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ABSTRACT 

In the last few years, several models trying to calculate the biological brain age have been proposed based on structural 

magnetic resonance imaging scans (T1-weighted MRIs, T1w) using multivariate methods and artificial intelligence. We 

developed and validated a convolutional neural network (CNN)-based biological brain age prediction model that uses 

only one T1w MRI pre-processing step to simplify implementation and increase accessibility in research settings. Our 

model only requires rigid image registration to the MNI space, which is an advantage compared to previous methods that 

require more pre-processing steps, such as feature extraction. We used a multicohort dataset of cognitively healthy 

individuals (age range = 32.0 – 95.7 yrs.) comprising 17296 MRIs for training and evaluation. We compared our model 

using hold-out (CNN1) and cross-validation (CNN2-4) approaches. To verify generalizability, we used two external 

datasets with different population and MRI scan characteristics to evaluate the model. To demonstrate its usability, we 

included the external dataset's images in the cross-validation training (CNN3). To ensure that our model used only the 

brain signal on the image, we also predicted brain age using skull-stripped images (CNN4). The trained models achieved 

a mean absolute error of 2.99, 2.67, 2.67, and 3.08 yrs. for the CNN1-4, respectively. The model's performance in the 

external dataset was in the typical range of mean absolute error (MAE) found in the literature for testing sets. Adding the 

external dataset to the training set (CNN3), overall, MAE is unaffected, but individual cohort MAE improves (2.25 to 

5.63 years). Salience maps of predictions reveal that periventricular, temporal, and insular regions are the most important 

for age prediction. We provide indicators for using biological (predicted) brain age as a metric for age correction in 

neuroimaging studies as an alternative to the traditional chronological age. In conclusion, using different approaches, our 

CNN-based model showed good performance using only one T1w brain MRI pre-processing step. The proposed CNN 

model is made publicly available for the research community to be easily implemented and used to study aging and age-

related disorders. 
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1 INTRODUCTION 

In recent years, the concept of an individual's biological age—which can differ from the person's chronological age—has 

sparked great interest in the medical research community, as ageing is a significant risk factor for several age-related 

health conditions and mortality. There is also substantial heterogeneity in health outcomes among individuals of the same 

chronological age (Jylhävä et al., 2017). During the past decades, the research highlighted that the biological aging process 

varies between people because of the complex interplay between genetic and environmental factors, such as lifestyle 

behaviours (Cole et al., 2019, 2017; Fratiglioni et al., 2020). Chronological age is the primary risk factor for most 

neurodegenerative disorders, including Alzheimer’s disease (AD) and vascular dementia (Hou et al., 2019). Like other 

age-related health conditions, also in the dementia field, there is significant heterogeneity in the manifestation of the 

symptoms as well as underlying brain pathology between people of the same chronological age (Ferreira et al., 2020). 

Therefore, quantifying the biological age could be a better metric than the traditional chronological age to identify 

individuals at risk of developing age-related diseases (Cole et al., 2019; Tian et al., 2023).  

Parallel advancements in neuroscience and computational science have enabled researchers to develop novel algorithms 

to determine the biological age of the brain. A biological marker of brain age will enable us to adjust neuroimaging studies 

for the person’s biological age instead of chronological age, minimising anatomical and functional heterogeneities present 

in groups of healthy individuals. Another advantage is that this could lead to a deeper understanding of pathological 

ageing mechanisms, which can culminate in dementia. Dementia is a multifactorial syndrome in which decades of 

accumulating neuropathology precedes clinical manifestation (Jack et al., 2010). The loss of neurons and synapses during 

the preclinical and prodromal stages can lead to brain atrophy and, therefore, to "older-looking" brains (when biological 

brain age, i.e. predicted age, is higher than chronological age) (Bashyam et al., 2020; Cole, 2020; Cole and Franke, 2017; 

Elliott et al., 2021; Franke and Gaser, 2012; Glorioso et al., 2019; Hwang et al., 2020). In contrast, some individuals will 

show higher chronological age than the biological brain age, thus showing a “younger-looking” brain, which could reflect 

relatively preserved brain structures (e.g., brain maintenance and/or cognitive reserve) (Cole et al., 2019; Stern et al., 

2020). With the unprecedented growth of the elderly population worldwide, the expected increase in dementia cases 

(WHO guidelines, 2019), and while waiting for effective pharmacological treatments against dementia, a biological 

marker of brain age could play a key role in dementia prevention (Brusini et al., 2022).  

In the past few years, several brain age models have been developed using different methods to estimate the age of the 

brain (Baecker et al., 2021a; Bocancea et al., 2021). These prior studies used machine (Cole et al., 2017; Franke et al., 

2010; Franke and Gaser, 2012; Hwang et al., 2021) and deep learning (Bintsi et al., 2020; Cole et al., 2017; Gupta et al., 

2021; Jonsson et al., 2019; Kolbeinsson et al., 2019; P. Lam et al., 2020a; Liang et al., 2019; Niu et al., 2020) approaches, 

achieving good performance in terms of mean absolute error (MAE) – between 2 and 6 years. However, the model type 

and the input choice varied across these studies that used pre-processed magnetic resonance imaging (MRI) data (T1-

weighted, T1w), going through normalisation, corrections, segmentation steps, or even image feature extraction. Such a 

chain of steps is challenging to implement in research and, in the long term, in clinical settings due to time- and 

resource-consuming constraints.  

Typically, a model is trained on neuroimaging data of healthy individuals from one or multiple cohorts covering a large 

age span. Developing a model for predicting "biological brain age" depends on the choice of training data when defining 

healthy aging. The “ideal” dataset would include: (1) detailed information and clinical data of study participants in order 

to be as comprehensive as possible with the selection criteria; (2) a large set of images, which are required to train a CNN 

model (Sajedi and Pardakhti, 2019); (3) participants with a diverse demographical background and a large, preferably 
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uniform, age distribution to apply the developed model in more datasets (i.e., increase generalizability); (4) images 

acquired with a wide range of MRI scanners and protocols to improve generalisation to new unseen data of the model 

(Mårtensson et al., 2020), and (5) longitudinal data to ensure that the model does not predict a lower age at a later time 

point. Although initiatives to gather large-scale population-based datasets are ongoing (e.g., UK Biobank), to our 

knowledge, currently, no existing cohort possesses all the five characteristics listed above.  

In this study, we aimed to develop and validate a CNN model, based on brain images, that uses only one pre-processing 

step (i.e., rigid registration of T1w MRIs to the Montreal Neurological Institute – MNI – template space) for brain age 

prediction. This minimal pre-processing feature has the advantage and strength of simplifying the model’s implementation 

and increasing accessibility in research settings. When publicly available, the model can be quickly used for any T1w 

MRI scan without time- and resource-consuming pre-processing steps. To evaluate our model, we used a large dataset of 

cognitively healthy individuals from six cohorts to address the “ideal” dataset criteria. The CNN model was compared 

using hold-out and cross-validation approaches. To verify the model’s generalizability, we tested the abovementioned 

approaches using two external datasets containing different scanners and demographic characteristics from the training 

set. Furthermore, we included the two cohorts used as external datasets in the cross-validation loop to verify the model's 

usability with different cohorts. Finally, we employed the cross-validated model to predict brain age in skull-stripped 

images to ensure our model accurately predicted based on the brain image signal. We then evaluated the model's 

performance using two external datasets. 

 

2 METHODS 

2.1 STUDY POPULATION 

For this study, we included 17296 T1w MRIs from 15289 (1176 are 1.5T and 16120 are 3T) cognitively healthy participants 

from six cohorts: the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Australian Imaging, Biomarker & 

Lifestyle Flagship Study of Ageing (AIBL), the AddNeuroMed, the Group of Neuropsychological Studies from the 

Canary Islands (GENIC, from Grupo de Estudios Neuropsicologicos de las Islas Canarias), the Japanese ADNI, and the 

UK Biobank  (Figure 1). The description of each cohort is in the Supplementary Material, Section A. A cognitively healthy 

status was defined based on the absence of dementia, mild cognitive impairment, and other neurological and psychiatric 

disorders. Further, individuals had to have a clinical dementia rating (CDR) score equal to zero, or mini-mental state 

examination (MMSE) score ≥ 24, or self-reported good health (this last when available), or ICD-9 or 10 (details on the 

used ICD codes can is in Supplementary Material, Section B), depending on the available data in each cohort. 
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Figure 1. Flowchart describing the data included in this study, which were available in our database system at the time of the study, for the different 
cohorts. Where age ± SD is the mean age and standard deviation, age ± SD and age range are in years. 

 

2.2 CONVOLUTIONAL NEURAL NETWORKS 

The implemented CNN uses the deep learning framework PyTorch (Paszke et al., 2019). The network architecture of our 

model was based on the ResNet architecture (He et al., 2016), with 26 layers in total but with 3D kernels. Each 

convolutional operation is followed by batch normalisation and a Rectified Linear Unit (ReLU) activation. The network 

was trained for 20 epochs with stochastic gradient descent and an initial learning rate of 𝜆=0.002 that decreases with a 

factor of 10 every five epochs. We used five independent models during the CNN development and the trained networks 

as an ensemble model. Data augmentation included random scaling, cropping offsets, rotations (-5 to 5 degrees), affine, 

and gamma transformations (ranging from 0.5 to 2). Each image was cropped to a dimension of 80 x 96 x 80 voxels, with 

2 x 2 x 2 mm³ resolution, thresholded to the 5th and 95th percentile of the voxel values and scaled so that all voxels’ 

values were in the interval [-1,1]. 

We streamline the image pre-processing to improve the model’s accessibility and processing speed. The sole pre-

processing step involved a rigid registration (with six degrees of freedom) to the MNI template space using FSL FLIRT 

6.0 (FMRIB’s Linear Image Registration Tool). A rigid registration is more straightforward and quicker than an elastic 

registration. Omitting this step resulted in worse performance on the development set, despite the use of heavy data 

augmentation (data not shown). Figure 2 shows a schematic representation of the CNN model. 
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Figure 2. Simplified scheme of our 3D CNN. Where the input is a T1w brain MRI registered to the MNI space, the information on the subject's 

chronological age, and the output is the predicted brain age of the subject. Conv3D = 3D convolution: BatchNorm3d: 3D batch normalisation; 

(Leaky)ReLu: (leaky) Rectified Linear Unit; MaxPool3D: 3D max pooling; AvgPool3D: 3D average pooling; FC: fully connected layer; ResNet: 
residual network block.  

 

Four separate models were developed in this project: one model based on a hold-out approach of CNN (CNN1) and three 

models based on a cross-validation approach (CNN2-4). Figure 3 displays the evaluation process’s scheme of our CNN 

model. Each one of the turquoise rectangles represents 1/10 parts of the primary dataset, composed of 16734 raw MRIs 

from ADNI, AIBL, GENIC and UKB cohorts. Light blue rectangles indicate the 149 MRIs from AddNeuroMed cohort, 

whereas lilac rectangles indicate the 413 MRIs from J-ADNI. The CNN1 model is based on a hold-out approach with the 

training (80%), development (10%) and test (10%) datasets indicated by the arrows. CNN2 and CNN4 models 

incorporated all data from ADNI, AIBL, GENIC and UKB cohorts in their cross-validation loop, while AddNeuromed 

and J-ADNI were used for external validation. The CNN3 model was similar to CNN2 and 4, except that AddNeuroMed 

and J-ADNI were also incorporated in the cross-validation loop – thus, no external datasets were used for model 

evaluation. 
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Figure 3. Scheme of evaluation of our CNN model in this study. We primarily used ADNI, AIBL, GENIC, and UK Biobank to develop our model 

(turquoise scale). CNN1 works in a hold-out approach (data split: 80% train, 10% development, 10% test set, each set of the data indicated by arrows). 
CNN2 was trained as a 10-folds cross-validation model, using the data of the four primary cohorts (turquoise scale) in the training loop. To evaluate 

the performance of these two models, we used AddNeuroMed (light blue) and J-ADNI (lilac) as external test sets. In CNN3, we added the external test 

sets in the 10-fold cross-validation. For comparison reasons, we evaluated our CNN2 scheme with skull stripped T1w MRIs (CNN4). HO = hold-out; 
CV = cross-validation; ED = external test set; SS = skull-stripped images. 

 

2.2.1 Hold-out approach 

Our CNN-based model was first trained in a hold-out fashion (CNN1). To not violate the test set and ensure comparability 

between the models, the primary dataset, composed of 16734 MRIs from ADNI, AIBL, GENIC and UKB cohorts, was 

randomly split into a training (Nimg = 15052, Nsubj = 13612, subsequently split into internal validation set for the 

development of each model) and a hold-out test (Nimg = 1682, Nsubj = 1503) set. If subjects had undergone multiple scans, 

all their images were assigned to the same set. The test set was evaluated after a satisfactory performance on the internal 

validation set to reduce the risk of model overfitting. The data distribution in train, development, and test sets for each 

cohort can be found in Supplementary Material, Section C. After training the CNN1 model, we applied this model in the 

AddNeuroMed and J-ADNI cohorts, to assess the model performance and generalizability in external datasets.  

2.2.2 Cross-validated approach 

To allow comparability to the hold-out model (CNN1), we used the same 16734 MRIs from ADNI, AIBL, Genic, and 

UK Biobank in the cross-validation approach training loop (CNN2). Stratification by cohort was applied in splitting the 

10-fold for training and testing. After a 10-fold cross-validation, the trained model was evaluated in AddNeuroMed and 

J-ADNI (external cohorts). Furthermore, to ensure that our model’s prediction was based on the brain and not on other 

features (e.g., head shape), we trained a 10-fold cross-validation model using skull-stripped brain images (CNN4). For 

CNN4 model images input, Freesurfer 6.0.0 was used to perform skull-stripping, applying the algorithm recon-all and 

selecting the image generated before brain parcellation (brain.finalsurfs.mgz). Images were motion and bias-corrected, 

transformed to Tailarach space, intensity normalised, and skull stripped. To reduce the size of the final processed image 

and for comparative reasons, all skull-stripped images were rigidly registered to the MNI space. Similarly to CNN2, also 
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the skull-stripped CNN4 model was externally validated in AddNeuroMed and J-ADNI. Finally, to ensure the cross-

validated model’s usability when including more diverse data, we trained a last model, CNN3, that included all cohorts 

(ADNI, AIBL, Genic, and UK Biobank plus AddNeuroMed and J-ADNI) to the ensemble of images within the 10-fold 

cross-validation.  

 

2.3 ANALYSES 

2.3.1 Model performance 

Model performance was assessed using the MAE, defined as:  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦̂𝑖 − 𝑦𝑐,𝑖|
𝑁
𝑖                                                                  (1) 

Where 𝑦𝑐,𝑖 is the chronological age of participant 𝑖 and 𝑦̂𝑖 the predicted age. MAE’s values close to zero, indicates model’s 

good performance, with predicted brain age being similar or almost equal to chronological age but considering aging 

heterogeneity, is unknown the lower limits for a model’s MA . Adjusting for age-dependent predicted brain age 

differences from the chronological age (brain age difference/gap - BAG) is problematic and can artificially inflate model 

performance (Butler et al., 2021). This can be illustrated with a model that, regardless of input data, only outputs a single 

predicted age of, e.g., 70. This will yield a suboptimal MAE, but when "correcting" for age, the MAE will be 0 between 

predicted and chronological age. 

 

2.3.2 Relevant regions for brain age prediction 

To explain the model’s brain age prediction, we generated 3D gradient-based saliency maps of each subject using the 

SmoothGrad (Smilkov et al., 2017) algorithm. Salience maps visualizes the important voxels in individual predictions 

based on the computation of the gradient of the prediction with respect to the smoothed image. For gradient computation, 

we used the image with 15% noise added. The 3D gradient maps were averaged through the whole image sample, and 

only 1% of the higher salient values are shown to verify the most critical regions (Levakov et al., 2020; Mouches et al., 

2022). For individual extrapolation, we plotted the 1% normalised higher values of the salience maps and overlayed them 

onto an arbitrary T1w brain MRI. The salience maps are presented according to their brain age difference in the CNN1 

model, calculated from the chronological age, from -8 to +8 yrs. of difference from chronological age. 

 

2.3.3 Differences in cortical thickness across age groups based on chronological and predicted brain age 

To analyse the influence of correcting an individual’s brain age in neuroimaging studies, we visualise how brain age 

predictions are related to cortical thickness values. We ran surface group analysis with QDEC (Query, Design, Estimate, 

Contrast) in FreeSurfer 6.0.0. We used a smoothing kernel of full width at half maximum of 10 mm, used sex as a covariate 

and adjusted for false discovery rate at a threshold of 0.05. We grouped subjects of ages 60, 65, 70, 75, and 80 (±1 years) 

based on chronological and predicted ages. These groups were contrasted to a reference group of 55 ± 1 years-old (based 

on corresponding chronological or predicted brain age) individuals in the general linear model. Since these groups are of 

different sizes—and p-values are influenced by group size—we present figures overlayed with z-scores.  
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3 RESULTS 

3.1 MODEL PERFORMANCE 

Scatterplots of the brain age predictions on the CNN1 (hold-out) approach for the training and testing set of healthy 

individuals are shown in Figure 4. The results show that there is a strong correlation between chronological and predicted 

brain age in training and test sets. 

 
Figure 4. Scatterplots of the predicted brain age in the CNN1 model (hold-out approach) in the training and test datasets. Each coloured dot represents 

an individual, and each colour is a different cohort. The red line is a linear regression based on the predicted brain age.     

 

Scatterplots of the brain age predictions on the CV approach for the CNN2 (CNN1 cohorts), CNN3 (CNN1 cohorts + J-

ADNI and AddNeuroMed), and CNN4 (skull-stripped images from CNN1 cohorts) are shown in Figure 5. For CNN2 

and CNN3 models, results show a strong correlation between chronological and predicted brain age with a MAE within 

the lower range of previously published models. However, CNN4 present a less strong correlation and higher MAE within 

the presented models in this study.  

 

 
Figure 5. Scatterplots of the predicted brain age in the CNN2, 3 and 4 (cross-validation approach). Each dot represents an individual, and the colour 
code used for each cohort is presented in the legend. CNN2 was run using 4 cohorts, CNN3 with 6 cohorts, and CNN4 with 4 cohorts but with skull-

stripped images. The red line is the linear regression based on the predicted brain age.  

 

Figure 6 (A) illustrates CNN1 (on the left) and CNN2 (on the right) correlations between the predicted brain age (y-axis) 

by each model in the data from the test set of the CNN1 model, with the chronological age (x-axis). Figure 6 (B) illustrates 

the correlation between the predicted brain age by CNN1 (x-axis) and CNN2 (y-axis) using the training (on the left) and 

test (on the right) dataset splits of CNN1. Figure 6 (C) shows the correlations between the brain age difference (BAG) 

estimated by the two models (CNN1 on the x-axis and CNN2 on the y-axis) in the training and test datasets splits of 

CNN1. 
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Figure 6. Comparison of the CNN1 (hold-out approach) and CNN2 (cross-validation approach) models. Data used for the comparison is based only on 

the individuals used in the test dataset of CNN1. In A, we present the test dataset's predicted brain age (y-axis) for both models correlated to 
chronological age (x-axis). In B, we present the correlation between the predicted brain age estimated by the two models (CNN1 on the x-axis and 

CNN2 on the y-axis) in the training (left) and test (right) datasets splits of CNN1. In C, we present the correlation between the brain age difference 

estimated by the two models (CNN1 on the x-axis and CNN2 on the y-axis) in the training and test datasets.   

 

We also evaluate the performance of our model in the external datasets AddNeuroMed and J-ADNI (CNN1, 2 and 4). 

The age prediction distribution is shown in Figure 7, and shows the variability in age prediction for each one of the trained 

models when applied to unseen data (external dataset)Figure 7.  
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Figure 7. Comparison of brain age prediction distribution for chronological and predicted brain age in the CNN1, 2 and 4 for the AddNeuroMed (A and 
B) and J-ADNI (C and D) cohort. In A and C, we present the boxplot of the predicted brain age for each model compared to the chronological age. In 

B and D, the predicted brain age distribution is compared to the chronological age.  

 

The calculated MAE of each cohort for all models is presented in Table 1. Normalized MAE and coefficient of 

determination for each cohort of the trained models can be found in Supplementary Material, Section D, Table D-1 and 

D-2. 

 

Table 1. Calculated MAE for each cohort for each of the trained models. 

 MAE per cohort (years) 

Model ADNI AIBL GENIC UK Biobank AddNeuroMed J-ADNI 

CNN11 2.56 2.85 4.20 2.75 4.03 5.63 

CNN22 2.40 2.69 3.96 2.66 3.67 5.30 

CNN32 2.41 2.69 3.98 2.67 3.02 2.25 

CNN41 2.98 3.33 4.42 3.03 3.64 4.14 

The numbers in italic (AddNeuroMed and J-ADNI cohorts, for models CNN1, 2 and 4) were calculated as external datasets to the model. 1Statistical 
differences were founded (p-value < 0.05) comparing the CNNs absolute error; 2No statistical differences were founded in the comparison between 

absolute error of CNN2 and CNN3 (p-value = 0.37). Statistical differences between the models were calculated using Friedmans test with Conover’s 

post hoc test, adjusting for multiple comparisons with the Bonferroni method.    

 

To understand how our model performed compared to existing models, we further assessed our brain age models’ 

performance only within the UK biobank. Then we compared the achieved MAEs with previous studies that evaluated 

their models in the UK Biobank cohort (Table 2). Our CNN models achieved MAEs ranging between 2.66 and 3.03 yrs. 

These are very similar to the MAEs achieved by CNN models developed in previous studies (ranging between 2.13 and 

4.36). We also present the coefficient of determination between predicted brain age and the identity line for all the 

available studies. 
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Table 2. Comparison of our models MAE with the literature. 

Study Model Modality Pre-processing MAE R² 

Dartora et al. CNN1 T1 Rigid reg. 2.75 0.88 

Dartora et al. CNN2 T1 Rigid reg. 2.66 0.89 

Dartora et al. CNN3 T1 Rigid reg. 2.67 0.89 

Dartora et al. CNN4 T1 Bias-field and motion cor., Skull-strip., Rigid MNI reg. 3.03 0.85 

Bintsi et al. (2020)  CNN (3D ResNet) T1 Skull-strip., non-linear MNI reg. 2.64 0.77 

Bintsi et al. (2020) CNN (patches) T1 Skull-strip., non-linear MNI reg. 2.13 0.85 

Kolbeinsson et al. (2019) CNN T1 Skull-strip., non-linear MNI reg. 2.58 - 

P. K. Lam et al. (2020) R-CNN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.86 0.87 

P. Lam et al. (2020) CNN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 4.36 0.66 

Gupta et al. (2021) CNN (slices) T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.82 - 

Dinsdale et al. (2021) CNN (Female population) T1 UK Biobank pipeline w/ linear registration to MNI 2.86 0.87 

Dinsdale et al. (2021) CNN (Male population) T1 UK Biobank pipeline w/ linear registration to MNI 3.09 0.86 

Jonsson et al. (2019) CNN (transfer learning) T1 Bias-field cor., Skull-strip., Dartel MNI reg., tissue maps  3.63 0.61 

Peng et al. (2021) SFCN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.14 0.39 

Peng et al. (2021) CNN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.38 - 

CNN: convolutional neural network; CNN1: our CNN model in a hold-out approach; CNN2: our CNN model in a cross-validation approach; CNN3: 

our CNN model in a cross-validation approach and including two cohorts in the dataset; CNN4: our CNN model in a cross-validation approach, using 

skull-stripped images; PCA: principal component analysis; R-CNN: recurrent CNN; SFCN: simple fully convolutional network; R²=coefficient of 

determination. Dartoral et. al. refers to the current work.  

 

To understand the noise levels from our models and their ability to capture subtle changes as a result of the ageing 

process, we plotted longitudinal trajectories for the participants with more than one-time point (Figure 8).  

 

Figure 8. Brain age prediction in longitudinal trajectories for all the models. The average brain age gap/difference (Avg. BAG) in the presented 

population was calculated and shows a trend towards zero to the brain age difference between predicted and chronological age. In CNN1, only the 

individuals with longitudinal data in the test set are presented. 

 

3.2 RELEVANT REGIONS FOR BRAIN AGE PREDICTION 

For the explicability of our model, the salience map of each individual prediction was generated. The averaged overlayed 

salience maps for each CNN model are presented in Figure 9. Complementary view of salience maps slices is presented 

in Supplementary Material Section E, Figure E-1.   
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Figure 9. Relevant regions for age prediction. The absolute values of the salience maps for each model were averaged through the whole MRI sample 

and normalised between 0 and 1 for better visualisation. The SmoothGrad method was used to generate all salience maps. Overlayed salience map 

colours are normalised for each individual between 0 and 1. 

 

To identify regions of importance for predicting the biological brain age, 18 individuals were randomly selected according 

to the following criteria: being in the test dataset of the CNN1, being between 64 and 66 yrs., having an age range 

difference between chronological and predicted brain age in the CNN1 model between -8 and +8 yrs. (Figure 10). The 

brain age gap for each individual, predicted in each model, is presented in Supplementary Material, Section F, Table F-

1. 

 

 
Figure 10. Relevant regions for the brain age prediction based on 1% of the salience maps of individuals with an average age of 65 yrs. overlayed to a 

random T1w MRI sample for each of the four CNN models. The individuals were randomly selected in the test dataset used in the CNN1, according to 
their brain age difference and proximity to the average age of our sample (65 yrs.). Each row represents the salience maps of one CNN model, where 

the columns show the same individual’s salience map in each of the four models. The  mooth rad method was used to generate all salience maps. The 

brain age difference is shown in the top row of the image, going from -8 to +8 yrs. of difference. Overlaid salience map colours are normalised for each 
individual between 0 and 1.  

 

3.3 DIFFERENCES IN CORTICAL THICKNESS ACROSS AGE GROUPS BASED ON CHRONOLOGICAL AND PREDICTED 

BRAIN AGE 

Surface group analysis for cortical thickness was run in all available images with QDEC in Freesurfer 6.0.0. Individuals 

with 60, 65, 70, 75, and 80 (±1 years) chronological and biological (predicted) age were grouped and compared with a 

group of 55±1 years-old individuals. The analysis used sex as a covariate and was adjusted for a false discovery rate with 

a threshold of 0.05. Figure 11 shows the age-related differences in cortical thickness for chronological and biological 

(predicted) age groups by the CNN2 model. The number of individuals in each age group is presented in Supplementary 

Material, section G, Table G-1.  
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Figure 11. Atrophy patterns in aging according to chronological and predicted brain age in the cross-validation approach (CNN2). Analysis shows 

cortical thickness z-stat maps corrected for false discovery rate with a threshold of 0.05 of cross-sectional differences between a reference group of 55 
(±1.0) years old and older subjects. Individuals were grouped by age ±1.0 years. The QDEC analyses were done with a 10 mm smoothing kernel and 

sex added as a covariate. Blue colours represent lower cortical thickness (increased atrophy) in the age group compared to the 55-year-old group, and 

red colours represent an increased cortical thickness compared to the younger group. It is possible to verify that the atrophy patterns start in parietal-
frontal regions from the 65-years old group. The approach also captures the increased thickness (in red) around the lingual gyrus.   

 

4 DISCUSSION 

In this study, we developed a CNN-based model using only one pre-processing step (rigid registration to MNI space) to 

predict the person’s biological brain age from T1w images, to be easily implemented and used. Further, the study was 

performed as an effort to attend to the highlighted points related to an “ideal” image database (which includes diverse 

image data) to develop brain age prediction models. Finally, our model evaluation was performed using different 

approaches – hold-out (CNN1) and cross-validation (CNN2) – and generalizability was tested in external datasets. The 

usability (CNN3) of the model was also assessed by adding more data (from two external datasets) in the training loop, 

and to ensure that the previously trained models were using the brain signal for age prediction, we also trained the model 

using skull-stripped images (CNN4). 

A key strength of this work is the use of minimally processed images as input for the CNN model, which makes it feasible 

for implementation in research and, in the long term, clinical settings. Our model requires only the registration to MNI 

space, which typically takes a few seconds and can be easily performed using an open brain image processing software 

such as FSL or FreeSurfer. Additional pre-processing steps would increase the likelihood of image exclusion during 

quality control and pre-processing. This would limit the model's performance as well as the possibility of using cohorts 

with a small sample size. CNN models can learn from the image data, including structure shape, which may not be 

captured by summary metrics such as volume or segmented tissue maps, without requiring pre-segmented data (Liang et 

al., 2019; Niu et al., 2020). Our focus on a one-step pre-processing, using a rigid registration to the MNI space template 

previously implemented by Cole et al. (2017), is to ensure the accessibility to our model in future research. 

This study includes cohorts to attend to the highlighted points related to, what we believe to be, an ideal image database 

to develop brain age prediction models. We used detailed information and clinical data for inclusion criteria of many 

individuals (more than 16000 T1w MRIs) from different parts of the world (Asia, Australia, Europe, and America) and 

with a diverse number of MRI scanners covering 1.5T and 3T scanners, which increases the model usability due to its 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2023. ; https://doi.org/10.1101/2022.09.06.22279594doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.06.22279594
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Deep Learning Model for Brain Age Prediction Using Minimally Pre-processed T1w-images as Input 

15 

 

generalisation to new unseen data (Mårtensson et al., 2020). We also used all the longitudinal data available and showed 

that our model presents a reasonable age prediction congruent with the individual timelineError! Reference source not f

ound.. Also, our focus on the cognitive “healthy” status, rather than on the overall health status (for example, excluding 

from the training set age-related diseases that affect the body’s organs other than the brain) is a strength of our study as it 

makes a clear separation between the outcome (brain age) and what leads to that outcome (risk factors, e.g., chronic 

cardiometabolic disease and risk factors, affective/mood disorders, etc). Further, to validate the generalizability of the 

models, we used external datasets of cognitively unimpaired individuals from two cohorts: AddNeuroMed, a cross-

 uropean study designed to find biomarkers for Alzheimer’s disease, and J-ADNI, the Japanese version of the ADNI 

dataset. We chose to use these cohorts because of differences in age distribution, e.g., AddNeuroMed average age is 

around ten years older than the average of our total sample, different ethnicity, e.g., our sample is composed mainly of 

European and North-American individuals, and both cohorts mostly use images acquired in 1.5T scanners, whereas the 

training dataset was based mainly on 3T MRI, i.e., 96.2 % of all images used for training and testing in the CNN1 

approach. 

Due to the complexity and time-consuming nature of the training networks with large amounts of data, the hold-out 

method used in CNN1 is the most common approach in the literature (Cole et al., 2017; Dinsdale et al., 2021b; Gupta et 

al., 2021; Jonsson et al., 2019; Kolbeinsson et al., 2021; Lam et al., 2020; Peng et al., 2021; Ren et al., 2022). Our CNN1 

model achieved an MAE of 2.99 yrs. in the test set, which agrees with the MAE reported in the literature for hold-out test 

sets, using 1 to 3 cohorts (MAE of 2.14 – 4.65 yrs.) (Cole et al., 2017; Dinsdale et al., 2021b; Gupta et al., 2021; Jonsson 

et al., 2019; Kolbeinsson et al., 2021; Lam et al., 2020; Peng et al., 2021; Ren et al., 2022). Our calculated MAE is also 

in the range of the available MAEs of the CNN models (Bintsi et al., 2020; Dinsdale et al., 2021b; Gupta et al., 2021; 

Jonsson et al., 2019; Kolbeinsson et al., 2021; Lam et al., 2020; Peng et al., 2021) available in the literature that used 

hold-out approaches and only data from the UK Biobank but performing several pre-processing steps as opposed to our 

CNN model. The current debate surrounding the development of brain age models lacks a thorough evaluation of CNN-

based brain age models across different external datasets. In such scenario, it is difficult and relatively unfair to compare 

the performance of different models not using the same evaluation dataset (Sajedi and Pardakhti, 2019). To overcome 

such a challenge, we compared the performance of our CNN in its different approaches related to the two used external 

datasets, AddNeuroMed and J-ADNI, showing that CNN1’s MAE performance is still within a range of 1.5 years when 

compared to the other CNNs.   

Deep learning models, like CNNs, tested in out-of-distribution data, results in performance dropping, increasing 

underestimation in new unseen data, e.g., clinical data. However, including more diverse and variable data to the model’s 

training, increases models’ robustness/reliability (Mårtensson et al., 2020). One way of including variability in the model 

is running it in a cross-validation fashion. We have done this in CNN2, where the same data used for training, validating, 

and testing CNN1 was used for training a 10-fold cross-validation model (CNN2). In general, the CNN2 model had a 

better performance than CNN1. The correlation with chronological age was higher, the MAE was smaller in CNN2 in all 

cases of age prediction (training and test sets), and calculated brain age difference (BAG) when comparing both models. 

Comparing the performance in the different cohorts used in the development of this work, we see a tendency of individual 

smaller MAEs in CNN2. To confirm the robustness of the model, CNN2 was also evaluated in external datasets, 

confirming the decrease in underestimation, proved by the increase of the model’s performance in AddNeuroMed and J-

ADNI cohorts when compared to CNN1. Even though CNN1 and CNN2 have similar performance in age prediction, the 

increased variability in the model’s training reduced the average and calculated MAE for each cohort. This is further 

proved by CNN3, where CNN2 and CNN3 performed similarly (p>0.05). Both models presented the same MAE of 2.67 
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years and a coefficient of determination of 0.83 but different performances in out-of-distribution data. Specifically, 

evaluating the predictions in the J-ADNI cohort in CNN3, it is possible to verify that adding the cohort to the training set 

decreased the predicted MAE for this cohort, going from an MAE of 5.63 in CNN1 to 2.25 in CNN3. This reinforces our 

hypothesis that the small number of data does not increase the absolute error across all the cohorts (AddNeuroMed and 

J-ADNI represent ~3% of the total amount of images used in CNN3) but increases the performance in a specific cohort. 

This increases the model’s usability, as data with more variability will be included in the training set, ameliorating the 

age prediction in external cohorts (Mårtensson et al., 2020). Therefore, additional tests with a greater variety of cohorts 

are necessary to understand how wide the model’s generalizability is and how it can change by adding more data to the 

training set. 

To ensure that our model was using only brain signals from the T1w MRI and that predictions were not depending on the 

head morphology or bone tissue, we trained and evaluated CNN4. This model is comparable to CNN2, apart from that 

skull-stripped brain images were used as input. Regarding performance, CNN2 presented a smaller MAE and better 

correlation to the chronological age than CNN4. The same tendency is also present in evaluating data only from the UK 

Biobank. This shows that our CNN works better with minimally pre-processed brain MRIs when compared to heavily 

pre-processed images. However, for evaluating the external dataset, J-ADNI, CNN4 presented a smaller MAE than 

CNN2. We hypothesise that using heavily pre-processed images as in CNN4 could remove or decrease the effects of bias 

field and skull size/format and partially mitigate the inhomogeneity present in the external dataset. 

The lower limit of the MAE score is unknown and depends on both the inter-subject variability and age distribution of 

both training and test datasets. By using stricter exclusion criteria for what is considered “cognitively healthy”, the 

variability and theoretical MAE lower bound decrease. This makes comparisons between studies of models evaluated on 

different datasets challenging. Several studies have trained and evaluated their model on the UK Biobank cohort, which 

enables rough comparisons. However, this restricts the model to cross-sectional image data (at least for the first wave of 

the UK Biobank data) from a “homogeneous” population from the United Kingdom acquired in standard equipment 

(Siemens Magnetom Skyra Syngo MR D13) with 3T MRI following the same protocol, which is not the reality for datasets 

and clinical/research settings. Also, the performance of CNNs trained on medical images from one cohort may produce 

systematically different predictions on images outside the training data distribution (Mårtensson et al., 2020). Comparing 

our results with the literature applied only to UK Biobank images, we observed that using several time-consuming image 

pre-processing steps, none of the models achieved an MAE smaller than 2.13. The CNN4, which uses skull-stripped 

images, showed the worst performance within our different approaches using the same CNN architecture. For a more 

accurate comparison of the model’s performance using the MA  metric, normalised MAE should be used. However, not 

all the selected papers for comparison presented the average age of the used subgroup of UK Biobank data, limiting the 

calculation of a normalised MAE. For future comparisons to our work, the normalised MAE for all four different 

approaches is presented in Supplementary Material, Section F.  

Essentially, all our trained models showed MAE levels comparable to those reported in previous literature, which is 

typically in the range of 2.13 – 6 (Baecker et al., 2021b, 2021a; Bintsi et al., 2020; Cole, 2020; Dinsdale et al., 2021a; 

Gupta et al., 2021; Jonsson et al., 2019; Kolbeinsson et al., 2019; Lam et al., 2020; Sajedi and Pardakhti, 2019; Tanveer 

et al., 2022). This indicates that our models have a good performance with the advantage of requiring only one pre-

processing step.  

A "perfect" model for brain age prediction in cognitive unimpaired individuals should show smooth and non-declining 

trajectories within the same individual at different time points, assuming that a healthy person’s brain age does not vary 

rapidly or decreases/increases substantially. Visually, our CNN model in different approaches seems to generate smooth 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2023. ; https://doi.org/10.1101/2022.09.06.22279594doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.06.22279594
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Deep Learning Model for Brain Age Prediction Using Minimally Pre-processed T1w-images as Input 

17 

 

predictions that increase with chronological age, with some noisy predictions deviating from the trajectory. For 

quantitative analysis, we also calculate the mean age gap (BAG) of all individuals, the mean squared error and R2. The 

models present mean brain age differences between chronological and predicted brain ages smaller than 0.5 yrs. However, 

the predictions also shows a potential confounder in subsequent analyses of brain age predictions: the noise. As it can be 

observed, for some subjects, fluctuations between the brain age differed some years between two scanning sessions that 

were one year apart. It seems unlikely that this is a biological phenomenon but instead attributed to the input data being 

noisy or low quality. Most datasets do not have abundant longitudinal data to sort "bad" predictions from "good" 

predictions. If the data and group sizes are extensive, some level of noise is acceptable and might not affect the 

interpretation of the results. The maximum average difference between chronological and brain age of all longitudinal 

plots was -0.11, with R2’s higher than 0.  . However, this effect can have a non-negligible impact when analysing data 

sets with small group sizes or running longitudinal analyses with few follow-up scans. This is important to remember 

when conducting future studies related to brain age, for example, when investigating the association between brain age 

and neurological disorders with a low prevalence in the population.  

The analysis of important brain regions for prediction was realised qualitatively by the plots of the salience maps. In 

general, the averaged salience map throughout the whole image sample shows to agree with the highlighted regions in 

the analysis of the brain age difference (BAG) for the same chronological age (65 years). The analysis of brain age 

differences (BAG) showed similar important regions for prediction, with variations in importance intensity between them. 

We hypothesise that the salience map shows negligible importance for these specific regions due to the fewer images 

used to train the CNN1. It is important to highlight that the brain age differences shown in the top row of Figure 10 are 

based on the CNN1 predictions for the plotted individuals. In general, the CNN4 model shows brain age differences with 

higher variability than compared with the other three models (CNN1-3). More studies are necessary to understand how 

this model presents more significant variation, using the same image data but with more pre-processing steps. The 

intensity of importance (higher importance showed in yellow colours) also shows to be more significant to predict age as 

younger (e.g., -6 yrs.) than chronological age, mainly close to the ventricles (Bintsi et al., 2021) and insular cortex (Lee 

et al., 2022). For prediction as older, greater importance is given to the right side of the insular cortex (Lee et al., 2022) 

as frontal-occipital regions. The salience maps show regions symmetrical and asymmetrical, mainly on the left side of the 

brain (Roe et al., 2021) and around the ventricles (Bintsi et al., 2021), as important for age prediction. Left brain 

asymmetries with aging are a typical pattern found in aging studies of cortical thickness (Frangou et al., 2022; Koelkebeck 

et al., 2014), cortical volume and surface area (Koelkebeck et al., 2014). In agreement with Lee et al. (2022), who plotted 

salience maps for different decades, regions with a higher contribution for age prediction were in the insular cortex (from 

30 – 50 yrs. groups), ventricular boundary (50-60 yrs. group), and cerebellum (90-100 yrs. group). 

Interestingly, regions around the eyes were selected in the three non-skull-stripped models (CNN1-3). We hypothesise 

that changes in the soft tissue and liquid surrounding the orbital space, as the bony orbit, which has differences in sex 

(i.e., men usually have greater skeleton size than women) (Erkoç et al., 2015), as well as general dimensions in orbital 

structures (Rana et al., 2022), could be being used in the model to predict age. For the model using skull-stripped brain 

images as input (CNN4), right regions close to the cerebellum and occipital lobe, outside the brain, were selected as 

important for prediction. We believe that the increased noise used for the SmoothGrad in a region that could have a higher 

neurodegeneration load could be leading to prediction importance outside the brain in this model. More studies are 

necessary to understand the highlight of this region for the prediction. However, we believe this could be an artefact 

generated by the SmoothGrad method due to the addition of noise in the image for the construction of the maps. Future 
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studies could use different methods to generate salience maps and use different methods to generate skull-stripped images 

to verify if this outstanding region (right outside the skull region) continues to be highlighted for prediction in this model. 

One of the theoretical uses of biological age is for age correction in neuroimaging studies. The hypothesis behind it is that 

correcting neuroimaging studies for the biological (predicted) age of the individuals will better handle the heterogeneity 

that we see in aging, incorporating diversity in longitudinal brain trajectories due to lifestyle, environmental or even 

biological factors (Cole et al., 2019; Tian et al., 2023). For the analysis of chronological and biological (predicted) age 

atrophy pattern differences, we can observe differences mainly from the older groups (as of 70 yrs.). In the comparison 

of the group of 70 yrs. in the chronological and biological (predicted) brain age, atrophied areas of higher statistical 

significance are present in the mid-frontal to parietal-occipital regions of the group based on biological age. This agrees 

with the work of Thambisetty et al. (2010), where an anterior-posterior gradient in age-related brain atrophy was found, 

with frontal-parietal regions showing a greater decline. The groups with 75 and 80 yrs. have more similar atrophy patterns, 

with higher spread to the parietal lobe in the biological (predicted) brain age. Interestingly, a region of greater thickness 

in the oldest groups, compared to the reference group (55 yrs.), was found in the primary visual cortex, located in the 

calcarine sulcus. The shrinkage of the visual cortex is still widely discussed in the literature, with a handful of studies 

showing from cortical thinning of the visual cortex to the sparing of this region. These studies suggest that the visual 

cortex thickness is use-dependent instead of age-related (Burge et al., 2016; Griffis et al., 2016; Jorge et al., 2020). We 

hypothesise that this can be a cohort confounding effect, even individuals of 75 yrs. being present in all cohorts, but in 

larger amounts in ADNI and AIBL. Differences in atrophy patterns between individuals grouped by their chronological 

and biological (predicted) brain age need to be further studied. However, our results already show different tendencies in 

atrophy patterns between them. Correcting for biological (predicted) brain age in neuroimaging studies could be one step 

further in understanding heterogeneity present in aging and be used in early diagnosis of neurological diseases, prognosis 

and even monitoring of treatment response, being one step further to precision medicine.  

Some limitations need to be acknowledged. The large dataset in the current study hindered the possibility of performing 

extensive quality control. For the CNN model, this would mean inspecting that the performed rigid registration was 

adequate. The random cases we inspected suggested that the overall quality of the segmentations was sufficient. However, 

tools to automate the quality control process – such as Brusini et al. (2020) and Klapwijk et al. (2019) – will be necessary 

for future studies on this data size. Regardless of the lack of extensive quality control of the images, our model showed 

robust findings with only slightly worse performance when compared to previously published works.  

Studies also need to evaluate how the inclusion of different populations influences brain age prediction models based on 

minimally processed MRIs. However, the training model likely needs to include more diverse data, i.e., different types 

of cohorts, e.g., from Asia, Africa, and Latin America, as well as a broader range of scanners (from 1.5T to 7T) as well 

as imaging protocols (Mårtensson et al., 2020). Further, the differences in the distribution of chronological age and the 

number of subjects in each cohort can lead to overfitting some cohort-specific information and characteristics (e.g., the 

model could learn that images from GENIC are generally in the lower age span). However, the large training set, heavy 

data augmentation, and only running 20 epochs in training helped minimise the possibility of overfitting.  

Even though we defined the cognitively "healthy" status as consistently as possible across the cohorts, some variation 

exists but we acknowledge the clinical and cognitive assessments relied on similar procedures across cohorts. Finally, it 

is worth noting that there might be sociodemographic differences between the cohorts since the recruitment of participants 

happened in different geographical areas (J-ADNI: Japan, AIBL: Australia, ADNI: North America, and UK Biobank, 

GENIC, and AddNeuroMed: Europe). However, this is not necessarily a limitation but rather a strength. Indeed, the 

developed algorithm could be applied in future research, in which the biological age of the brain is a focus, to some extent 
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independent of the cohort characteristics, thus increasing the generalizability of the model. Future studies need to further 

test this hypothesis and the impact of different cultural backgrounds on the estimation of brain age. 

 

5 CONCLUSION 

In this study, we developed a CNN-based model to predict biological brain age using raw T1w MRI registered to the MNI space, 

with the goal of accessibility and simplicity in implementation. The model was systematically evaluated using different 

approaches, comprising several datasets of cognitively healthy individuals with different scans and population 

characteristics as well as using cross-sectional and longitudinal data. Our CNN-based model provides accurate results 

compared to state-of-art methods. The generalizability and usability of the model were tested using external datasets with 

different demographic characteristics, MRI protocols, and MRI scanners, proving the robustness of the model. In addition, 

we present the important regions for brain age prediction. We also provide indicators for the use of biological (predicted) 

brain age as a metric for age correction in neuroimaging studies as an alternative to the traditional chronological age based 

on the differences in cortical atrophy. Finally, the model’s code and trained CNN weights are made publicly available for 

the research community to quickly implement and use in their research to study ageing and age-related brain disorders. 

 

6 DATA AVAILABILITY 

The complete code for using the CNN is available at https://github.com/westman-neuroimaging-group/brainage-

prediction-mri. We include all the developed models and their trained weights for researchers to apply on their own 

neuroimaging data sets (with and without skull-stripped T1w MRI brain images) and scripts for training their model on 

other datasets. When new image data is available from different cohorts, the CNN will be re-trained, and trained weights 

and performance of the model will be updated in the page.  
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