bayesian NN PP 0.66± 0.01 0.34± 0.03 0.16± 0.01 0.09± 0.05
Dynamic Bayesian NN RR 0.7± 0.01 0.2± 0.0 0.09± 0.01 0.09± 0.03
Dynamic Bayesian NN SP 0.64± 0.01 0.32± 0.02 0.17± 0.01 0.11± 0.02

Static Baseline PP 0.62± 0.03 0.28± 0.05 0.17± 0.01 0.1± 0.04
Static Baseline RR 0.64± 0.01 0.16± 0.01 0.09± 0.01 0.06± 0.04
Static Baseline SP 0.62± 0.01 0.29± 0.02 0.17± 0.01 0.07± 0.04

Dynamic Baseline PP 0.63± 0.03 0.32± 0.05 0.16± 0.01 0.09± 0.03
Dynamic Baseline RR 0.69± 0.01 0.19± 0.0 0.09± 0.01 0.05± 0.02
Dynamic Baseline SP 0.63± 0.01 0.31± 0.02 0.17± 0.01 0.1± 0.04

Static Logistic PP 0.59± 0.03 0.27± 0.05 0.17± 0.01 0.1± 0.05
Static Logistic RR 0.64± 0.01 0.15± 0.01 0.09± 0.01 0.07± 0.01
Static Logistic SP 0.59± 0.01 0.27± 0.03 0.17± 0.01 0.04± 0.01

Dynamic Logistic PP 0.63± 0.01 0.31± 0.03 0.16± 0.01 0.09± 0.03
Dynamic Logistic RR 0.68± 0.01 0.19± 0.01 0.09± 0.01 0.05± 0.01
Dynamic Logistic SP 0.61± 0.01 0.3± 0.04 0.17± 0.01 0.08± 0.02

Static DeepMTP PP 0.62± 0.04 0.3± 0.05 0.17± 0.01 0.21± 0.06
Static DeepMTP RR 0.63± 0.02 0.15± 0.01 0.09± 0.01 0.25± 0.11
Static DeepMTP SP 0.61± 0.02 0.3± 0.03 0.17± 0.01 0.21± 0.08

Dynamic DeepMTP PP 0.62± 0.04 0.31± 0.06 0.17± 0.01 0.19± 0.05
Dynamic DeepMTP RR 0.66± 0.02 0.18± 0.01 0.09± 0.01 0.18± 0.05
Dynamic DeepMTP SP 0.62± 0.02 0.31± 0.03 0.17± 0.01 0.18± 0.05

Static FactorizationMachine PP 0.62± 0.02 0.29± 0.04 0.17± 0.01 0.19± 0.06
Static FactorizationMachine RR 0.64± 0.01 0.16± 0.01 0.09± 0.01 0.24± 0.07
Static FactorizationMachine SP 0.63± 0.01 0.3± 0.03 0.17± 0.01 0.15± 0.05

Dynamic FactorizationMachine PP 0.64± 0.02 0.31± 0.03 0.17± 0.01 0.16± 0.04
Dynamic FactorizationMachine RR 0.68± 0.0 0.19± 0.01 0.09± 0.01 0.2± 0.01
Dynamic FactorizationMachine SP 0.63± 0.01 0.31± 0.02 0.17± 0.01 0.18± 0.02

Table F.8: Results for disability progression prediction per MSCourse. Cohort with mini-
mum 3 visits.
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Model MSCourse ROC-AUC AUC-PR Brier ECE
Attention PP 0.62± 0.03 0.36± 0.04 0.19± 0.01 0.07± 0.02
Attention RR 0.68± 0.01 0.18± 0.02 0.09± 0.01 0.07± 0.03
Attention SP 0.61± 0.02 0.32± 0.02 0.18± 0.02 0.08± 0.03

RNN PP 0.62± 0.05 0.36± 0.05 0.19± 0.01 0.09± 0.03
RNN RR 0.68± 0.02 0.18± 0.02 0.09± 0.01 0.05± 0.03
RNN SP 0.62± 0.02 0.32± 0.03 0.18± 0.02 0.07± 0.01

Static Bayesian NN PP 0.63± 0.05 0.36± 0.05 0.19± 0.01 0.08± 0.05
Static Bayesian NN RR 0.65± 0.02 0.16± 0.01 0.09± 0.01 0.08± 0.03
Static Bayesian NN SP 0.59± 0.05 0.29± 0.02 0.18± 0.02 0.09± 0.02

Dynamic Bayesian NN PP 0.63± 0.04 0.37± 0.05 0.19± 0.01 0.11± 0.04
Dynamic Bayesian NN RR 0.68± 0.01 0.18± 0.01 0.09± 0.01 0.1± 0.01
Dynamic Bayesian NN SP 0.61± 0.04 0.31± 0.02 0.18± 0.02 0.12± 0.03

Static Baseline PP 0.62± 0.04 0.35± 0.04 0.19± 0.01 0.09± 0.03
Static Baseline RR 0.64± 0.02 0.15± 0.01 0.09± 0.01 0.05± 0.03
Static Baseline SP 0.59± 0.03 0.29± 0.02 0.18± 0.02 0.07± 0.01

Dynamic Baseline PP 0.62± 0.05 0.35± 0.07 0.19± 0.01 0.09± 0.03
Dynamic Baseline RR 0.67± 0.02 0.17± 0.01 0.09± 0.01 0.08± 0.03
Dynamic Baseline SP 0.61± 0.03 0.32± 0.02 0.18± 0.02 0.08± 0.02

Static Logistic PP 0.61± 0.03 0.35± 0.02 0.19± 0.01 0.1± 0.05
Static Logistic RR 0.63± 0.02 0.15± 0.01 0.09± 0.01 0.07± 0.03
Static Logistic SP 0.58± 0.03 0.29± 0.02 0.18± 0.02 0.07± 0.03

Dynamic Logistic PP 0.64± 0.03 0.38± 0.02 0.18± 0.01 0.12± 0.05
Dynamic Logistic RR 0.67± 0.01 0.19± 0.01 0.09± 0.01 0.06± 0.02
Dynamic Logistic SP 0.6± 0.03 0.31± 0.02 0.18± 0.02 0.07± 0.04

Static DeepMTP PP 0.61± 0.06 0.36± 0.04 0.19± 0.02 0.19± 0.04
Static DeepMTP RR 0.63± 0.02 0.15± 0.02 0.1± 0.02 0.22± 0.11
Static DeepMTP SP 0.6± 0.03 0.29± 0.04 0.19± 0.01 0.22± 0.04

Dynamic DeepMTP PP 0.6± 0.05 0.34± 0.03 0.2± 0.02 0.21± 0.07
Dynamic DeepMTP RR 0.65± 0.03 0.17± 0.04 0.1± 0.02 0.24± 0.1
Dynamic DeepMTP SP 0.6± 0.02 0.31± 0.03 0.19± 0.01 0.22± 0.07

Static FactorizationMachine PP 0.62± 0.03 0.36± 0.04 0.19± 0.02 0.14± 0.03
Static FactorizationMachine RR 0.63± 0.02 0.15± 0.02 0.09± 0.01 0.16± 0.07
Static FactorizationMachine SP 0.6± 0.03 0.31± 0.03 0.18± 0.02 0.14± 0.04

Dynamic FactorizationMachine PP 0.63± 0.02 0.37± 0.05 0.19± 0.01 0.16± 0.06
Dynamic FactorizationMachine RR 0.66± 0.01 0.18± 0.02 0.09± 0.01 0.15± 0.05
Dynamic FactorizationMachine SP 0.61± 0.01 0.31± 0.03 0.19± 0.02 0.18± 0.04

Table F.9: Results for disability progression prediction per MSCourse. Cohort with mini-
mum 6 visits
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Model EDSS ROC-AUC AUC-PR Brier ECE
Attention EDSS ≤ 5.5 0.72± 0.01 0.26± 0.01 0.09± 0.0 0.07± 0.04
Attention EDSS > 5.5 0.65± 0.01 0.27± 0.04 0.15± 0.01 0.07± 0.02

RNN EDSS ≤ 5.5 0.71± 0.01 0.24± 0.02 0.1± 0.0 0.04± 0.03
RNN EDSS > 5.5 0.64± 0.01 0.26± 0.03 0.15± 0.02 0.05± 0.03

Static Bayesian NN EDSS ≤ 5.5 0.67± 0.01 0.21± 0.01 0.1± 0.0 0.1± 0.04
Static Bayesian NN EDSS > 5.5 0.63± 0.01 0.25± 0.03 0.15± 0.02 0.09± 0.04

Dynamic Bayesian NN EDSS ≤ 5.5 0.72± 0.01 0.25± 0.01 0.09± 0.0 0.08± 0.04
Dynamic Bayesian NN EDSS > 5.5 0.64± 0.02 0.26± 0.03 0.15± 0.01 0.11± 0.03

Static Baseline EDSS ≤ 5.5 0.67± 0.01 0.2± 0.02 0.1± 0.01 0.07± 0.05
Static Baseline EDSS > 5.5 0.63± 0.01 0.25± 0.03 0.15± 0.02 0.09± 0.04

Dynamic Baseline EDSS ≤ 5.5 0.71± 0.01 0.24± 0.01 0.1± 0.01 0.09± 0.03
Dynamic Baseline EDSS > 5.5 0.63± 0.01 0.26± 0.04 0.15± 0.02 0.09± 0.03

Static Logistic EDSS ≤ 5.5 0.66± 0.01 0.2± 0.01 0.1± 0.01 0.03± 0.01
Static Logistic EDSS > 5.5 0.61± 0.02 0.24± 0.04 0.15± 0.01 0.05± 0.01

Dynamic Logistic EDSS ≤ 5.5 0.7± 0.0 0.24± 0.02 0.1± 0.0 0.06± 0.04
Dynamic Logistic EDSS > 5.5 0.62± 0.01 0.25± 0.04 0.15± 0.01 0.07± 0.03

Static DeepMTP EDSS ≤ 5.5 0.65± 0.02 0.19± 0.02 0.1± 0.0 0.23± 0.06
Static DeepMTP EDSS > 5.5 0.63± 0.02 0.25± 0.04 0.15± 0.02 0.21± 0.05

Dynamic DeepMTP EDSS ≤ 5.5 0.69± 0.02 0.22± 0.02 0.1± 0.0 0.18± 0.03
Dynamic DeepMTP EDSS > 5.5 0.62± 0.02 0.26± 0.04 0.15± 0.02 0.19± 0.08

Static FactorizationMachine EDSS ≤ 5.5 0.67± 0.01 0.21± 0.02 0.1± 0.0 0.18± 0.06
Static FactorizationMachine EDSS > 5.5 0.63± 0.01 0.26± 0.04 0.15± 0.02 0.18± 0.06

Dynamic FactorizationMachine EDSS ≤ 5.5 0.7± 0.01 0.23± 0.01 0.1± 0.0 0.14± 0.03
Dynamic FactorizationMachine EDSS > 5.5 0.64± 0.01 0.26± 0.03 0.15± 0.02 0.22± 0.05

Table F.10: Results for disability progression prediction for EDSS ≤ 5.5 and > 5.5. Cohort
with minimum 3 visits
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Model EDSS ROC-AUC AUC-PR Brier ECE
Attention EDSS ≤ 5.5 0.7± 0.02 0.23± 0.03 0.09± 0.01 0.05± 0.03
Attention EDSS > 5.5 0.62± 0.01 0.29± 0.01 0.17± 0.01 0.07± 0.04

RNN EDSS ≤ 5.5 0.7± 0.02 0.22± 0.03 0.09± 0.01 0.08± 0.03
RNN EDSS > 5.5 0.62± 0.01 0.28± 0.01 0.17± 0.01 0.06± 0.03

Static Bayesian NN EDSS ≤ 5.5 0.67± 0.02 0.2± 0.02 0.1± 0.01 0.07± 0.05
Static Bayesian NN EDSS > 5.5 0.62± 0.03 0.28± 0.02 0.17± 0.01 0.06± 0.02

Dynamic Bayesian NN EDSS ≤ 5.5 0.7± 0.01 0.23± 0.02 0.09± 0.01 0.1± 0.02
Dynamic Bayesian NN EDSS > 5.5 0.61± 0.02 0.28± 0.01 0.17± 0.01 0.08± 0.04

Static Baseline EDSS ≤ 5.5 0.66± 0.02 0.19± 0.02 0.1± 0.01 0.04± 0.02
Static Baseline EDSS > 5.5 0.61± 0.03 0.28± 0.01 0.17± 0.01 0.07± 0.03

Dynamic Baseline EDSS ≤ 5.5 0.69± 0.02 0.22± 0.03 0.09± 0.01 0.07± 0.03
Dynamic Baseline EDSS > 5.5 0.61± 0.02 0.28± 0.02 0.17± 0.01 0.07± 0.02

Static Logistic EDSS ≤ 5.5 0.66± 0.02 0.19± 0.02 0.1± 0.01 0.05± 0.03
Static Logistic EDSS > 5.5 0.6± 0.02 0.27± 0.02 0.17± 0.01 0.05± 0.01

Dynamic Logistic EDSS ≤ 5.5 0.69± 0.02 0.23± 0.02 0.09± 0.01 0.05± 0.03
Dynamic Logistic EDSS > 5.5 0.61± 0.01 0.28± 0.01 0.17± 0.01 0.06± 0.05

Static DeepMTP EDSS ≤ 5.5 0.65± 0.03 0.19± 0.04 0.11± 0.02 0.24± 0.1
Static DeepMTP EDSS > 5.5 0.62± 0.02 0.28± 0.02 0.17± 0.0 0.19± 0.06

Dynamic DeepMTP EDSS ≤ 5.5 0.67± 0.02 0.2± 0.04 0.11± 0.02 0.23± 0.1
Dynamic DeepMTP EDSS > 5.5 0.62± 0.02 0.28± 0.01 0.17± 0.0 0.26± 0.05

Static FactorizationMachine EDSS ≤ 5.5 0.66± 0.02 0.2± 0.02 0.1± 0.01 0.13± 0.02
Static FactorizationMachine EDSS > 5.5 0.61± 0.03 0.28± 0.02 0.17± 0.01 0.13± 0.04

Dynamic FactorizationMachine EDSS ≤ 5.5 0.69± 0.02 0.22± 0.03 0.09± 0.01 0.11± 0.04
Dynamic FactorizationMachine EDSS > 5.5 0.6± 0.01 0.27± 0.01 0.17± 0.01 0.2± 0.05

Table F.11: Results for disability progression prediction for EDSS ≤ 5.5 and > 5.5. Cohort
with minimum 6 visits
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Third, the loss function is a modified cross-entropy loss, that samples from
the aforementioned logit distributions [26]. While Kendall et al. [26] define a
loss that allows capturing aleatoric uncertainty, we simplify it further to work
for our binary classification. We use Monte Carlo integration to approximate
the distribution.535

The resulting network has a way of expressing epistemic (model-bound)
uncertainty by using dropout, creating a distribution over the model weights.
On the other hand, the resulting BNN also has a way of expressing aleatoric
uncertainty, by modelling the output of the network as a Gaussian distribu-
tion in logit space.540

We define the network to have two outputs, µ and log σ2. Instead of
learning variance, log variance is learnt to constrain the value to be positive.
Our loss function for a single input, with T the amount of Monte Carlo
integration samples, and y the true label is defined as follows:

p̂t = µ+ σϵt, ϵt ∼ N (0, I)

L = − log
1

T

∑
t

p̂yit (1− p̂t)
1−yi

L = − log
1

T

∑
t

exp (y log p̂t + (1− y) log(1− p̂t))

Appendix G.2. DeepMTP545

The DeepMTP framework was introduced by Iliadis et al. [28] as a unified
approach for multi-target prediction (MTP) problems. Applications that fall
under the umbrella of MTP are concerned with the simultaneous prediction
of multiple target variables. Even though this work focuses on the prediction
of a single binary variable (patient progresses or not), we are able to use550

the DeepMTP framework by applying a multi-task trick. To achieve this, we
select one categorical feature from the available data set (country) and create
multiple targets (or tasks), thus forming a multi-task learning problem. By
doing this, the goal becomes the prediction of the progression of a patient
depending on the country (s)he is residing in. Even though the natural555

benchmark comparison of a multi-task problem is a collection of models that
are trained on subsets of the original data set belonging to a single country
(single-task models), we believe that this is out of the scope of this work.
For this reason, after prediction, we collapse the tasks and create a single
prediction that is comparable with the other methods tested in this paper.560
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In terms of architecture, DeepMTP uses a two-branch architecture that
is flexible enough to be adapted for the different MTP prediction settings.
In this specific multi-task case, the first branch encodes the same features
as all the other methods, and the second uses a one-hot encoded vector that
maps to a given country. Both branches are comprised of one or more fully565

connected layers, and their outputs are combined using a dot product. The
single value resulting from the dot product is the output of the entire network
(progression or not).

Appendix G.3. Factorization Machines
In 2010, Rendle introduced Factorization Machines (FM) as a new model

class that combines the advantages of Support Vector Machines (SVM) with
factorization models [29]. Factorization machines model interactions between
features using factorized parameters. The prediction function of degree two,
meaning that pairwise interactions represent the highest degree of interaction
considered, is given by:

f(x) := w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

⟨vi,vj⟩ xixj ,

with model parameters w0 ∈ R, w ∈ Rn and V ∈ Rn×k, and the dot570

product ⟨vi,vj⟩ :=
∑k

f=1 vi,fvj,v.
Factorization Machines are more widely applicable than regular factoriza-

tion models such as matrix factorization, as they naturally include features
as well and learn to map them into a lower-dimensional latent factor space.
This behaviour explains why FM can be surprisingly successful when work-575

ing with categorical features (e.g. country, sex), even under high sparsity.
Also, thanks to their linear time complexity, they are often applied in large
real-world recommendation data sets [30].

In this work, we used stochastic gradient descent with adaptive regular-
ization as a learning method [31, 30]. A Python implementation is available580

at https://github.com/godpgf/pylibfm. The main hyper-parameter to
tune is the size k of the latent factor space.

36

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.09.08.22279617doi: medRxiv preprint 

https://github.com/godpgf/pylibfm
https://doi.org/10.1101/2022.09.08.22279617
http://creativecommons.org/licenses/by/4.0/


Appendix H. Supplementary information on variables used as pre-
dictors

Appendix H.1. Information on treatments585

Except for Mitoxantrone and Cyclophosphamide, we assumed that only
one DMT was administered at the same time. This implies that if a new
DMT was started, the administration of the previous DMT was considered
to have ended, even if no end date was registered in the data. Mitoxantrone
and Cyclophosphamide can be administered in combination with another590

DMT. Indeed, they are induction DMTs and are thus expected to have a
long-term effect. Therefore, only the start dates of these two DMTs were
recorded. They were coded by a separate category: highly active induction
DMTs. Alemtuzumab and Cladribine are also induction DMTs. In contrast
to Mitoxantrone and Cyclophosphamide they are not combined with other595

DMTs. If a new DMT was started, it was assumed that they were considered
as not effective and the start date of the new DMT was taken as the end
date of Alemtuzumab or Cladribine.

Appendix H.2. Grouping of the included clinical variables
The static feature set contains variables available at t = 0 without taking600

into account possible previous values. Categorical variables can be encoded
as indicator variables. For example, sex is encoded as female yes / no and
male yes / no. If data can be missing, the category ”unknown” is added.
EDSS and the KFS scores were treated as continuous variables, even though
they are categorical. The variables of the static feature set are: Sex, Age605

(years), Age at MS onset (years), Disease duration (years), MS course at
t = 0 (RRMS, SPMS, PPMS), EDSS at t = 0, Last used DMT at t = 0, Use
of induction DMT at t = 0, all KFS scores at t = 0, education status, first
symptom (supratentorial, optic pathways, brainstem, spinal cord or missing),
time of prediction (years since 1990), time of diagnosis (years since 1990).610

The dynamic feature set adds information about behaviour before t = 0
(longitudinal information) to the static data set. It contains variables that
are hand-engineered from the longitudinal variables: number of visits in the
last 3.25 years, the minimum and maximum in the whole history (t ≤ 0)
of the EDSS and all KFS variables, mean and standard deviation over the615

last 3.25 years of the EDSS and all KFS scores, oldest EDSS and KFS score
measured in the last 3.25 years, relapse rate over the whole history (number
of relapses divided by the follow-up period - since first clinical visit), time

37

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.09.08.22279617doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.08.22279617
http://creativecommons.org/licenses/by/4.0/


since the last relapse (years), presence of high-efficacy DMT in the past,
disease duration until a first DMT was administered, disease duration until620

an high-efficacy active DMT was administrated, time spent on a DMT during
the disease duration (ratio of time on a DMT divided by the time since MS
onset), time since the last Fampridine administration

The variables time since the last relapse, disease duration until a DMT
was administered, disease duration until a high-efficacy DMT was admin-625

istrated and time since the last Fampridine administration are transformed
according to an 1/(1 + t) scaling, with t the actual time. If no time can be
defined because, e.g., no DMT has ever been administered, the transformed
variable is 0. If t < 0, which can happen because of erroneous dates in the
data set, the transformed variable is set to 1.630

The longitudinal feature set contains the dates and values for the following
variables: all measured EDSS values and KFS scores, relapses occurrence
(encoded as a binary variable set to 1 when a relapse occurs), relapse position
(brainstem, pyramidal tract or other), cumulative relapse count, MS course,
DMT administration (start and end dates), induction DMT administration635

(start date), Fampridine administration. The timing of measurements is
expected to be informative [25, 17, 32].

Appendix I. Extra information on target definition

Importantly, if progression w = 1 cannot be confirmed because there are
no EDSS measurements after two years that can be used for confirmation, it640

is not a valid target and no label can be derived. If progression cannot be
confirmed because an EDSS used for confirmation leads to w = 0, it counts
as no disability progression (wc = 0). If there is no disability progression
(w = 0), no confirmation is needed to make it a valid target. Note that even
with confirmation for at least six months, around 20% of progression events645

are expected to regress after more than five years [33]. However, disability
progression that lasts several years is a relevant outcome for the person with
MS.

Episodes were considered valid if they meet the following criteria. The
time at which the prediction were made should be after 1990 (t0 > 1990, Jan 1st).650

This ensured that we had a cohort of patients from decades were disease mod-
ifying therapies (DMTs) were available [34].

All variables measured at visits after 1970 were used to perform the pre-
diction. We further required a minimum number of EDSS measurements in
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the last three years and three months of the observation window. In this655

study, two cohorts are investigated, one with a minimum of three EDSS
measurements, the other with a minimum of six EDSS measurements. This
excluded patients who have a less than yearly (or biyearly) EDSS follow-up
frequency. The three additional months were chosen to allow for some mar-
gin in when the yearly visit was planned. The patient should not be classified660

as being in a clinically isolated syndrome (CIS) at t = 0.
To summarize our target of disability progression in words: the patient

will experience a disability progression event somewhere in the next two
years. This event is sustained for at least six months and at least until two
years after the time the prediction is made.665

Appendix J. List of MSBase authors

• Dana Horakova, Charles University in Prague and General University
Hospital, Prague, Czech Republic

• Francesco Patti, Department of Medical and Surgical Sciences and Ad-
vanced Technologies, GF Ingrassia, Catania, Italy670

• Guillermo Izquierdo, Hospital Universitario Virgen Macarena, Sevilla,
Spain

• Sara Eichau, Hospital Universitario Virgen Macarena, Sevilla, Spain

• Alexandre Prat, CHUM and Université de Montreal, Montreal, Canada

• Alessandra Lugaresi, IRCCS Istituto delle Scienze Neurologiche di Bologna,675

Bologna, Italia and Dipartimento di Scienze Biomediche e Neuromoto-
rie, Università di Bologna, Bologna, Italia

• Pierre Grammond, CISSS Chaudière-Appalache, Levis, Canada

• Tomas Kalincik, Melbourne MS Centre, Department of Neurology,
Royal Melbourne Hospital, Melbourne, Australia680

• Francois Grand’Maison, Neuro Rive-Sud, Quebec, Canada

• Olga Skibina, Box Hill Hospital, Melbourne, Australia

• Murat Terzi, 19 Mayis University, Samsun, Turkey
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Figure I.9: Examples of valid and non-valid samples. The time is in years (y) and months
(m). (a) Confirmed progression after 2 years. The EDSS around 2y6m is not used to
confirm the progression, because it occurs within 1 month after a relapse. Progression
is confirmed with the EDSS measurement around 4y. There are 3 EDSS measurements
between −3y and 0y, which is enough follow-up data. (b) This is not a valid sample: there
are not enough EDSS measurements between −3y and 0y. (c) This is not a valid sample:
no confirmed progression because there are no EDSS values after 2y. (d) This is a valid
sample: the EDSS decreases after 2y, so this counts as no disability progression. (e) This
is a valid sample: wu = 0, so no confirmation is needed.
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• Maria Edite Rio, Centro Hospitalar Universitario de Sao Joao, Porto,
Portugal685

• Pamela McCombe, University of Queensland, Brisbane, Australia

• Mark Slee, Flinders University, Adelaide, Australia
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