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ABSTRACT 

 

Background: The detection of subtle cognitive impairment in a clinical setting is difficult, and 
because time is a key factor in small clinics and research sites, the brief cognitive assessments 
that are relied upon often misclassify patients with very mild impairment as normal. In this 
study, we seek to identify a parsimonious screening tool in one stage, followed by additional 
assessments in an optional second stage if additional specificity is desired, tested using a 
machine learning algorithm capable of being integrated into a clinical decision support system.   

Methods: The best primary stage incorporated measures of short-term memory, executive and 
visuospatial functioning, and self-reported memory and daily living questions, with a total time 
of 5 minutes. The best secondary stage incorporated a measure of neurobiology as well as 
additional cognitive assessment and brief informant report questionnaires, totaling 30 minutes 
including delayed recall. Combined performance was evaluated using 25 sets of models, trained 
on 1181 ADNI participants and tested on 127 patients from a memory clinic. 

Results: The 5-minute primary stage was highly sensitive (96.5%) but lacked specificity 
(34.1%), with an AUC of 87.5% and DOR of 14.3. The optional secondary stage increased 
specificity to 58.6%, resulting in an overall AUC of 89.7% using the best model combination of 
logistic regression for stage 1 and gradient-boosted machine for stage 2.  

Conclusions: The primary stage is brief and effective at screening, with the optional two-stage 
technique further increasing specificity. The hierarchical two-stage technique exhibited similar 
accuracy but with reduced costs compared to the more common single-stage paradigm. 

 

 

Keywords: Alzheimer’s disease, mild cognitive impairment, clinical decision support, machine 
learning, neuropsychological assessment  
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INTRODUCTION 

Alzheimer’s disease and related dementias (ADRD) may be difficult to detect in clinical research 
and general clinical practice, especially in prodromal stages (i.e., mild cognitive impairment or 
MCI) where cognitive changes are subtle and can be mistaken for normal aging [1]. Examining 
biomarkers characteristic of ADRD such as amyloid or phosphorylated tau via spinal fluid, blood 
tests, or PET scans support the presence of underlying pathology without specifically 
determining current cognitive status of the individual [2]. Routine screening for MCI and ADRD 
to detect early impairment is not commonly utilized in primary care due to a number of factors 
including time and effort, challenges with administering and interpreting brief cognitive tests, 
and lack of screening guidelines [3–5]. Similar challenges exist for screening in clinical trials, 
especially for MCI cases.  

While a recent approval of therapeutics that seek to delay onset or slow progression has been 
controversial [6], symptomatic medications can delay disease progression and mortality [7] and 
nonpharmaceutical and lifestyle interventions may provide cognitive or functional benefits [8,9]. 
Other benefits of screening include the ability to change behaviors or improve health outcomes 
[10] and advanced care planning. Thus, screening for and early detection of MCI and ADRD has 
the potential to offer clinical benefit today, and the development of effective programs may 
enhance clinical research and patient selection for emerging disease-modifying medications in 
the future. 

Brief cognitive assessments, including the Montreal Cognitive Assessment (MoCA) [4] and 
Mini-Mental State Exam (MMSE) [11] are effective at identifying cognitive impairment, 
however they may not be as sensitive for MCI, particularly non-AD forms [5]. Self-report 
screening instruments, including the Quick Dementia Rating Scale (QDRS) [12], Everyday 
Cognition Scale (ECog) [13], and Functional Activities Questionnaire (FAQ) [14], can identify 
subjective complaints and early changes in instrumental activities of daily living (IADL). Given 
sociodemographic and educational biases inherent in many cognitive assessments, global 
screening measures such as the QDRS and ECog may be more sensitive to earlier stages of 
impairment [15] and provide measures of changes in cognitive and functional abilities over time 
[16]. However, the self-report and informant-report measures are subjective, and cannot be used 
on their own to determine any objective measure of cognitive performance [17]. As a result, 
screening for cognitive impairment may benefit from incorporating both an objective cognitive 
assessment component as well as self-report and/or informant-report measures, to better identify 
individuals with early impairments and reassure individuals with a low likelihood of cognitive 
impairment. 

Because clinical practices and research centers outside large tertiary academic medical centers 
may not have the available time, effort, and or trained staff to conduct comprehensive cognitive 
evaluations, there often is an overreliance on these brief screening measures that may potentially 
miss detection of up to half of true cases of cognitive impairment [18,19]. This can have 
consequences on clinical care and on referral for clinical trials. To address these unmet needs, 
two strategies can be utilized: automating interpretation, and simplifying the assessments. 
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Automating interpretation using clinical decision support systems 

Clinical decision support (CDS) systems help health care professionals by performing various 
functions including giving reminders, interpreting tests, assisting diagnosis, and alerting of 
medication interactions. CDS systems can effectively reduce healthcare costs, for example by 
reducing unnecessary laboratory testing [20] or aiding physicians in differential diagnosis [21]. 
Studies implementing CDS systems have demonstrated improved diagnostic accuracy and 
documentation, as well as reduced diagnostic error [21,22]. CDS systems can also improve 
screening for common chronic diseases such as cancer, kidney disease, obesity, abdominal aortic 
aneurysm, diabetes, osteoporosis, hepatitis B virus, depression, and dementia, leading to 
improved rates of diagnosis [23,24]. There is clear potential for CDS systems to help close the 
gap between healthcare provider knowledge and performance for a more robust clinical decision-
making system.  

Early and accurate detection of ADRD is vital to early case ascertainment and recruitment for 
clinical trials and can be aided by CDS systems. Studies of CDS systems’ effectiveness at 
detecting dementia in primary care identify significant improvements in rates of reported 
dementia cases [25] as well as physician confidence in differential diagnosis [26], compared to 
when the CDS was not utilized. Machine learning is also useful in CDS systems for feature 
selection as well as model development by optimizing model inputs and allowing for complex 
data relationships in modeling [27]. A review of the contribution of machine learning in 
classification of MCI and ADRD using the Alzheimer’s Disease Neuroimaging dataset reported 
overall improvement in classification and prediction accuracy, especially in challenges involving 
MCI patients [28]. Furthermore, a study using a machine learning-based dynamic CDS system 
for supporting the diagnosis of dementia achieved an excellent classification accuracy of 92% 
[29]. 

Cost-sensitive cognitive screening 

In addition to increasing accuracy, the main benefit of CDS systems is to decrease monetary and 
time costs associated with screening and subsequent diagnosis. Many CDS systems scour 
electronic medical records (EMR) for treatment regimens, physician notes, and/or the patient’s 
medical history. These datapoints are able to identify patients who may be at risk for a particular 
disorder with sufficient accuracy [30,31], however these systems require the EMR to contain 
sufficient detail to determine that risk. In the case of MCI and ADRD, studies that use EMR for 
risk assessment often rely heavily on comorbidities that indicate poor health, which then 
secondarily indicates risk of ADRD. No method for identifying latent factors of cognitive 
impairment itself within EMR, and not just determining risk factors, has been successful to date. 
Thus, to properly screen for prodromal impairment, components that directly assess cognitive 
and daily functioning must be incorporated into the medical record [32]. 

Many brief cognitive screeners, including the MoCA [4] and MMSE [11], require licensing and 
training for use, and can misclassify individuals with very mild impairment as not impaired [5], 
particularly individuals from underrepresented and underserved communities. While combining 
these brief cognitive screeners with a self-report screener such as the QDRS or FAQ can improve 
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overall detection accuracy, producing a classification of “screen positive” or “screen negative” 
based on the results of multiple tools introduces a degree of subjectivity on the part of the 
clinician doing the interpretation.  

Cost-sensitive CDS systems have also been shown to greatly improve screening accuracy while 
minimizing assessment time [33,34]. To minimize time cost, the components examined are 
carefully curated using feature selection machine learning algorithms [35], which serve to 
identify the most useful features within a given set of assessments. In previous work, four 
assessment components were found to detect impairment at 94.5% sensitivity within 15 minutes 
of active clinician time: delayed narrative recall, trail-making B, and memory questions reported 
by both the patient and an informant [36]. These components were also found to be similarly 
highly valued in other feature selection studies, highlighting the utility of patient and informant 
reported measures [33] as well as the benefit of both a delayed memory component [34,37] and 
executive-visuospatial component [37]. Other studies have placed greater focus on minimizing 
costs over measuring cognitive performance, determining that self-report questions alone can 
produce an impressive area under the ROC curve (AUC) of 0.865 when classifying a patient 
using the Clinical Dementia Rating (CDR) scale [33]. However, applying these particular 
neuropsychological tests in routine clinical practice may have practical and cost limitations. 

Multi-stage screening 

In this study, we evaluated the combined efficiency of cost-sensitive screening and automated 
interpretation with the efficacy of robust assessments by developing a multi-stage screening 
paradigm capable of being integrated into CDS systems for use in primary care and research. In 
contrast to a single stage, two or more hierarchical stages enable easily-collected screening 
assessments (e.g., questionnaires, brief assessments) to be first examined prior to those that 
require more time and effort to collect (e.g., neuropsychological testing, MRI). If sensitivity is 
prioritized to minimize false-negatives, patients that screen negative at early stages could be 
safely excluded, and only those that are not clearly unimpaired would be recommended for 
additional screening procedure. This technique could empower smaller clinics and research sites 
to screen for cognitive impairment without expending unnecessary resources, and without 
requiring physicians to interpret disparate screening procedures. Patients who screen positive 
could then be further evaluated or referred to memory-care specialists for further diagnosis and 
management. 

We hypothesize that a two-stage screening paradigm, that uses progressively more in-depth 
screening components at each stage, will exclude more non-impaired patients after the final stage 
and misclassify fewer impaired patients overall than if only a single-stage algorithm was used on 
all patients. We aim to develop a parsimonious and brief primary stage that effectively screens 
early impairment, with an optional secondary stage that further excludes healthy participants 
while using more time-intensive and costly assessments. More in-depth diagnostic evaluation 
could then be recommended to more accurately identify impairment status, determine dementia 
etiology, and prompt management and/or treatment of MCI and ADRD when required. 

METHOD 
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Participants 

Two sets of participant data were used in this study: a research dataset for training and parameter 
optimization, and a clinical dataset for testing and providing output statistics.  

Obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 1181 participants (517 
HC, 522 MCI, 142 AD) were used to train each set of models as well as in feature selection and 
hyperparameter optimization. The ADNI database (adni.loni.usc.edu) was launched in 2003 as a 
public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 
goal of ADNI has been to test whether MRI, PET, other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of MCI and early 
AD. While subjects in ADNI are voluntary research participants and thus are less diverse and 
more highly educated than those found in the general population, this data was useful as a 
training set as its participants are examined at dozens of testing centers across the globe yet are 
each administered roughly identical assessment regimens.  

To test the models, 127 participants (41 HC, 59 MCI, 27 AD) from the Comprehensive Center 
for Brain Health (CCBH) were used. Unlike ADNI, the CCBH dataset is drawn from a clinical 
population with a focus on examining brain health, MCI, and ADRD. As a result, the makeup of 
the CCBH cohort is more representative of populations of real-world clinics and medical 
practices than the ADNI dataset despite having similarly limited racial and ethnic diversity, and 
thus serves as an effective group to test models for clinical decision support. The two datasets 
share many common features, with the main exception being that patient self-report of cognition 
and functioning is captured by the ECog in ADNI and by the QDRS in CCBH. 

From both datasets, only participants with a CDR of 0 (no dementia), 0.5 (questionable or very 
mild dementia), or 1 (mild dementia) were selected, ensuring that the participants resemble those 
who would seek screening procedures for cognitive impairment. Those with moderate to severe 
dementia (CDR 2 or 3) can be more readily identified as impaired, and thus were excluded from 
our screening procedure.  

Two-stage architecture  

The CDS system developed in this study is intended to primarily select out healthy controls, and 
identify ideal candidates for cognitive impairment screening, while minimizing time and effort 
costs. To achieve this, the system is given a two-stage hierarchical structure, where the primary 
stage is intended to screen out those with no impairment and the second stage is intended to 
further improve specificity after introducing additional assessments. While the primary stage 
thus prioritizes sensitivity over specificity, the second stage utilizes a multi-model network [38], 
which allows for separate models each with their own set of features and hyperparameters to 
target either the impaired or nonimpaired class. This strategy enables the ability to fine-tune each 
model’s performance, as well as set individualized classification thresholds, to optimize the 
detection of impairment status. A visualization of the architecture can be seen in Figure 1. 

Feature selection 
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The BorutaSHAP v1.0.16 [39] selection algorithm, a model-guided wrapper in Python that 
utilizes Shapley values to improve accuracy, was used to select the most useful and effective 
assessments and assessment portions (“features”) within each of the model’s two stages, using a 
random forest classifier (scikit-learn v1.0.1 [40]) as its base model due to its general 
effectiveness. Each stage was provided a separate tailored list of features based on the intended 
functionality. Only one-fourth (25%) of the stratified training (ADNI) data was held for use in 
the feature selection process, to avoid leakage and subsequent overfitting in the model training 
phase.  

As the primary stage is intended to identify healthy controls with minimal assessment time, only 
a handful of features were chosen to feed into the first feature selection algorithm. These 
included each component of the FAQ and its total, Trail-making Tasks A and B, the 5-word 
recall component of the MoCA, medical history of hypertension or stroke, educational 
attainment in years, and the patient’s age and sex. Self-report questionnaires that obtained the 
patient’s ratings of their memory, language, and attentional functioning, as well as their 
participation in activities within and outside the home, were also derived from ADNI’s ECog to 
match CCBH’s QDRS [12], including the domains 1) memory, 2) orientation, 3) judgement, 4) 
outside activities, 5) home activities, 6) language, and 7) attention. This questionnaire is referred 
to as the “QDRS-like” questionnaire. 

The second stage incorporates a multi-model approach, allowing for two sets of features to each 
target one of the respective classes (impaired or non-impaired). Each feature selection algorithm 
was set to target each class, with recall (sensitivity) for that class used as the optimized 
parameter. In addition to the features used previous, components were considered in this stage 
that require extra effort or time costs. These additional features include the rest of the MoCA 
components and its total score, a verbal fluency task (animal naming), a verbal learning task 
(Rey auditory verbal learning in ADNI, Hopkins verbal learning in CCBH, adjusted for number 
of items) immediate and delayed recall, informant-provided versions of the QDRS-like 
questionnaires, and hippocampal volume as assessed by structural MRI.  

The Boruta feature selection process was run a total of fifteen times: five times each for stage 1, 
stage 2 “impaired”, and stage 2 “non-impaired”. Features that were selected as important in at 
least four of the five runs per stage were selected for use in the model. 

Optimization of parameters 

Each stage of the system was examined using five types of models: a logistic regression (LR), a 
support vector machine (SVM), a random forest (RF), a gradient-boosted machine (GBM), and a 
three-layer feed-forward neural network (FFNN). Scikit-learn v1.0.1 [40] was used to create the 
LR, SVM, RF, and FFNN. The GBM was created using LightGBM v3.3.2 [41], as this 
implementation allows for categorical variables to be accounted for and improves model time-to-
fit compared to scikit-learn’s version. 

Optuna v2.10.0 [42] was used to select optimal hyperparameters for each model, leveraging its 
implementation of define-by-run dynamic parameter search spaces and efficient strategies for 
pruning. This optimization algorithm was first run to generate hyperparameters for the random 
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forest used in the feature selection step using the same 25% of stratified training data. After 
feature selection was performed, optuna generated hyperparameters for each model based on the 
three feature groups: stage 1, stage 2 “non-impaired targets”, and stage 2 “impaired targets”. 
From the available training data, the same 30% was set aside to be used for each of the three 
optimization steps. Thresholding analysis was also performed to identify ideal levels for 
determining a classification of “impaired” or “not impaired” based on the output probabilities, 
also performed on the 25% stratified training data. 

Analysis 

Characteristics of each dataset, as well as comparisons between datasets, were examined using 
either Analysis of Covariance (ANCOVA) with age as a covariate when variables were 
continuous, or Chi-squared tests when variables were categorical. Each model was examined for 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and 
area under the receiver-operating characteristic curve (AUC). 

RESULTS 

Participant characteristics 

The sample from ADNI was comprised of 1181 participants. There were similar numbers of men 
(594) and women (587) in the ADNI dataset, with a significantly greater proportion of women in 
the HC group (57.8%) than in the MCI (44.3%) and ADRD (40.1%) groups (χ2(2, 1181) = 11.51, 
p < 0.001). The mean age for the ADNI sample was 72.3±7.2y. ADNI’s ADRD group (75.1±8.2) 
was significantly older than the HC (72.0±6.2y) and MCI (71.9±7.6y) groups (F(2,1178)=12.2, 
p<.001). 

The sample from CCBH had 127 participants. There were more women (75) then men (52) in the 
CCBH dataset. While there were more women in CCBH’s HC group (75.6%) than the MCI 
(50.8%) and ADRD (51.8%) groups, the difference was not significant. The mean age of the 
CCBH sample was 72.7±10.0y. The HC group (67.6±9.1y) was significantly youngest, and the 
ADRD group (79.6±8.7y) was significantly oldest, with the MCI group (73.0±9.2y) significantly 
different from HC and ADRD (F(2,124)=14.4, p<.001).  

The Clinical Dementia Rating (CDR) sum of boxes scores (CDR-SB) were not significantly 
different between the ADNI and CCBH samples. Non-impaired participants in ADNI had a mean 
CDR-SB of 0.0±0.1, and in CCBH 0.1±0.2. Impaired participants had a CDR-SB of 2.1±1.6 in 
ADNI and 2.2±1.8 in CCBH. Additional differences between dementia severities within each 
dataset can be found in Table 1, and comparisons between ADNI and CCBH can be found in 
Table 2. 

Primary Stage 

Out of the 28 features available, the Boruta feature selection algorithm identified ten total 
features for the primary screening stage: the memory and language components of the QDRS-
like self-report questionnaire, the “preparing paperwork” and “remembering 
appointments/occasions” questions of the FAQ, Trails A and B, the five-word recall and 
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orientation components of the MoCA, the participant’s age, and the sum total of the seven 
QDRS-like components (Table 3).  

After identifying ideal hyperparameters for each model type, thresholding analysis revealed that 
a reduced threshold of 10% (default: 50%) for positive (“impaired”) class determination was 
ideal for maximizing sensitivity (impaired classification) at the expense of reduced specificity 
(not-impaired classification). This strategy maximizes the likelihood that impaired participants 
are recommended for further testing. 

After training each of the five models using the ADNI data, they were then tested using the held-
out CCBH data. In this primary stage, the LR model had the best balance of sensitivity (96.5% or 
83/86) and specificity (34.1% or 14/41), followed by the SVM (97.7% sensitivity or 84/86, and 
24.4% specificity or 10/41). Area under the ROC curve analyses supported that the LR was the 
most balanced choice (AUC = 0.875). Using the LR as the selected model, this primary stage 
exhibited high diagnostic accuracy with a Positive Predictive Value (PPV) of 75.5% and a 
Negative Predictive Value (NPV) of 82.4%, giving a Diagnostic Odds Ratio (DOR) of 14.3 
(Table 4). 

Secondary Stage 

With the inclusion of 21 additional features, bringing the total available feature count to 49, the 
Boruta feature selection algorithm identified two sets of features based on each of the two target 
classes. Both sets had 16 features in common: four questions of the FAQ (“writing checks and 
paying bills”, “preparing paperwork”, “remembering appointments/occasions”, and “driving or 
arranging transport”) plus its total score, the five-word recall component of the MoCA and its 
total score, the informant-provided attention, language, and memory components and the self-
report memory component of the QDRS-like questionnaire plus its total, the verbal fluency task, 
the delayed component of the verbal learning task, the participant’s age, and hippocampal 
volume. Implementing the multi-model network enabled each class to be differentially targeted 
using features identified to best target that class, improving overall classification accuracy; when 
not-impaired subjects were targeted Trails A was included, and when impaired subjects were 
targeted Trails B, the orientation component of the MoCA, and the informant-provided “outside 
activities” component of the QDRS-like questionnaire were included (Table 3). 

As in the primary stage, additional thresholding analysis was performed after identifying 
hyperparameters for each model on 25% of the available training data. As screening for potential 
impairment is the goal of this model and not diagnosis, high sensitivity at the expense of 
specificity was again preferred. For the RF, LR, FFNN, and SVM models, a reduced threshold of 
10% for positive-class (“impaired”) determination was identified, while the GBM model 
performed best at a further reduced threshold of 5% for positive-class determination. 

For each of the two stages, all 25 combinations of the five model types were examined (Table 
4). Performance metrics were calculated based on all 127 subjects in the test set, with exclusions 
in the primary stage appended to the second stage’s outputs. As each model’s primary stage 
selected different subjects for use in the second stage, metrics examining the second stage only 
are not comparable. For example, if a subject was incorrectly classified as not-impaired in the 
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primary stage, that erroneous classification was included when calculating sensitivity metrics for 
the entire two-stage model. 

Sensitivity was overall high across all models, with the best performing models correctly 
identifying 84 out of 86 impaired participants (97.7%) (Table 4). Specificity was highest when a 
GBM was used in the secondary stage, correctly identifying 53.7%-58.6% of not-impaired 
participants. The LR/GBM provided the best overall combination of processing speed, sensitivity 
(95.3%), and specificity (58.6%), with an AUC of 0.897; the only dual-stage model that 
exceeded this AUC was the RF/GBM model which suffered from overfitting. The LR/GBM 
model also had the best Positive Predictive Value (PPV; 82.8%) and high Negative Predictive 
Value (NPV; 85.7%) giving a DOR of 28.9. 

Single Stage with All Features 

Performance was also examined using a single-stage paradigm, where all participants were 
examined using only the second stage of the above model, with all available features. Across the 
board, performance metrics for the single-stage models were slightly better than the matched 
dual-stage models; for example, the GBM single-stage performed similarly to the GBM/GBM 
dual-stage model. The LR and SVM models achieved 100% sensitivity but with greatly reduced 
specificities (29% and 24%, respectively). Both the RF and FFNN models performed identically 
in a single stage to their paired two-stage model counterparts (RF/RF and FFNN/FFNN) (Table 
4). However, the single stage models did not benefit from a prior screening stage and ran on all 
available participants. 

Misclassifications 

In the well-balanced LR/GBM model, only four participants in the test set were misclassified as 
not impaired when they should have been screened positive. Only three were misclassified in the 
primary stage’s LR model, with one occurring in the secondary stage. Each of these 
misclassifications resembled healthy controls in all but their CDR, which ultimately guided their 
true diagnosis of MCI. These MCI patients had normal MoCA scores of 26.5 ± 2.6, which was 
similar to other HC patients scores (26.4 ± 2.6). The trail-making A scores of these misclassified 
patients (30.0 sec ± 3.3 sec) were more similar to HC (29.6 sec ± 11.8 sec) than MCI (34.8 sec ± 
11.9 sec), and the mean score of the trail-making B task (62.5 sec ± 23.8 sec) was better than 
other HCs in the test set (70.6 sec ± 22.7 sec). 

DISCUSSION 

This study identified two parsimonious screening stages and explored the utility of a hierarchical 
screening procedure to identify potential cognitive impairment and exclude patients with normal 
cognitive functioning, minimizing costs and reducing assessment time for these patients that may 
otherwise be administered additional diagnostic procedures. Optimal parameters of 
implementation, including the selection of machine learning model algorithms for each stage, 
were also explored in-depth in this study. This two-pronged approach was trained on publicly 
available research data (ADNI) but tested on real-world patients of a memory clinic (CCBH), 
exhibiting high general clinical utility especially in the 5-minute primary screening stage, and 
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affording the ability to increase screening potential for specialists and clinical researchers in the 
second stage. As CDS systems become more widely integrated into clinical practice, these types 
of multi-tiered systems may be highly useful at ensuring those with MCI and mild ADRD are 
referred for formal diagnosis [20,23]. While each stage can be administered separately, enabling 
the quicker and simpler assessment stage to be administered in primary care and research 
screening contexts, a combined approach may provide a robust ability to identify very mild 
impairment when required. 

The primary stage identified mild impairment at a high sensitivity using a delayed verbal 
memory component (five-word recall), a situational awareness component (orientation), a 
visuospatial component (trails A) and a task-switching component (trails B), along with self-
report questions concerning the individual’s memory and daily functioning. Additional 
components in the second stage further exclude healthy participants from further testing, at the 
cost of increased assessment time. It should be noted that the specific assessments identified in 
this study may not be required for optimal utility and may be able to be modified or replaced as 
needed with another assessment that captures similar functioning in order to decrease costs while 
maintaining efficacy; for example, the task-switching component identified by Trails B may be 
able to be replaced with a briefer task-switching assessment, e.g., the Number-Symbol Coding 
Task [43]. Additionally, in the second stage, the MRI component may be able to be replaced 
with another measure of ADRD pathology such as fluid or PET measurements of amyloid or tau 
[44]. A tool that captures each of these cognitive components, but not necessarily using the exact 
same assessments, may thus perform similarly well as the one described in this study. 

The primary stage described in this study may function effectively as an intermediary between 
self-report screeners, which require no clinician time except interpretation, and brief screening 
assessments including the full MoCA and MMSE which require at least 10 minutes. The Mini-
Cog is a very brief (three minute) assessment that contains assessment components similar to that 
identified in the primary stage: a three-word recall delayed memory component and an 
executive/visuospatial clock-drawing task. However, the Mini-Cog does not incorporate task-
switching, visuomotor speed, nor self-report measures. 

Ultimately, while the procedure’s ability to identify current impairment was excellent, it had a 
tendency to misclassify cognitively normal patients as impaired even after the second stage. This 
was due to our prioritization of sensitivity over specificity in both stages to minimize missed 
identification of impairment while permitting healthy controls to be excluded following more in-
depth testing; both stages are intended to screen for, not diagnose, impairment. 

Model architecture 

The primary stage of the model uses quick and easily administered assessments: the trail-making 
test, the 5-word delayed recall and the orientation components of the MoCA, and a series of self-
report questions including portions of the FAQ. This stage functions as an effective middle 
ground between purely questionnaire-based screening paradigms as in the QDRS [15] or FAQ 
[14] and brief performance assessments such as the MoCA [4] or MMSE [11]. Examining 
delayed memory (MoCA recall), attention (MoCA orientation), and both visuospatial and 
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executive processing (trail-making) enables objective assessment of cognitive performance with 
minimal training required, and with all components able to be easily completed within five 
minutes; the MoCA’s five-word delayed recall component requires a five-minute delay, and both 
the trail-making and MoCA orientation components can be often completed within the delay 
portion. The self-report components of the primary stage can be completed by the participant 
prior to or alongside the visit, for example in the waiting room. The best performing model in 
this stage, the logistic regression, excluded 14 cognitively normal patients from further screening 
in the second stage while erroneously excluding only three borderline MCI and no AD patients; 
thus, sensitivity was high, but specificity was low. Performance in this stage approaches or 
exceeds that of similar studies that prioritize cost savings and minimize assessment time [33,36].  

The model’s second stage introduces more in-depth assessments, including the verbal fluency 
(animal naming) task, a delayed narrative recall task, hippocampal volume from structural MRI, 
and informant-report questionnaires, altogether requiring a total of 30 minutes of clinician time 
plus the collection of the structural MRI and the involvement of an informant such as a 
caregiver, spouse, or family member. As the primary stage effectively identified impaired 
patients, this second stage functioned to better identify healthy controls for further exclusion. 
The best performing model in this stage, the LightGBM gradient-boosted machine, excluded an 
additional ten cognitively normal patients and only misclassified a single borderline MCI case 
and no ADRD patients, resulting in a total sensitivity of 95.3% and specificity of 58.6% across 
both stages.  

Of the MCI cases that were misclassified as cognitively normal in the CCBH test set and thus 
excluded from further analysis, all of them exhibited normal scores on a majority of 
neuropsychological tests; these cases displayed normal MoCA scores, and performed better than 
the average non-impaired patient on the Trailmaking task versions A and B. The criteria for their 
diagnosis of MCI was guided by semi-structured interviews with both the patient and an 
informant (the Clinical Dementia Rating), revealing subtle impairment that led to a diagnosis of 
MCI.  

Model performance 

The best performing models were found to be the combination of the LR for stage one and the 
GBM for stage two, as well as the model utilizing a FFNN for stage one and again using the 
GBM for stage two, both producing an overall AUC of 0.897. Although in the primary stage 
both the LR and FFNN were found to perform relatively similarly (LR AUC: 0.874, FFNN 
AUC: 0.861), in practice when paired with the second stage the FFNN/GBM model required 
1.41 seconds to run all participants while the LR/GBM model only took 422 milliseconds to run 
on our machine: an improvement of over three times. The FFNN was the slowest model 
component overall, and despite being one of the top performers it would not be appropriate in 
most contexts. Further, the RF models consistently overfit in the primary stage, classifying all 
participants as impaired and excluding none; using a RF in the primary stage was essentially the 
same as not having a primary stage at all. 

Limitations 
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While it was a strength that the testing set was entirely separate from the training set in terms of 
location, participant demographics, and procedure, it was a limitation that the test set only 
contained a relatively small number of samples: approximately 10% of the training set. Further, 
the balance of impaired to non-impaired participants was not equal between the training and 
testing sets; the ratio in the training set was approximately 4:3 impaired to non-impaired, while 
the testing set was approximately 2:1 impaired to non-impaired. This was due to CCBH’s focus 
as a clinic open to the public, while ADNI had specific recruitment targets to fulfill their 
objectives of examining Alzheimer’s disease and cognitive impairment, including obtaining a 
representative sample of non-impaired participants. This may have also contributed to the false 
positives leading to overall low specificity in the test set: many controls in the test set entered 
CCBH with subjective complaints, potentially indicating underlying pathology that was not 
detected due to a lack of collection of biomarkers sensitive to prodromal impairment. 

In the second stage, the use of hippocampal volume from structural MRI, as well as requiring an 
informant or caregiver, adds complexity and may impact the use of this stage in clinical practice 
and research sites. However, the removal of these components significantly impacts both 
sensitivity and specificity, rendering the stage less effective overall. While self-report 
questionnaires are fairly accurate at identifying even very mild impairment [15], informant 
interviews are highly useful at determining subtle impairment in daily life, an important 
component of MCI [16,45] and useful in ruling out non-impaired patients. Volumetric data from 
MRI is expensive and difficult to acquire, however future study may replace volumetric data 
with another biological measure, such as blood assays for dementia-related proteins (e.g., 
amyloid beta, phosphorylated tau) within either the primary- or secondary-stage screening 
procedure [46–48]. For this study, volumetric data was used both due to its availability within 
both datasets used as well as its validity as a neurobiological measure of ADRD. 

Conclusions 

This study identified the utility of two-stage hierarchical decision support procedures and their 
ability to maximize screening potential while minimizing necessary costs, compared to a single 
model using the features of both stages. The development of the procedure revealed that a brief 
5-minute assessment of delayed verbal memory, visuospatial and executive functioning, and 
attention along with self-report memory and IADL questions, is highly effective at identifying 
MCI and ADRD. Additional examination using the optional second-stage of the procedure is 
able to further exclude non-impaired individuals. Additional optimization and validation using 
more diverse populations is needed, as is exploration of a more parsimonious second stage. 
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Table 1. Subject Characteristics 

Training Set (Alzheimer’s Disease Neuroimaging Initiative) 
 HC 

N=517 
MCI 

N=522 
ADRD 
N=142 

p-value 

Age 72.0 (6.2) 71.9 (7.6) 75.1 (8.2) <.001 
Sex (% Female) 57.8% 44.3% 40.1% <.001 
Years of Education 16.7 (2.4) 16.2 (2.6) 15.9 (2.7) <.001 
FAQ total 0.9 (2.5) 6.8 (8.2) 26.6 (11.6) <.001 
MoCA total 25.9 (2.6) 23.2 (3.2) 17.6 (3.9) <.001 
Verbal fluency 21.4 (5.5) 18.1 (5.0) 12.9 (5.0) <.001 
Verbal learning – Immediate 52.9% (13.6%) 42.5% 

(13.1%) 
28.1% (9.0%) <.001 

Verbal learning – Delayed 52.7% (27.2%) 31.9% 
(27.1%) 

3.9%  
(8.5%) 

<.001 

Trailmaking Task – A  32.1 (10.4) 38.9 (16.8) 57.6 (31.2) <.001 
Trailmaking Task – B  76.3 (32.1) 98.7 (40.4) 146.5 (41.1) <.001 
CDR Sum of Boxes 0.0 (0.1) 1.4 (0.9) 4.4 (1.6) <.001 
Hippocampal volume 7.6 (0.9) 7.1 (1.1) 5.8 (1.0) <.001 
Testing Set (Comprehensive Center for Brain Health) 
 HC 

N=41 
MCI 
N=59 

ADRD 
N=27 

p-value 

Age 67.6 (9.1) 73.0 (9.2) 79.6 (8.7) <.001 
Sex (% Female) 75.6% 50.8% 51.9% .064 
Years of Education 15.8 (2.1) 16.0 (2.6) 15.1 (2.5) .475 
FAQ total 0.1 (0.5) 2.4 (3.8) 8.7 (5.3) <.001 
MoCA total 26.4 (2.6) 23.2 (3.1) 15.7 (4.0) <.001 
Verbal fluency 20.8 (4.9) 17.8 (4.4) 9.7 (3.9) <.001 
Verbal learning – Immediate 67.4% (12.1%) 49.5% 

(10.3%) 
27.2% 
(10.6%) 

<.001 

Verbal learning – Delayed 80.1% (15.2%) 44.9% 
(24.4%) 

9.0% (13.3%) <.001 

Trailmaking Task – A  29.6 (11.8) 34.8 (11.9) 61.8 (28.9) <.001 
Trailmaking Task – B  70.6 (22.7) 93.6 (41.7) 128.1 (48.9) .002 
CDR Sum of Boxes 0.1 (0.2) 1.4 (0.9) 4.2 (1.6) <.001 
Hippocampal Volume 6.7 (0.3) 6.6 (0.5) 6.4 (0.7) .407 
M(SD) 
Bold indicates significantly greater value 
 
HC = Healthy Control; MCI = Mild Cognitive Impairment; ADRD = Alzheimer’s Disease and Related 
Dementias; FAQ = Functional Activities Questionnaire; MoCA = Montreal Cognitive Assessment; 
CDR = Clinical Dementia Rating 
 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.06.22279650doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.06.22279650
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Table 2. Comparison between ADNI and CCBH 

 

 Not Impaired Impaired 
ADNI 

N = 517 
CCBH 
N = 41 

ADNI 
N = 664 

CCBH 
N = 86 

Age 72.0 (6.2)*** 67.6 (9.1) 72.6 (7.8) 75.1 (9.5)** 

Sex (% Female) 57.8% 75.6%* 43.4% 51.2% 
Years of Education 16.7 (2.4)* 15.8 (2.1) 16.1 (2.7) 15.7 (2.6) 
FAQ total 0.9 (2.5) 0.1 (0.5) 11.0 (12.1)*** 4.4 (5.2) 
MoCA total 25.9 (2.6) 26.4 (2.6) 22.0 (4.1) 20.9 (4.9) 
Verbal fluency 21.4 (5.5) 20.8 (4.9) 17.0 (5.5)* 15.3 (5.7) 
Verbal learning – Immediate 52.9% 

(13.6%) 
67.4%*** 
(12.1%) 

39.4% 
(13.7%) 

42.5%** 
(14.7%) 

Verbal learning – Delayed 52.7% 
(27.2%) 

80.1%*** 
(15.2%) 

25.9% 
(26.9%) 

33.6%** 
(27.2%) 

Trailmaking Task – A  32.1 (10.4) 29.6 (11.8) 42.9 (22.1) 43.3 (22.6) 
Trailmaking Task – B  76.3 (32.1) 70.6 (22.7) 108.9 (45.0) 104.4 (46.6) 
CDR Sum of Boxes 0.0 (0.1) 0.1 (0.2) 2.1 (1.6) 2.2 (1.8) 
Hippocampal Volume 7.6 (0.9)*** 6.7 (0.3) 6.8 (1.2) 6.5 (0.6) 
Bold indicates significantly greater between ADNI and CCBH 
* = p < .05; ** = p < .01; *** = p < .001 
 
ADNI = Alzheimer’s Disease Neuroimaging Initiative; CCBH = Comprehensive Center for Brain 
Health; FAQ = Functional Activities Questionnaire; MoCA = Montreal Cognitive Asessment; CDR = 
Clinical Dementia Rating 
 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.06.22279650doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.06.22279650
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Table 3. List of features and stage designation 

Feature Stages  Stage 2 Target  
Age Both Stages All 
MoCA 5-word recall Both Stages All 
MoCA orientation Both Stages Impaired 
MoCA Total Stage 2 only All 
Trail-making A Both Stages Non-impaired 
Trail-making B Both Stages Impaired 
QDRS-like Memory (Self) Both Stages All 
QDRS-like Language (Self) Both Stages All 
QDRS-like Total (Self) Both Stages All 
QDRS-like Memory (Informant) Stage 2 only All 
QDRS-like Language (Informant) Stage 2 only All 
QDRS-like Attention (Informant) Stage 2 only All 
QDRS-like Outside (Informant) Stage 2 only Impaired 
QDRS-like Total (Self + Informant) Stage 2 only All 
FAQ #1 (Paying bills) Both Stages All 
FAQ #2 (Paperwork) Both Stages All 
FAQ #9 (Appointments) Stage 2 only All 
FAQ #10 (Driving) Stage 2 only All 
VLT - Delayed Stage 2 only All 
Verbal Fluency (Animals) Stage 2 only All 
FAQ #1 (Paying bills) Stage 2 only All 
FAQ #2 (Paperwork) Both Stages All 
FAQ #9 (Appointments) Both Stages All 
FAQ #10 (Driving) Stage 2 only All 
Hippocampal Volume Stage 2 only All 
MoCA = Montreal Cognitive Assessment;  
QDRS-like = Partially Analogous to the Quick Dementia Rating Scale; 
FAQ = Functional Activities Questionnaire; 
VLT = Verbal Learning Task 
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Table 4. Performance of dual- and single-stage models 

 Sensitivity Specificity PPV NPV DOR AUC 
Primary Stage Only 
Models 

      

LR  96.5% 34.1% 75.5% 82.4% 14.3 87.5% 
SVM  97.7% 24.4% 73.0% 83.3% 13.5 85.1% 
GBM  98.8% 19.5% 72.0% 88.9% 20.6 82.2% 
FFNN  98.8% 14.6% 70.8% 85.7% 14.6 86.1% 
RF  100.0% 0.0% 67.7% 0.0% -- 85.9% 
Hierarchical  
Two-Stage Models 

      

LR / LR 96.5% 36.6% 76.1% 83.3% 16.0 87.7% 
LR / SVM 96.5% 39.0% 76.9% 84.2% 17.7 85.3% 
LR / GBM 95.3% 58.6% 82.8% 85.7% 28.9 89.7% 
LR / FFNN 91.9% 53.7% 80.6% 75.9% 13.1 86.5% 
LR / RF 91.9% 48.8% 79.0% 74.1% 10.7 87.9% 
SVM / LR 97.7% 29.3% 74.3% 85.7% 17.4 87.0% 
SVM / SVM 97.7% 29.3% 74.3% 85.7% 17.4 84.9% 
SVM / GBM 96.5% 50.0% 81.4% 88.0% 32.0 89.3% 
SVM / FFNN 91.9% 51.2% 79.8% 75.0% 11.8 85.9% 
SVM / RF 91.9% 43.9% 77.5% 72.0% 8.8 86.5% 
GBM / LR 98.8% 41.5% 78.0% 94.4% 60.2 88.7% 
GBM / SVM 98.8% 39.0% 77.3% 94.1% 54.4 86.0% 
GBM / GBM 97.7% 46.3% 79.2% 90.5% 36.3 89.3% 
GBM / FFNN 93.0% 53.7% 80.8% 78.6% 15.4 87.6% 
GBM / RF 93.0% 41.5% 76.9% 73.9% 9.4 87.4% 
FFNN / LR 98.8% 29.3% 74.6% 92.3% 35.2 87.8% 
FFNN / SVM 98.8% 29.3% 74.6% 92.3% 35.2 85.4% 
FFNN / GBM 97.7% 53.6% 81.6% 91.7% 48.6 89.7% 
FFNN / FFNN 93.0% 51.2% 80.0% 77.8% 14.0 86.5% 
FFNN / RF 93.0% 41.5% 76.9% 73.9% 9.4 87.1% 
RF / LR 100.0% 29.3% 74.8% 100.0% -- 88.5% 
RF / SVM 100.0% 24.4% 73.5% 100.0% -- 85.9% 
RF / GBM 98.8% 46.3% 79.4% 95.0% 73.4 90.1% 
RF / FFNN 94.2% 51.2% 80.2% 80.8% 17.0 87.3% 
RF / RF 94.2% 36.6% 75.7% 75.0% 9.3 87.8% 
Single-Stage Models 
(All Features)       
LR  100% 29.3% 74.8% 100% -- 88.5% 
SVM  100% 24.4% 73.5% 100% -- 85.9% 
GBM  98.8% 46.3% 79.4% 95.0% 73.4 90.1% 
FFNN  94.2% 51.2% 80.2% 80.7% 17.0 87.3% 
RF  94.2% 36.6% 75.7% 75.0% 9.3 87.8% 
Bold indicates highest value(s) 
LR = Logistic Regression; SVM = Support Vector Machine; GBM = Gradient-Boosted Machine; FFNN = 
Feed-forward Neural Network; RF = Random Forest; PPV = Positive Predictive Value; NPV = Negative 
Predictive Value; AUC = Area Under the ROC Curve 
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Figure 1. Flowchart of the hierarchical clinical decision-support system. Participants would be 
administered a streamlined, 5-minute assessment in Stage 1, of which the results would be 
entered into a clinical decision support system. The system would then recommend further 
testing in Stage 1 if it does not identify clear lack of impairment, followed by another assessment 
of patient data in the decision support system. If clear lack of impairment is again not identified, 
the patient would be referred for a full diagnostic workup and provided information about 
treatment and/or management. 
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