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Abstract  23 

Drug repurposing may provide a solution to the substantial challenges facing de novo drug 24 

development. Given that 66% of FDA-approved drugs in 2021 were supported by human genetic 25 

evidence, drug repurposing methods based on genome wide association studies (GWAS), such as 26 

drug gene-set analysis, may prove an efficient way to identify new treatments. However, to our 27 

knowledge, drug gene-set analysis has not been tested in non-psychiatric phenotypes, and 28 

previous implementations may have contained statistical biases when testing groups of drugs. 29 

Here, 1201 drugs were tested for association with hypercholesterolemia, type 2 diabetes, 30 

coronary artery disease, asthma, schizophrenia, bipolar disorder, Alzheimer’s disease, and 31 

Parkinson’s disease. We show that drug gene-set analysis can identify clinically relevant drugs 32 

(e.g., simvastatin for hypercholesterolemia [p = 2.82E-06]; mitiglinide for type 2 diabetes [p = 33 

2.66E-07]) and drug groups (e.g., C10A for coronary artery disease [p = 2.31E-05]; insulin 34 

secretagogues for type 2 diabetes [p = 1.09E-11]) for non-psychiatric phenotypes. Additionally, 35 

we demonstrate that when the overlap of genes between drug-gene sets is considered we find no 36 

groups containing approved drugs for the psychiatric phenotypes tested. However, several drug 37 

groups were identified for psychiatric phenotypes that may contain possible repurposing 38 

candidates, such as ATC codes J02A (p = 2.99E-09) and N07B (p = 0.0001) for schizophrenia. 39 

Our results demonstrate that clinically relevant drugs and groups of drugs can be identified using 40 

drug gene-set analysis for a number of phenotypes. These findings have implications for quickly 41 

identifying novel treatments based on the genetic mechanisms underlying diseases. 42 

 43 

Keywords: genome-wide association study, drug repurposing, gene-set analysis.  44 
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Over the last 15 years, the use and effectiveness of genome-wide association studies (GWAS) have 46 

developed rapidly, resulting in the discovery of over 270,000 phenotypically associated genetic 47 

variants1,2. While translating GWAS findings into use for pharmacological and clinical purposes has 48 

been challenging, seminal work by Nelson et al. and King et al. demonstrated that drugs with 49 

genetic support for efficacy were 2-5 times more likely to gain approval status compared to 50 

compounds with no such evidence3,4. In fact, 66% of FDA-approved drugs in 2021 are supported 51 

by human genetic evidence that link the compounds to their gene product targets5. GWAS results 52 

have been used as early as 2009 to prioritize novel targets for pharmaceuticals6. For example, 53 

Wang et al identified the IL12/IL23 pathway as a novel target for Crohn’s disease, which supported 54 

the subsequent development of Ustekinumab, an antibody that binds with IL12 and IL236,7.  55 

However, the development of novel pharmaceuticals is a time and financially intensive 56 

process, averaging 12.8 years and $2.6 billion dollars for a single new medication8,9. Despite wide 57 

advances across science and technology in the past 60 years, the cost for approved drugs per billion 58 

spent has seen an 80-fold increase after adjusting for inflation10. Additionally, the development of 59 

novel drugs for psychiatric and neurological conditions has been particularly affected, with several 60 

large pharmaceutical companies shutting down research and development for psychiatric disorders 61 

entirely11. Given the size of the challenges facing de novo drug development, interest has turned 62 

towards drug repurposing, the process of identifying new clinical indications (the phenotype a 63 

drug is approved to treat) for currently approved medications12. Moreover, the vast quantities of 64 

GWAS results provide excellent data regarding possible gene targets to be leveraged for drug 65 

repurposing. To date, many methods have been created to repurpose drugs using GWAS summary 66 

statistics, including candidate gene approaches, Mendelian randomization, pharmagenic 67 

enrichment scores, transcriptomic signature matching, and drug gene-set analysis13–17.  68 
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Drug gene-set analysis, an approach first published by De Jong and Breen18, can be used to 69 

identify candidate drugs based on GWAS results. Gene-set, or pathway, analysis involves mapping 70 

genetic variants (e.g., single nucleotide polymorphisms [SNPs], copy number variants [CNVs]) to 71 

genes, and grouping genes into sets based on, for example, a priori biological functions or co-72 

expression networks, and testing each gene set for association with the phenotype19,20. For drug 73 

gene-set analysis, gene sets are created for drugs based on known biological and/or chemical 74 

properties. For example, a drug-gene set can be made of the genes that code the proteins targeted 75 

by a specific drug, and this gene set can be tested for association with a phenotype. While De Jong 76 

& Breen found no gene-sets to be significantly associated with schizophrenia, their nominally 77 

significant results included the known schizophrenia drug trifluoperazine, and metoclopramide 78 

and neratinib, which target dopamine receptors and tyrosine kinases (both implicated in 79 

schizophrenia)18. This method has been continued by Gaspar and colleagues, who developed the 80 

drug repurposing tool Drug Targetor, which is largely based on drug gene-set analysis17,21.  81 

However, while drug gene-set analysis has been tested in schizophrenia and bipolar 82 

disorder, it has never been verified in non-psychiatric phenotypes and, to our knowledge, no drugs 83 

have ever been found to be significantly associated with schizophrenia. Additionally, previous 84 

research testing groups of drugs for associations have used methods that violated statistical 85 

assumptions of independence17. Here, we apply drug gene-set analysis to eight phenotypes – 86 

hypercholesterolemia (i.e., high cholesterol), type 2 diabetes, coronary artery disease, asthma, 87 

schizophrenia, bipolar disorder, Alzheimer’s disease, and Parkinson’s disease – and use a novel 88 

statistical approach to test if groups of drugs are enriched for genetic signal associated with a 89 

phenotype while accounting for the covariance between drugs. Our objectives were first, to assess 90 

the ability of drug gene-set analysis at prioritizing clinically relevant drugs for each phenotype, 91 

and second, to identify candidate drugs for repurposing for the phenotypes investigated.  92 
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Results  93 

We extracted data for drug-gene targets and interactions from the Clue Repurposing Hub and the 94 

Drug Gene Interaction Database and created a gene set for each drug (n = 1201) composed of the 95 

genes whose protein products are known to be targeted by or interact with the drug in question 96 

(Figure 1A)22,23. To test drug-gene set associations, competitive gene-set analysis was performed 97 

using the MAGMA software tool for each of the eight phenotypes19 while conditioning on a gene 98 

set of all drug target genes in our data (n = 2281; Methods). This was done to ensure that 99 

significant drug-gene set associations were due to effects unique to drug pathways, and not due to 100 

common properties shared by all drug target genes (e.g., many gene products targeted by drugs 101 

are receptors). For the individual drug-gene sets see Supplementary Table S1.  102 

 103 

Individual drug-gene set results 104 

We identified 22 significant drug-trait associations across the eight phenotypes we investigated 105 

using drug gene-set analysis (Table 1 & 2; Fig 1A). Drugs were significantly associated with each 106 

of the phenotypes except for asthma and Parkinson’s disease. For the non-psychiatric/neurological 107 

phenotypes, many of our results included drugs approved to treat the diseases in question. For 108 

instance, all 4 of the drugs associated with type 2 diabetes – glipizide, glyburide, mitiglinide, and 109 

repaglinide – are approved for type 2 diabetes24–26 (Tables 1 & 2). Similarly, statin drugs (e.g., 110 

pravastatin and atorvastatin) were associated with both coronary artery disease and 111 

hypercholesterolemia, which are used to lower LDL cholesterol and prevent myocardial 112 

infarctions27. Likewise, lomitapide and fenofibrate, which were also associated with coronary 113 

artery disease, are drugs used to treat hypercholesterolemia, a known risk factor for coronary 114 

artery disease28–30. We found no significant associations between approved psychiatric drugs and 115 

the psychiatric phenotypes that were tested. However, the antiepileptic drug gabapentin was 116 
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significantly associated with schizophrenia, which is known to have some efficacy in treating 117 

psychiatric disorders31. For all individual drug gene-set analysis results see Supplementary Tables 118 

S2 – S9. 119 

 120 
Table 1. Summary of results  121 

Phenotype Total 
tested 

Total 
Approved 

% Approved N 
Signif. 
drugs 

N Signif. 
and 

approved 

% Signif. 
of 

approved 
drugs 

Hypercholesterolemia 1162 8 0.68% 5 3 37.5% 

Type 2 diabetes 1056 30 2.84% 4 4 13.33%  

Coronary artery 
disease 

1172 14 1.19% 6 1 7.14% 

Asthma  1172    29 2.47% 0 0 0% 

Schizophrenia  1172 45 3.84% 4 0 0% 

Bipolar disorder 1172 13 1.11% 2 0 0% 
Alzheimer’s disease 1172 5 0.42% 1 0 0% 

Parkinson’s disease 1172 29 2.47% 0 0 0% 

Total tested = total number of drug-gene sets tested for each phenotype; Total approved = number of 122 
approved drug-gene sets tested for each phenotype; % approved = % of total drugs tested that are 123 
approved for each phenotype; N signif. drugs = total number of significant drugs for each phenotype (see 124 
Table 2 for all significant drugs). Bonferroni-corrected p-value thresholds for hypercholesterolemia = 0.05 / 125 
1162 = 4.3E-05, for type 2 diabetes = 0.05 / 1056 = 4.73E-05, and for coronary artery disease, asthma, 126 
schizophrenia, bipolar disorder, Alzheimer’s disease, and Parkinson’s disease = 0.05 / 1172 = 4.27E-05; N 127 
signif. and approved = number of significant drugs that are approved for the given phenotype; % signif. of 128 
approved drugs = % of the total number of approved drugs for a tested phenotype that were significant.  129 
 130 
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 131 
Figure 1 Overview of drug gene-set analysis. (A) Gene sets were created for every drug (n = 1201) consisting of 132 
the genes whose protein products are targeted by or interact with that drug. Since similar drugs share gene targets it 133 
is possible for overlap of genes to occur between drugs. MAGMA was used for gene-set analysis to test for significant 134 
relationships between drug-gene sets and each phenotype. Drug-gene sets were tested using a conditional competitive 135 
gene-set analysis (Methods). (B) Drug groups were tested for enrichment of genetic signal using a modified multiple 136 
linear regression model. This was done for ATC III groups (n = 85), mechanism of action drug groups (n = 79), and 137 
clinical indication drug groups (n = 118) with n > 5 (Methods). (C) Lastly, gene sets were created for each subcategory 138 
of each grouping method (i.e., ATC III codes, clinical indications, and mechanisms of action) and tested for association 139 
using the same MAGMA protocol as drugs in panel A (Methods).  140 
 141 
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Table 2. Individual drug-gene set results for all phenotypes 142 

Drug gene set Phenotype Approved  N genes MAGMA p 

atorvastatin TCL No 60 1.77E-11 

lomitapide TCL Yes 4 7.33E-08 

pravastatin TCL Yes 34 6.15E-11 

saroglitazar TCL No 2 3.22E-05 

simvastatin TCL Yes 52 2.82E-06 

mitiglinide T2D Yes 4 2.66E-07 

glyburide T2D Yes 19 2.29E-05 

repaglinide T2D Yes 15 9.01E-16 

glipizide T2D Yes 6 1.08E-05 

aminocaproic acid CAD No 3 1.59E-11 

atorvastatin CAD No 61 8.40E-08 

fenofibrate CAD No 28 7.63E-06 

lomitapide CAD No 4 3.96E-11 

lovastatin CAD Yes 43 3.38E-06 

pravastatin CAD No 35 1.59E-07 

amlodipine SCZ No 12 1.51E-05 

benidipine SCZ No 2 1.32E-05 

felodipine SCZ No 13 1.53E-05 

gabapentin SCZ No 38 3.80E-08 

manidipine BIP No 2 2.64E-06 

nilvadipine BIP No 2 2.64E-06 

lubiprostone ALZ No 2 3.76E-06 
Drug-gene set = drugs whose gene set was significant after Bonferroni correction for the number of drug 143 
gene sets tested (see Table 1 for number of drugs tested for each phenotype); Phenotype = the phenotype 144 
the drug was associated with. TCL = hypercholesterolemia, T2D = type 2 diabetes, CAD = coronary artery 145 
disease, BIP = bipolar disorder, SCZ = schizophrenia, ALZ = Alzheimer’s disease; Approved = whether the 146 
drug is approved to be used for the phenotype it was associated with; N genes = number of genes in the 147 
drug gene set; MAGMA p = p-value for individual drug gene-sets from a competitive gene-set analysis while 148 
conditioning on a gene set of all drug target genes in the data; No drugs were significantly associated with 149 
Asthma or Parkinson’s disease.  150 
  151 
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Drug group enrichment 152 

Drug gene sets were grouped in three ways: by Anatomical Therapeutic Classification (ATC) III 153 

code, by clinical indication, and by the mechanism of action. Previous research that tested for 154 

enrichment of genetic signal within groups of drug gene sets used drug enrichment curves derived 155 

from a Wilcoxon Mann Whitney U test17. However, due to the overlap of genes between drug gene 156 

sets, the assumption of data independence needed for a Wilcoxon Mann Whitney U test is not 157 

valid. Thus, here we instead employed a multiple linear regression approach, modeling the drug 158 

group membership as a predictor of the MAGMA drug gene-set t-statistic, to test whether drugs in 159 

that drug group exhibited (on average) more strongly associated drug gene sets than other drugs. 160 

Overlap between gene sets is accounted for through the residual covariance matrix of the 161 

regression model. 162 

Each drug group with 5 or more drugs within the ATC (n = 85), mechanism of action (n = 163 

79), and clinical indication (n = 118) categories was tested for enrichment of genetic signal using 164 

the method above. Bonferroni correction was applied by correcting for the number of drug groups 165 

tested within each of the three grouping methods, and then using a family-wise correction for the 166 

number of grouping methods used. Therefore, the Bonferroni-corrected p-value threshold was 167 

(0.05/85) / 3 = 0.00019 for ATC drug groups, (0.05/79) / 3 = 0.00021 for mechanism of action 168 

drug groups, and (0.05/118) / 3 = 0.00014 for clinical indication drug groups. For all drug groups 169 

see Supplementary Tables S10 – S12, and for the drug group enrichment results see Supplemental 170 

Table S13 – S22. 171 

As seen in Figure 2 (top), we identified 14 drug groups that were significantly enriched for 172 

genetic signal across the 8 phenotypes we examined. For the non-psychiatric/neurological 173 

phenotypes, we found at least one drug group containing one or more drugs approved for the 174 

phenotype tested. For hypercholesterolemia, we identified two drug groups where more than 50% 175 
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of the drugs were approved for hypercholesterolemia (C10A and HMGCR inhibitors), and we 176 

identified the mechanism of action group insulin secretagogues for type 2 diabetes, which contains 177 

only drugs approved for type 2 diabetes. None of the drug groups that were associated with our 178 

psychiatric and neurological phenotypes contained approved drugs. However, the ATC code N07B 179 

– drugs used for addictive disorders – that is associated with schizophrenia contains several drugs 180 

(e.g., naltrexone, buprenorphine) that have shown significant improvements in treating both 181 

positive and negative symptoms in the disorder32. As seen in the bottom panels of Figure 2, none 182 

of the clinical indication drug groups for the phenotypes we examined were significantly associated 183 

with our phenotype after correction for multiple tests. The clinical indication groups for Parkinson’s 184 

disease, type 2 diabetes, and hypercholesterolemia were nominally enriched for genetic signal for 185 

each of their respective phenotypes.  186 

  187 
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 188 

Figure 2 Drug group enrichment. Drug groups were tested for enrichment of genetic signal with each 189 
phenotype. The left panels show the -log10 p-values for each drug group, and the right panels show the 190 
percentage of approved drugs in the group. The top panels show all drug groups that are significant after 191 
multiple testing correction. The bottom panels portray the drug groups containing all approved drugs for 192 
each of the 8 phenotypes that were tested. TCL = hypercholesterolemia; T2D = type 2 diabetes; CAD = 193 
coronary artery disease; AST = asthma, SCZ = schizophrenia; BIP = bipolar disorder; PKD = Parkinson’s 194 
disease; ALZ = Alzheimer’s disease. See Supplementary Tables S13 – S14 for full results.  195 
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To examine the genes driving the significant results seen in the top panel of Figure 2, we 196 

generated heatmaps of the drug-gene sets for the most significant drug groups for each phenotype; 197 

insulin secretagogues for type 2 diabetes (Fig 3A), the clinical indication drug group of urticaria 198 

for asthma (Fig 3B), ATC code J02A for schizophrenia (Fig 3C), and ATC code A04A for 199 

Alzheimer’s disease (Fig 3D). For the C10A heatmaps associated with hypercholesterolemia and 200 

coronary artery disease see Supplemental Figures S1 and S2.  201 

As seen in Figure 3A, the genes with the highest MAGMA -log10 p-values targeted by insulin 202 

secretagogues are KCNQ1, TCF7L2, PPARg, IGF2BP2, and KCNJ11. All these genes are known to be 203 

associated with type 2 diabetes and affect biological processes like insulin secretion and fat storage 204 

in adipose tissue33,34. For the clinical indication drug group urticaria (Fig 3B), there are several 205 

genes with evidence linking them to asthma. Namely, research has indicated that the PPARd gene 206 

targeted by desloratadine may be a promising therapeutic target for asthma, with desloratadine 207 

itself – an allergy medication – having shown efficacy in treating seasonal allergic asthma35,36. 208 

Moreover, another study found that EHMT2 was differentially expressed in patients with asthma 209 

compared to healthy controls37. The targets of drugs in the ATC J02A group also contain genes 210 

related to schizophrenia. Antigen levels for DPYD were found to be elevated in individuals with 211 

schizophrenia compared with healthy controls, and it is known to be associated with schizophrenia 212 

via previous genome-wide association studies38,39. Moreover, there is evidence indicating that 213 

splicing variation of CYP2D6 may play a role in schizophrenia as well40. Lastly, the ATC group 214 

A04A associated with Alzheimer’s disease targets a number of serotonergic receptors, which have 215 

shown promise as therapeutic targets in animal models by reducing levels of amyloid-beta41. 216 

Interestingly, all of the drug groups depicted appear to be driven by a variety of genes, as opposed 217 

to a small number of genes targeted by all drugs in a group (with the exceptions of PPARg,  KCNJ11, 218 

and ABCC8 for the insulin secretagogues).  219 
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 220 

 221 
 222 
Figure 3 Heatmaps of drug group enrichment results. The heatmaps depict the drug-gene sets from 223 
drug groups that were significantly associated with a phenotype, with color signifying the gene’s -log10 p-224 
value from MAGMA. Panel (A) depicts drug-gene sets from the insulin secretagogues group associated 225 
with type 2 diabetes, panel (B) illustrates the drug-gene sets from the clinical indication group urticaria 226 
associated with asthma, panel (C) shows the drug-gene sets from ATC code J02A associated with 227 
schizophrenia, and panel (D) portrays the drug-gene sets from ATC code A04A associated with Alzheimer’s 228 
disease. Drug gene set names are listed on the y-axis, and gene names are listed on the x-axis. Color = -229 
log10 p-value from gene association tests in MAGMA. 230 
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Next, we compared the gene targets of approved drugs for each phenotype to further investigate 231 

why drug-gene set analysis was better at identifying approved drugs for the non-232 

psychiatric/neurological phenotypes that were tested. As seen in Figure 4, there are 38 gene targets 233 

of approved drugs (8.44% of drug target genes) that are significant after Bonferroni correction for 234 

the non-psychiatric/neurological phenotypes investigated, compared to 17 significant gene targets 235 

(3.21% of drug target genes) for drugs approved for the psychiatric and neurological phenotypes. 236 

Moreover, each of the four non-psychiatric/neurological phenotypes has at least 4 significant genes 237 

targeted by approved drugs, while bipolar disorder and Parkinson’s disease have only 1 significant 238 

gene targeted by an approved drug, and Alzheimer’s disease has none. This may explain why none 239 

of the significant drug groups associated with the psychiatric and neurological phenotypes 240 

contained any drugs approved specifically for those disease and disorders.  241 

 242 

 243 

 244 
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Figure 4 Manhattan plots of gene targets for approved drugs. The top panel depicts the gene-level 245 
Manhattan plot for the targets of approved drugs for the four non-psychiatric/neurological phenotypes (n = 246 
450), and the bottom panel depicts the same for the psychiatric/neurological phenotypes (n = 530). Genes 247 
that are labeled are significant after Bonferroni correction for their respective phenotype (since the number 248 
of genes tested varied per phenotype, different Bonferroni thresholds were applied to each phenotype; see 249 
Methods). Color = phenotype; shape = even and odd chromosomes; TCL = hypercholesterolemia; T2D = 250 
type 2 diabetes; CAD = coronary artery disease; AST = asthma, SCZ = schizophrenia; BIP = bipolar 251 
disorder; PKD = Parkinson’s disease; ALZ = Alzheimer’s disease.  252 
 253 

 254 

  255 
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Merged drug gene-set analysis 256 

Some drug-gene sets have a very small number of gene targets, resulting in lower power 257 

to detect associations with phenotypes20. Additionally, many drug categories in our data do not 258 

contain enough drugs to test for enrichment. Therefore, to be able to include drug targets with 259 

small gene set sizes and to test association for drug categories with low numbers of drugs, we also 260 

created gene sets by grouping drugs again by ATC III code, clinical indication, and mechanism of 261 

action. For each category within the grouping methods, a single gene set was created made up of 262 

all the gene targets for drugs in the group (Figure 1C), resulting in 164 ATC III code gene sets, 515 263 

clinical indication gene sets, and 354 mechanism of action gene sets (Tables S23 – S25). 264 

Competitive gene-set analysis was performed with the same protocol used when testing individual 265 

drug-gene sets for each of the three types of grouped drug-gene sets (Methods). We identified 32 266 

significant categorical gene set-trait relationships, with every phenotype but asthma and 267 

Parkinson’s disease having at least one associated gene set. For all significant categorical drug gene 268 

sets see Supplementary Table S26, and for all categorical drug-gene set results see Supplementary 269 

Tables S27 – S50. 270 

 271 

Drug similarity networks 272 

 For each phenotype, we created network graphs to investigate how the top drugs per 273 

phenotype cluster based on their Jaccard similarity coefficient42 (Figure 5), which is calculated 274 

using the proportion of gene targets shared by both drugs (see Methods). Central nodes in each 275 

network graph were defined using all drugs with a MAGMA competitive gene-set analysis p-value 276 

< 0.01 per phenotype. All drugs with a Jaccard similarity of 0.25 or greater with a central node 277 

were included as peripheral nodes. Figure 5A displays the similarity network graph for drugs 278 
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associated with hypercholesterolemia and Figure 5B illustrates the similarity of drugs associated 279 

with schizophrenia.  280 

As may be expected, statin drugs approved for hypercholesterolemia tend to cluster 281 

together, while the other two significant drugs, lomitapride and probucol, have no similar 282 

compounds (Figure 5A). There is also a cluster of PPAR agonists around the significant drug 283 

saroglitazar and nominally significant drug bezafibrate, which both target the PPAR a/g subunits. 284 

Figure 5B demonstrates that almost none of the Bonferroni-significant drugs identified using drug 285 

gene-set analysis for schizophrenia cluster with approved schizophrenia drugs, with the exception 286 

being one approved drug sharing an edge with benidipine. Most nominally significant drugs for 287 

schizophrenia (Figure 5B) appear in the same large cluster, which ranges from antiepileptics in 288 

one subcluster (e.g., ethosuximide), calcium channel blockers in the middle (e.g., felodipine), and 289 

ACE inhibitors on the other side (e.g., quinapril). The exception is gabapentin, which appears by 290 

itself connected to only one other drug, spironolactone. Interestingly, spironolactone has been 291 

found to improve schizophrenia symptoms in mice by acting as an antagonist to the NRG1-ERBB4 292 

signaling pathway, and is currently being tested in humans as an add-on treatment for SCZ43. The 293 

rest of the approved schizophrenia drugs (triangles) appear in the cluster centered around 294 

amisulpride, azaperone, domperidone, and perospirone. For network graphs of all phenotypes see 295 

the Supplemental materials (Figures S3 – S7). 296 

 297 
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 298 

Figure 5 Drug similarity networks. Drug similarity was calculated using the Jaccard index to measure the 299 
proportion of shared gene targets between every pair of drugs. Drugs nominally associated with our 300 
phenotypes (p < 0.01) were used as central nodes, with peripheral nodes being any drug with a Jaccard 301 
similarity > 0.25 with any central node. Panel (A) displays the results for hypercholesterolemia, and (B) 302 
shows the network for drugs associated with schizophrenia. Triangle = approved drug for the phenotype, 303 
square = Bonferroni-significant drug that is not approved for the phenotype, edge width = Jaccard similarity 304 
coefficient.  305 

A

B
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Discussion 306 

In the current study, we applied drug gene-set analysis to four non-psychiatric/neurological 307 

phenotypes and four psychiatric/neurological phenotypes, to investigate the performance of drug 308 

gene-set analysis at identifying clinically relevant drugs (i.e., drugs approved to treat the 309 

phenotypes we examined), and to identify potential repurposing candidates. We found the first 310 

drugs whose targets were significantly enriched for genes associated with hypercholesterolemia, 311 

type 2 diabetes, coronary artery disease, schizophrenia, and Alzheimer’s disease using this method, 312 

and identified drugs with the same mechanism of action (calcium channel blockers) as those 313 

published in the latest genome-wide association study of bipolar disorder44. In all, 22 drug-trait 314 

associations were identified across the eight phenotypes we examined. Notably, 4 of the 4 drugs 315 

identified for type 2 diabetes are approved to treat type 2 diabetes, and 3 statin drugs were 316 

significantly associated with both coronary artery disease and hypercholesterolemia, respectively24–317 

26,45,46. We also demonstrated that drug gene-set analysis does not have to be used to isolate single 318 

drugs for repurposing and can also pinpoint categories of drugs by using two different methods: 319 

by testing for the enrichment of individual drugs in a category and by combining gene targets of 320 

all drugs in a category into a single gene set, thereby also pointing into the direction of putative 321 

novel drug development that fall within an identified category. Specifically, we identified drug 322 

groups enriched for genetic signal for hypercholesterolemia, type 2 diabetes, coronary artery 323 

disease, and asthma that contained approved drugs for those diseases. Additionally, we found that 324 

the clinical indication drug groups for hypercholesterolemia, type 2 diabetes, and Parkinson’s 325 

disease were nominally enriched.  326 

Phenotypes that were not enriched for drugs that are already approved for treatment may 327 

not reflect a shortcoming of drug gene-set analysis, but more so the gap between the gene products 328 

targeted by current treatments and the genes that are most associated with it as measured by 329 
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genome-wide association studies. Thus, while no approved drugs for the psychiatric/neurological 330 

phenotypes examined here were identified, this may be because current treatments for these 331 

diseases only target disease symptoms and not the underlying disease mechanisms47–50. The results 332 

presented here establish that drug gene-set analysis can identify clinically relevant drugs – with 333 

accuracy varying across the phenotypes we examined – and is able to offer new drug candidates 334 

for repurposing. 335 

 Across our drug gene-set analysis results there is evidence for repurposable drugs for 336 

several phenotypes. For instance, we find repeated evidence for the potential treatment of 337 

schizophrenia with calcium channel blockers. The calcium channel blockers felodipine, 338 

amlodipine, and benidipine were significantly associated with schizophrenia after Bonferroni 339 

correction. The use of calcium channel blockers in psychiatry has shown mixed efficacy in the 340 

literature. Previous research has tested the use of calcium channel blockers for psychiatric disorders 341 

and found them ineffective, although many of these studies used first-generation drugs (e.g., 342 

verapamil)51. Recent research has found that calcium channel blocker use is associated with 343 

reduced illness severity for schizophrenia and lower rates of psychiatric admission and self-harm 344 

during psychosis52,53. Additionally, Lintunen et al. found that calcium channel blocker use was 345 

associated with lower risk for psychiatric hospitalization in individuals with schizophrenia, an 346 

effect which was specific to the calcium channel blocker subclass of dihydropyridines54. This is a 347 

significant distinction, as drugs in this subclass are also known to have higher selectivity and 348 

permeability across the blood brain barrier, perhaps making them better candidates for psychiatric 349 

use than first generation calcium channel blockers51. Notably, all calcium channel blockers that 350 

were identified for both schizophrenia and bipolar disorder, felodipine, amlodipine, benidipine, 351 

manidipine, and nilvadipine, are all dihydropyridines55. Likewise, one of the two drugs identified 352 

using drug gene-set analysis in the 2021 genome-wide association study on bipolar disorder was 353 
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nisoldipine, which is also a dihydropyridine calcium channel blocker44. Thus, further research into 354 

the use of dihydropyridines in psychiatry may be warranted.   355 

 Despite the promising results found here, drug gene-set analysis still leaves several 356 

questions unanswered regarding repurposable drugs prioritized with this method. First, drug gene-357 

set analysis does not specifically test for direct associations between a drug and a phenotype. 358 

Rather, it tests whether the gene targets of drugs are enriched for genetic signal that is associated 359 

with a phenotype. Second, and perhaps most importantly, is that drug gene-set analysis does not 360 

indicate the direction of effect, meaning that drugs identified could either alleviate or exacerbate 361 

disease progression and symptoms. Additionally, drug gene-set analysis provides no information 362 

on the way a drug interacts with its targets (e.g., agonism versus antagonism). These two 363 

limitations mean that drug gene-set analysis may best be used in the first steps of a drug 364 

repurposing pipeline, or as one of several methods used to triangulate novel drugs for a 365 

phenotype56. Drugs prioritized with drug gene-set analysis could be followed up using genomics 366 

approaches that consider gene expression (e.g., transcriptomic signature matching) or more 367 

statistical approaches like Mendelian randomization15 or local genetic correlation analysis57, using 368 

protein levels of the drug-gene targets for each gene in a drug gene set. This may prove tedious 369 

for drugs with large gene sets and may fail to capture interaction effects between different proteins. 370 

However, transcriptomic signature matching (e.g., correlating gene expression induced by a drug 371 

with the gene expression associated with a phenotype) could be an efficient follow-up for large 372 

drug-gene sets. Whilst the limitations above are important to note, they do not outweigh the 373 

benefits. Given the excessive financial and time challenges facing psychiatric drug development, a 374 

cheap in-silico, and quick method for genetically informed drug repurposing, such as drug gene-375 

set analysis, may prove invaluable. The drug gene-set analysis pipeline used here is publicly 376 

available (Methods) and can be used with any user provided GWAS summary statistics.  377 
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Materials & Methods  378 

 379 
Data. Clue Repurposing Hub. The Clue Repurposing Hub is a publicly accessible, annotated data 380 

set of FDA-approved, clinical trial, and pre-clinical drugs. We extracted gene targets for every FDA-381 

approved drug from the Clue Repurposing Hub that had a known clinical indication, disease 382 

category, and mechanism of action (n = 1201).  383 

 384 

Drug Gene Interaction Database. To augment the sets of gene targets downloaded from the Clue 385 

Repurposing Hub, we queried the Drug Gene Interaction Database API for additional genes 386 

targeted by or interacting with each compound in our data set. This database is publicly accessible. 387 

 388 

GWAS. Summary statistics for hypercholesterolemia, coronary artery disease, and Parkinson’s 389 

disease were downloaded from GWAS Atlas58–60 (https://atlas.ctglab.nl/). Summary statistics for 390 

type 2 diabetes were downloaded from the DIAGRAM Consortium website (http://diagram-391 

consortium.org/downloads.html)33, summary statistics for asthma were retrieved from GWAS 392 

Catalog (https://www.ebi.ac.uk/gwas/)61, and those for bipolar disorder and schizophrenia were 393 

accessed from the Psychiatric Genomics Consortium website44,61,62 394 

(https://www.med.unc.edu/pgc/download-results/). Lastly, GWAS summary statistics for 395 

Alzheimer’s disease (excluding 23andme data) were downloaded from the CTG Lab website63 396 

(https://ctg.cncr.nl/software/summary_statistics).  397 

  398 

Analyses. Drug gene-set analysis. Drug gene-sets were created using the gene targets and 399 

interactions retrieved from both the Clue Repurposing Hub and Drug Gene Interaction Database 400 

for every compound, resulting in 1201 drug gene sets with n >= 2. Additionally, we created 3 401 

types of drug gene-set by grouping drugs by clinical indication (n = 515), by mechanism of action 402 
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(n = 354), and by ATC III code (n = 164). Competitive gene-set analysis was performed separately 403 

with MAGMA v1.09b for each type of drug-gene set, using the 1K Genomes European reference 404 

panel19,64. Competitive gene set analysis was computed while conditioning on a gene set of every 405 

gene target in our data set (n = 2281) to assess whether drug gene-set associations were specific 406 

to the drug-gene set or driven by common properties of drug target genes.  407 

 408 

Drug group associations. Groups of drugs were examined for enrichment of genetic signal using a 409 

multiple linear regression model to estimate the effect of drug group membership on MAGMA t-410 

statistics. Given that the MAGMA t-statistic is a measure of the degree to which a drug gene set is 411 

enriched for genetic signal for a phenotype, this allows us to test whether drugs in that drug group 412 

exhibited (on average) greater enrichment than other drugs.  413 

 Denoting the vector of drug gene-set t-statistics as 𝑌 and encoding a binary indicator 414 

variable 𝐺! for drug group 𝑗, scored 1 for drugs in that drug group and 0 otherwise, we fit the 415 

model 𝑌 = 𝛽" + 𝐶𝛽# + 𝐺!𝛽$ + 𝜀 = 𝑋𝛽 + 𝜀. Here, 𝐶 is a covariate matrix containing the drug gene-416 

set size as well as the log of the drug gene-set size, and 𝜀 is the residual term with distribution 417 

𝜀	~	MVN(0, 𝜎%𝑆), where 𝑆 is the sampling correlation matrix of the MAGMA t-statistics. Combining 418 

the intercept and predictor variables in 𝑋, the model can be estimated using Generalized Least 419 

Squares, yielding the estimate 𝛽5 = (𝑋&𝑆'(𝑋)'(𝑋&𝑆'(𝑌, with sampling covariance matrix 𝑊 =420 

𝜎7%(𝑋&𝑆'(𝑋)'(. For the residual variance we have the estimate 𝜎7% = )*!+"#)*
,'-

, with 𝜀̂ = 𝑌 − 𝑋𝛽5 and 421 

with 𝑁 the number of drugs and 𝐾 = 4 the number of parameters in the regression equation. 422 

 For each drug group 𝑗, we test the null hypothesis 𝐻": 𝛽$ = 0 against the one-sided 423 

alternative 𝐻.: 𝛽$ > 0 using the test statistic 𝑇 = /0$
12$

, where 𝑊$ is the diagonal element of 𝑊 424 

corresponding to 𝛽5$ and 𝑇 has a t-distribution with 𝑁 − 𝐾 degrees of freedom. Correction for 425 
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multiple tests was done using a two-stage Bonferroni correction, correcting for the three grouping 426 

methods used and then for the number of groups tested within each grouping method. This 427 

resulted in a threshold of 0.05/𝑁3/3 for each grouping method 𝑔 with 𝑁3 the number of groups 428 

for 𝑔, where 𝑁3 = 85 for the ATC III code drug groups, 𝑁3 = 79 for the mechanism of action drug 429 

groups, and 𝑁3 = 118 for the clinical indication drug groups.  430 

 431 

Manhattan Plots of Genes Targeted by Approved Drugs. The Bonferroni-significant thresholds for the 432 

gene-level Manhattan plots were derived by 0.05/𝑁4,6, where 𝑁4 is the number of genes tested in 433 

MAGMA for a phenotype y. The Bonferroni-significant thresholds are as follows: 434 

𝑝7689:;7<=9>9:<=9?@A = 0.05/17493 = 2.86E-06, 𝑝B@AC9>9D = 0.05/11631 = 4.29E-06, 𝑝;AB = 435 

0.05/18180 = 2.75E-06, 𝑝AD>7?A = 0.05/18315 = 2.73E-06, 𝑝D;7@E<87:9F@A = 0.05/18265 = 436 

2.74E-06, 𝑝C@8<=A:= 0.05/18262 = 2.74E-06, 𝑝8A:G@FD<FD = 0.05/18367 = 2.72E-06, 𝑝A=E79@?9:D = 437 

0.05/18409 = 2.72E-06. 438 

 439 

Drug Similarity Network Graphs. Network graphs were created to investigate how the top results 440 

cluster based on the similarity of their gene targets. The similarity of each pair of drugs was 441 

evaluated using the Jaccard similarity coefficient, which is calculated using the formula 𝐽(𝐴, 𝐵) =442 

	|	.	∩	K	|
|	.	∪	K	|

 for drug gene sets 𝐴 and 𝐵, where |𝐴 ∩ 𝐵| denotes the number of genes shared by those 443 

gene sets and |𝐴 ∪ 𝐵| the number of genes that occurs in at least one of the two gene sets. Central 444 

nodes for each phenotype were defined as drug-gene sets with a MAGMA gene-set analysis p-value 445 

< 0.01, and all drugs with a Jaccard index >= 0.25 with a central node were included as 446 

peripheral nodes. Network graphs were created in Python using the package networkx 2.6.3.  447 

 448 
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URLs. CTG Lab, https://ctg.cncr.nl/software/summary_statistics; GWAS Atlas, 449 

https://atlas.ctglab.nl/; GWAS Catalog, https://www.ebi.ac.uk/gwas/; Drug Gene Interaction 450 

Database, https://www.dgidb.org/; DIAGRAM Consortium, http://diagram-451 

consortium.org/downloads.html); Psychiatric Genomics Consortium, 452 

https://www.med.unc.edu/pgc/download-results/; Clue Repurposing Hub, 453 

https://clue.io/repurposing; MAGMA, https://ctg.cncr.nl/software/magma. 454 

 455 

Code availability 456 

The software pipeline used to compute drug gene-set analysis and the drug group analyses is 457 

publicly available and can be accessed here: https://github.com/nybell/drugsets.  458 
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