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Abstract 

Background: Disruptions in language and speech are considered promising 

markers of affective and psychotic disorders. However, little is known about the 

mechanisms and confounders underlying such communicative atypicalities. 

Medications might have a crucial, relatively unknown role both as potential 

confounders and relatedly offering an insight about the mechanisms at work.  The 

integration of regulatory documents with disproportionality analyses could provide a 

more comprehensive picture to account for in future investigations of 

communication-related biomarkers.  

Objectives: Our aim was to identify a list of drugs potentially associated with speech 

and language atypicalities within psychotic and affective disorders. 

Methods: To structure a search for potential drug-induced communicative 

atypicalities on the FDA Adverse Event Reporting System (FAERS, updated June 

2021), we developed a query using the Medical Dictionary for Regulatory Activities 

(MedDRA).  We performed a Bonferroni corrected disproportionality analysis 

(Reporting Odds Ratio) on three separate populations: psychotic, affective, and non-

neuropsychiatric disorders, to account for the confounding role of different underlying 

conditions. Unexpected drug adverse event associations, which were not already 

reported in the SIDER database of labeled adverse drug reactions, were subjected 

to further robustness analyzes to account for expected biases. 

Results: We identified a list of 291 expected and 91 unexpected potential 

confounding medications. We corroborated known/suspected associations: e.g., 

corticosteroids-related dysphonia and immunosuppressant-related stuttering. We 

also identified novel signals: e.g., domperidone-associated aphasia or VEGFR 

inhibitors-related dysphonia. 

Conclusions: We provide a list of medications to account for in future studies of 

communication-related biomarkers in affective and psychotic disorders. The 

methodological tools here implemented for large scale disproportionality analyses 

will facilitate future investigations of communication-related biomarkers in other 

conditions and provide a case study in more rigorous procedures for digital 

phenotyping in general.  
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1. Introduction 

1.1. The confounding role of medications on communication-related 

biomarkers 

Affective and psychotic disorders have long been associated with atypical 

communicative patterns - e.g., decreased emotional expression and flat prosody1,2. 

This awareness is widely used during the assessment of the disorders, and is 

increasingly investigated through automated voice and content analysis3–7. The 

combination of new powerful forms of machine learning,  pervasive smartphone data 

collection, and other sources of big data will allegedly identify historically elusive 

markers for affective and psychotic disorders and therefore enable more reliable 

diagnoses, continuous evaluation of symptoms, and perhaps even personalized 

treatment8–12. However, communication is a complex phenomenon and its relation to 

specific disorders is not straightforward, with many potential confounders and ethical 

considerations6,13,14. 

Medications, which can be disproportionately associated with neuropsychiatric 

diagnoses and their co-morbidities, can affect not only mental health but also speech 

(more related to voice and prosody) and language patterns (more related to content). 

For example, commonly used medications with anticholinergic effects (e.g., 

antihistamines and antidepressants) can cause reduced salivation flow (xerostomia) 

and sedation of the mouth, which could cause dysphonia and difficulty in 

articulation15. As another example, high D2R occupancy antipsychotics are 

administered to patients with psychotic disorders, but have also been shown to 

associate with slower speech and increased pauses16. Therefore, it is often not clear 

whether the communicative atypicalities identified as behavioral biomarkers of 

affective and psychotic disorders could be at least partially confounded by 

medications. Unfortunately, more general investigations of the associations between 

communicative atypicalities and medications are still sparse, and no comprehensive 

overview is available (see Supplementary Material 1 – Section A for an overview of 

studies assessing the effect of medication on speech patterns in schizophrenia). 
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Therefore, the objective of the current study was to identify a list of drugs that 

could be associated with atypicalities in speech and language, which should be 

evaluated in the future as potential confounders in communication-related 

biomarkers of affective and psychotic disorders. We first (Section 1.2) introduce our 

two key sources of information: clinical-trial-based information (SIDER17) and 

spontaneous reports (FAERS18). We then (Section 1.3) briefly discuss four common 

causal mechanisms underlying observed associations between drugs and adverse 

events. We present how the potential biases thus highlighted can be accounted for in 

our analyses (Section 1.4) before detailing our materials and methods (Section 2). 

Finally, we report and discuss the resulting list of drugs associated with 

communicative atypicalities (Sections 3 and 4). 

1.2. Information sources  

As medications are tested in clinical trials, adverse drug reactions are 

evaluated, and if the drug is approved for market distribution (marketing 

authorization) these adverse reactions are reported in the insert of the medication 

package19. However, as the drug is used outside of clinical trials (post-marketing 

phase) unexpected drug reactions are often detected. For example, an adverse drug 

reaction could arise in populations not investigated in clinical trials (e.g., older or 

younger cohorts, pregnant women, patients with additional comorbidities). In 

addition, multiple drugs are often administered together (polytherapy), and an 

adverse drug reaction could arise from their interaction. Such suspected adverse 

reactions to drugs can be spontaneously reported to the regulatory agencies by 

physicians, marketing authorization holders, and the general public. 

Disproportionality analyses are statistical techniques developed to detect patterns 

within spontaneous reporting systems’ databases in the attempt to provide a more 

comprehensive safety profile of medications20. 

Clinical trials and disproportionality analyses have complementary strengths. 

Clinical trials have obvious advantages, primarily that, by carefully selecting 

homogeneous samples and randomly distributing them across interventions, they 

remove many possible confounders and provide a strong causal assessment. 

However, the weaker evidence provided by spontaneous reports can cover a much 

broader variety of patients and drug uses, including adverse reactions that are 
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commonly underreported during clinical trials. For instance, rashes are easy to 

observe, and arrhythmias could be fatal, and therefore, both are relatively prominent 

in clinical trial reports21,22 as compared with symptoms such as raspy vocal quality, 

or mispronunciations of speech sounds. However, communication impairments can 

be disabling from the patients’ and their families’ point of view, and therefore be 

more likely to be spontaneously reported, as has been shown for stuttering23–26. 

Pharmacovigilance has long acknowledged that spontaneous reports provide 

very noisy information riddled with well-known biases. For example, reports may be 

incomplete or duplicated, lack quality control of the information provided (e.g., 

patients do not have the right language and knowledge to accurately label their 

symptoms), contain potential biases, and may ignore external factors such as the 

novelty of a drug and how media coverage of adverse reactions affects the number 

of reports19,27,28. In other words, causal connections between drugs and adverse 

reactions should not be established based solely on spontaneous reports. 

Nevertheless, by taking these biases into account, disproportionality analyses can 

generate hypotheses for further investigation by analytical studies (cohort and case-

control studies). Finally, with large enough sample sizes, there are methods for 

approximately estimating the causal effect of drugs in observational studies by 

adjusting for these newly considered confounders through confounding-adjustment 

methods29 such as propensity score matching. 

1.3. Causal models underlying drug adverse event associations 

Disproportionality analyses identify adverse events that are more frequently 

present in reports about a given drug than in reports not containing that drug. 

However, the observed association could be generated through different causal 

mechanisms, with four common ones represented in Figure 1. 
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Figure 1 common causal mechanisms underlying drug adverse event associations. The four 

diagrams (A-D) represent four possible mechanisms which can all give rise to the observed 

association (in the center). The diagrams are direct acyclic graphs (DAGs), that is, graphs in which 

the nodes (ellipses) are the observable phenomena, and the arrows are the causal connections 

(which can only be acyclical, that is, go one direction and not form loops). DAG A represents the case 

in which the event is an actual Adverse Reaction caused by the administration of the drug of interest. 

DAG B represents a case of Reverse Causality, in which the drug is administered to treat the adverse 

event but is incorrectly reported. DAG C represents a case of Confounding by Indication, in which the 

underlying condition that justifies the use of the drug also more frequently present the adverse event. 

DAG D represents a case of Confounding by Concomitant, in which the adverse event is a reaction to 

a coadministered drug (administered for the same condition or a related comorbidity). 

 

The first possible causal model is simply that the adverse event is indeed 

caused by the drug (an Adverse Reaction to it; DAG A). For example, administering 

anticholinergic drugs often results in reduced salivation flow (xerostomia) and 

sedation of the mouth, which can cause speech impairment15.  

However, the association might also result from Reverse Causality (DAG B): 

the drug is taken because of the event (e.g., to treat it)1. For example, botulinum 

toxin is approved to treat spasmodic dysphonia, and antipsychotics are administered 

off-label to reduce stuttering30. These drugs can be reported as associated with a 

speech impairment because, for example, the lack of specific fields for symptoms of 

the underlying condition or for comorbidities often generates ambiguity in the 

reported information. Furthermore, when therapy does not reduce symptoms, reports 

                                                 
1 While the adverse event is causing the prescription of the drug, the drug itself could be affecting the 
symptom (e.g., diminishing it) and therefore a more nuanced causal model than this simplified DAG 
would have to include bidirectional causal arrow, or a temporal dimension to causation. 
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might incorrectly record the indication for use (pre-existing stuttering) as an adverse 

reaction (after drug administration, stuttering is still there). 

A third common possibility is the so-called “common cause” or fork31. Here the 

underlying condition is causing both the prescription of the drug and the adverse 

event, without there being any direct causation between the latter two (Confounding 

by Indication; DAG C). For example, psychotic disorders can involve some degree 

of communication impairment (e.g., alogia, i.e., reduced and vague speech, or 

disorganized speech), as well as the administration of antipsychotics. Therefore, 

when assessing all reports on FAERS, one might find an association between 

communication impairments and antipsychotics simply due to their co-presence, 

even if there were no direct causal association. Another example of the “common 

cause” problem is seen with gastroesophageal reflux, for which proton pump 

inhibitors (PPI) are administered. Acid reflux can also affect the larynx and vocal 

cords, resulting in dysphonia32, which would then appear to be associated with PPI 

even in the absence of a direct causal link. 

A fourth common possibility is that the adverse event is indeed an adverse 

reaction, but to a different concomitant drug also prescribed due to the underlying 

condition (Confounding by Concomitant; DAG D). For example, diuretics are 

usually administered in conjunction with angiotensin-converting enzyme inhibitors 

(ACEI), which are known to cause bradykinin-related cough and laryngeal irritation. 

Therefore, diuretics might appear to be associated with dysphonia, even if the latter 

were exclusively due to ACEIs. 

Finally, the relationship between a drug and an event may also not be 

reducible to one DAG only. Botulinum toxin may indeed be used to treat spasmodic 

dysphonia (DAG B), but it was also subject to a warning by the FDA because the 

systemic spread of the toxin can lead to flaccid paralysis and related dysphonia 

(DAG A)33. 

 

1.4 From causal models to statistical analyses 
 

When disproportionality analyses identify an association between a drug and 

an adverse event, how do we discriminate between the possible causal 
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mechanisms? It turns out that there is no replacement for clinical and scientific 

knowledge: evidence from previous studies, clinical expertise, and informed 

mechanisms hypotheses. This knowledge must play a meta-statistical role in guiding 

the construction of statistical analyses. In other words, it is up to clinically and 

scientifically informed disproportionality analyses, not statistics alone, to identify 

plausible directions of causality and the necessary follow-up studies. 

Specifically, reverse causality (DAG B in Figure 1) could be anticipated by 

carefully considering which drugs are used to treat the condition investigated. For 

instance, one could run analyses only on reports that do not include drugs used to 

treat communication disorders. Similarly, clinical expertise can identify whether 

underlying conditions are also likely to cause the adverse events of interest 

(Confounding by Indication, DAG C in Figure 1). This is the case of psychotic and 

affective disorders being associated with communicative impairment (e.g., flat 

prosody for both types of disorders, and semantic incoherence for psychotic 

disorders). A solution to this bias is to explicitly include the common cause in the 

model (“blocking the backdoor path”31), for instance, by analyzing the populations 

separately: in our case, this implied separately analyzing individuals with affective 

disorders, individuals with psychotic disorders, and individuals without any 

neurologic medication in order to test whether patients with, e.g., affective disorders 

on vs. off a specific drug display higher rates of the adverse event of interest. By 

looking at reports for individuals not assuming any neurologic medication, we 

exclude (and therefore can correct for) psychiatric patients as well as other 

communication-impairing conditions such as anxiety, Parkinson’s disease, and 

dementia. This analysis is, of course, a first approximation: affective and psychotic 

disorders are complex conditions with very heterogeneous clinical profiles, 

comorbidities, and therapies. To move one step further, one could identify other 

underlying comorbid conditions likely to cause communicative impairment and 

produce a control analysis where all these conditions are excluded. Similarly, in the 

Confounding by Concomitant case (DAG D in Figure 1), one could identify drugs 

known to produce communicative impairment and exclude reports containing these 

drugs from the analysis. This also deals with what is known as “competition bias”27: 

known adverse drug reactions are easier to detect and therefore reported more 

frequently. Thus, established adverse drug reactions result in stronger associations, 
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which mask the less reported unexpected ones. When known signals are removed, 

new associations may become visible. 

While these techniques provide information about potential mechanisms, they 

do not guarantee accurate causal inference. Nevertheless, they contribute to the 

collective construction of more accurate knowledge on the relationship between 

drugs and communicative impairment by providing hypotheses to be explored and 

assessed in future investigations. 

 

2. Methods 

 
2.1. Overview of the analyses 

 

The general pipeline of the analysis is represented in Figure 2, the details of which 

are explained in the following paragraphs. 

 

 
Figure 2 - Analysis pipeline. Each step of the analysis is represented as a block and arrows indicate 

the flow of data from one step to the other. Descriptions of each step are provided in text. 
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2.2. Definition of search terms 

We relied on two information sources: SIDER for clinical trial reports of 

adverse drug reactions and FAERS for spontaneous post-marketing reports. Both 

sources employ a standardized hierarchical lexicon to code for adverse events, the 

Medical Dictionary for Regulatory Activities or MedDRA. In MedDRA, the highest 

organization level is the System Organ Class (SOC, e.g., nervous system vs. 

vascular disorders), followed by the High-Level Group Terms (HLGTs, e.g., 

neuromuscular vs. neurological disorders), followed by High-Level Terms (HLTs, 

e.g., muscle tone abnormal vs. motor neuron disease) and Preferred Terms (PTs, 

e.g., hypertonia vs. hypotonia). Both SIDER and FAERS code their adverse events 

as preferred terms. 

The MedDRA lexicon has some limitations. First, it does not always include 

the most adequate preferred terms to report a given adverse event; therefore, some 

events are less likely to be reported or are reported relying on only partially relevant 

terms. At the same time, preferred terms are quite detailed, and reporters are not 

always aware of the differences between terms (e.g., dysarthria and dyslalia), 

leading to their indiscriminate use. Thus, good pharmacovigilance practices involve 

so-called Standardized MedDRA Queries (SMQs), which are validated search 

queries that aggregate many partially overlapping preferred terms to identify and 

retrieve cases of interest. In the absence of an SMQ for speech and language 

disorders, we selected the preferred terms concerning communicative impairment. 

To increase understanding of the results, we clustered strongly overlapping terms, 

which were then traced, when possible, to separate Speech and Language 

categories. The use of generic preferred terms (e.g., speech disorder) often implies 

low expertise in the reporter and could therefore indicate any speech or language 

impairment. Consequently, we chose to consider them separately, not to 

contaminate the other analyses. This clustering was performed independently by six 

clinical and domain experts (pharmacovigilance experts, speech-language 

pathologists, psychologists, and experts on voice markers; see the list of co-

authors), and disagreements were discussed until resolved. The aggregated list 

consists of nine main categories (sub-queries) and 16 isolated terms. It is 

represented in Figure 3, and it is available in the Supplementary Material 1 – 

Section B – Table S1. 
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2.3. The FDA Adverse Event Reporting System (FAERS) 

The United States Food and Drug Administration (FDA) Adverse Event 

Reporting System (FAERS) collects worldwide spontaneous reports of suspected 

adverse drug reactions and offers the highest accessibility to the public for 

customized analyzes. Specifically, its raw quarterly data include demographic, 

therapeutic, and outcome details for each individual report. The reaction (adverse 

event) and indication (why the drug was administered) fields are standardized using 

MedDRA preferred terms.  

The entire FAERS - Quarterly Data18 (January 2004 to June 2021) was 

downloaded and pre-processed to remove duplicate reports and standardize 

preferred terms and drug names. For the standardization of preferred terms, we 

used MedDRA 24.0. For the standardization of drug names, we used the WHO drug 

dictionary accessed in March 2020 and iteratively integrated to include newly 

marketed active ingredients. Furthermore, drug names were linked to their specific 

code from the Anatomical Therapeutic Chemical (ATC) hierarchical classification 

(2022 version) to allow group visualization of similar drugs. Because individual 

substances can have multiple codes related to distinct indications of use or 

administration routes, we selected only one code for each active ingredient using a 

semi-automatic prioritizing algorithm34. 

2.4. Exposure of interest 

In order to identify medications associated with communicative impairments 

and deal with possible “common cause” biases (DAG C in Figure 1), we separately 

investigated three clinical populations: patients with a) affective, b) psychotic 

conditions, and c) without any neurologic medications (i.e., likely without any 

neuropsychiatric conditions). To identify patients with psychotic and affective 

conditions we selected all reports that recorded, as a reason for using drugs, any 

preferred term (PT, for example, ‘schizophrenia’) belonging to the high-level group 

terms (HLGT) for psychotic disorders ("schizophrenia and other psychotic disorders”) 

and affective disorders ("manic and bipolar mood disorders and disturbances" and 

"depressed mood disorders and disturbances"). To identify patients without 

neuropsychiatric conditions, we selected all reports that did not include any 
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neurologic drug (according to the ATC) nor any psychotic or affective preferred term. 

The results of the selection procedure are displayed in the Supplementary Material 1 

– Section C – Figure S1. 

Descriptive analyses were performed to characterize cases vs. non-cases 

separately in the three populations of interest, with a particular focus on 

demographics, concomitants, co-reported events, and comorbidities (Supplementary 

Material 1 Section C). Differences between cases and non-cases may point to 

susceptibilities and potential biases not a priori acknowledged. For example, if we 

find that older people are more represented in cases than non-cases, this may point 

to a potential bias related to a higher frequency of speech disorders in the elderly.  

2.5. Disproportionality analyzes for drug-event association detection 

Disproportionality analysis (the analysis of a reliably more frequent reporting 

of an adverse event in presence of a drug than in presence of any other drug, Figure 

2 – Step 1) was performed following good signal detection guidelines28. Using a 

contingency table 2x2, we calculated the Reporting Odds Ratio (ROR) whenever at 

least 10 cases of the event investigated (e.g., phonatory preferred terms) co-

occurred with a drug (e.g., testosterone). The ROR was deemed significant when the 

lower limit of its 95% confidence interval was greater than 1. In other words, we 

report a potential association when the adverse event is more likely to be reported 

together with the drug of interest than with any other drug but the one analyzed. 

We performed a disproportionality analysis evaluating associations between 

drugs (from the ATC 2022 classification, excluding mineral supplements and drugs 

included in the ‘Various’ class) and communication-related adverse events (sub-

clusters of overlapping terms as identified in Figure 3). The analyses were run on all 

reports involving a) affective and b) psychotic disorders, and c) non-neuropsychiatric 

reports. To filter out likely spurious associations, results were subjected to Bonferroni 

correction.  

 

2.6. The Side Effect Resource (SIDER) 

The Side Effect Resource is a public database that grants free access to the 

information contained in the package inserts, that is, the official information on a drug 
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and its uses, in particular its side effects, compiled and distributed by the drug 

manufacturers. Package inserts are text-mined, and the information retrieved 

is coded using the ATC classification for medications and the MedDRA classification 

for adverse events.  

For each subquery of potential adverse reactions, we searched the 

specific preferred terms. We considered the identified medications as expected 

associations (Figure 2 – Step 2), which did not require further discussion of potential 

biases and causal mechanisms. The associations found in FAERS but not present in 

the SIDER were considered unexpected and further assessed for potential causal 

confounding (Figure 2 – Step 3). 

 

2.7. Robustness Analyses 

Drugs unexpectedly associated with the sub-queries investigated were 

stratified according to expected biases (Figure 2 – Step 4) through clinical 

reasoning and according to the causal inference framework discussed in the 

introduction (paragraphs 1.3 and 1.4). We accordingly separated the associations 

into uncontroversial ones (plausible adverse reactions, Figure 1, DAG A, for which 

no specific confounder was expected), potential reverse causality (Figure 1, 

DAG B), potential confounding by indication (Figure 1, DAG C), and by concomitant 

(Figure 1, DAG D). We performed robustness analyzes to adjust the estimates for 

possible confounders (Figure 2 – Step 5). In particular, we excluded reports with the 

specific communicative impairment among indications, or restricted the investigation 

to a specific indication, to account for reverse causality bias (DAG B; Robustness 

Analysis 1). We excluded reports with pathologies that may be responsible for 

indication bias (DAG C; Robustness Analysis 2), at least for drugs that are approved 

for multiple indications. Finally, we excluded reports with the drug responsible for the 

ambiguity to account for the concomitant bias (DAG D; Robustness Analysis 3). The 

procedure applied is documented in Supplementary Material 1 – Section D. 

2.8. Aggregating Results 

The expected adverse drug reactions from the SIDER and robust unexpected 

associations from the FAERS were aggregated in nine lists, one per each main 
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subquery (e.g., phonatory issues or incoherence), Figure 2 – Step 6. To provide a 

detailed overview of the results, we visualized each list as a table showing expected 

and previously unexpected adverse reactions organized according to the ATC 

hierarchical classification (see Supplementary Material 1 – Section D).  

To provide a more general overview of the drug classes that should be 

considered for the analysis of communication-related biomarkers, we built a heat 

map showing the associations at the third level of the ATC classification (e.g., 

antipsychotics, antihistamines, and antidepressants; see Figure 4, and the public 

repository35 for a collated heatmap at the level of single active ingredients).  

 

3. Results 

3.1 MedDRA query for case retrieval 

We defined a MedDRA query with nine main categories: three concerning speech 

(phonatory, prosody, motor control or execution), six concerning language (aphasia, 

high/low productivity speech and thought, stereotypies, incoherence, abnormal 

reasoning) (see Figure 3). Note that some of the selected preferred terms could not 

be included in the larger clusters: seven more idiosyncratic language terms and nine 

more generic terms, which are not included in the subsequent analyses. 
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Figure 3 – Diagrammatic representation of the query definition. First, MedDRA preferred terms 

concerning communicative atypicalities were divided into Speech (green) and Language (yellow) 

clusters, with less specific terms that could not be classified on the side (white). Within each of these 

clusters, subclusters of more related terms were identified: three for Speech and six for Language. 

 

3.2 Populations of interest 

We selected three populations of interest: 302,000 reports involving affective 

disorders, 11,631 psychotic disorders, and 7,703,183 non-neuropsychiatric 

disorders. A detailed presentation of the number of cases (reports with 

communication-related adverse events) and noncases is presented in the 

Supplementary Material 1 – Section C Figures S1-S5 and Table S2. 

 

3.3 Expected and Unexpected Solid Associations 

In the three populations, we performed disproportionality analyses for each category 

(see Supplementary Material 2). We detected both expected and unexpected drug 
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associations and performed robustness analyses on the latter ones. The result was a 

list of 291 expected and 91 unexpected potential confounding medications. 

Emerging results were shown in Supplementary Material 1 - Section C (Tables S3-

S9, Figure S6). No association was found for prosody or abnormal reasoning. 

We detected 72 drug classes (ATC third level) associated with a 

disproportional reporting of phonatory impairment: 53 were already expected based 

on the SIDER, 10 classes included both drugs already reported in the SIDER and 

unexpected drugs (integrated classes) and 9 were entirely unexpected. Restricting to 

strong signals (i.e., disproportions significant after the Bonferroni correction) in the 

non-neuropsychiatric population, the highest number of cases involved inhalants – 

fluticasone (4669 cases, ROR = 10.48, 95% CIs = [10.14-10.81]), salmeterol (3099, 

12.16 [11.71-12.63]), and salbutamol (2434, 5.52 [5.29-5.76]), while the highest 

lower limits of the 95%CI of the ROR concerned two VEGFR-inhibitors –regorafenib 

(530, 22.25 [20.29-24.35]) and axitinib (437, 14.27 [12.92-15.37]) and salmeterol. 

The many anticholinergic drugs already present in the SIDER were integrated with 

unexpected signals for umeclidinium (an inhaled bronchodilators), rupatadine and 

fexofenadine (antihistamines). Among the robustness analyses implemented, we 

accounted for reverse causality (DAG B: botulinum toxin excluding its use for 

spasmodic dysphonia1), confounding by indications (DAG C: antihistamines 

restricted to urticaria, to exclude the confound due to asthma) and concomitants 

(DAG D: cardiovascular agents excluding angiotensin-converting enzyme inhibitors; 

beta agonists excluding inhalants). 

We detected 37 drug classes associated with a disproportional reporting of 

motor control or execution impairment in speech (17 expected, 10 integrated, 10 

unexpected). The most numerous cases concerned immunomodulators used in 

multiple sclerosis – natalizumab (770, 4.48 [4.16-4.82]) and interferon beta-1a (674, 

3.62 [3.34-3.91]) – and a selective calcium channel blocker – amlodipine (376, 2.05 

[1.84-2.27]). Drugs with the highest lower limit were anti-infectives: vidarabine (20, 

71.42 [42.66-113.63]), valaciclovir (334, 12.14 [10.84-13.55]) and metronidazole 

(309, 9.48 [8.44-10.63]). 

51 drug classes were associated with aphasia (19 expected, 10 integrated, 22 

unexpected), with the most numerous being natalizumab (872, 5.54 [5.16-5.94]), 

interferon beta-1a (643, 3.71 [3.42-4.02]), and levothyroxine (327, 1.57 [1.4-1.75], 

and the highest disproportionalities being with antineoplastic such as CAR-T 
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engineered cells used to treat hematologic neoplasia –axicabtagene ciloleucel (114, 

43.68 [35.78-52.8]) and tisagenleceleucel-t (58, 24.5 [18.52-31.84])– and avapritinib 

(20, 18 [10.33-26.44]). 

Concerning iatrogenic language stereotypies, we did not find any unexpected 

signal. 4 drug classes were associated with stereotypies (4 expected, 0 unexpected), 

the only strong signal being with interferon beta-1a (20, 6.12 [3.65-9.73]). We only 

found drugs already reported in the SIDER: ifosfamide (antineoplastic), topiramate 

(antiepileptic), phenelzine and bupropion (antidepressant), and iopamidol (contrast 

media). 

12 drug classes were associated with high productivity speech or thought (4 

unexpected, 2 integrated, 6 expected). We observed associations based on only few 

cases, the greatest being clarithromycin (49, 22.38 [16.43-29.8]), levothyroxine (47, 

2.29 [1.67-3.07]) and ivermectin (40, 99.9 [70.83-137.18]), with the highest 

disproportionalities for ivermectin, clarithromycin and niraparib (11, 10.54 [5.24-

18.94]). 

10 drug classes were associated with low productivity speech or thought (2 

unexpected, 2 integrated, 6 expected), the most common drugs being natalizumab 

(105, 4.65 [3.77-5.67]), levothyroxine (85, 2.97 [2.36-3.7]) and interferon beta-1a (65, 

2.6 [2-3.34]), the strongest signals being with lorcaserin (17, 40.85 [23.67-65.71]), 

finasteride (33, 11.9 [8.16-16.79]) and natalizumab. 

44 drug classes were associated with incoherence (34 expected, 4 integrated, 

6 unexpected), the more numerous substances being levothyroxine (237, 1.9 [1.67-

2.17]), interferon beta-1a (213, 1.98 [1.72-2.27]) and montelukast (200, 5.58 [4.82-

6.43]), and the highest disproportionalities being those with anti-infectives –

mefloquine (33, 36.26 [24.8-51.28]), zanamivir (14, 11.95 [6.51-20.13]) and 

oseltamivir (62, 6.47 [4.95-8.31]). 

 

4. Discussion 

4.1 Overview 

Given the increased focus on communication-related biomarkers of affective 

and psychotic disorders, we need a more careful overview of how medications could 

potentially act as confounders. We developed a rigorous pipeline combining 
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evidence from drug package inserts with post-marketing disproportionality analyses 

and relied on causal inference techniques to account for potential biases. We 

identified a list of known (given the package insert) and unexpected medications that 

could affect communication-related biomarkers.  

In the following subsections, we discuss how to interpret and use these 

findings and methods in the broader context of digital phenotyping trying to identify 

markers of neuropsychiatric conditions. First, we discuss expected and unexpected 

potential adverse reactions as they relate to the specific context of communication-

related biomarkers of psychotic and affective disorders. Second, we present the 

limitations and possibilities of our approach. Finally, we discuss possible realistic 

uses of the list in future research.  

4.2 Known and unexpected adverse reactions 

The final list of potential confounding drugs for communication-related 

biomarkers encompasses both expected (i.e., described in the package insert) and 

unexpected associations. Some of the expected associations are already discussed 

in the literature on communication-related biomarkers. For example, the effects of 

antipsychotics and antidepressants have been directly investigated when evaluating 

communication-related biomarkers1,16,36–38. However, even these expected 

associations are not routinely considered in the actual analysis of communication-

related biomarkers of psychotic disorders2, and when they are, the results are 

inconclusive6,7. 

 In other cases, we found unexpected associations with drugs from already 

known classes (integrated findings, that is, drugs from the same class were already 

known to associate with the adverse reaction). For instance, we found evidence for 

haloperidol being related to adverse reactions concerning motor control or execution 

(e.g., impacting articulatory precision) that are not reported in its package insert. 

However, these reactions are reported in other antipsychotic package inserts and 

may be a more general class effect. This is also the case for the unexpected signal 

concerning clonazepam (an antiepileptic, also used to treat anxiety) being 

associated with aphasia and for antineoplastic agents (mainly VEGFR-inhibitors) 

with dysphonia. 

Other associations are even more unexpected. Medications used to treat 

cancer, such as plant alkaloids, cytotoxic antibiotics, protein kinase inhibitors, and 
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monoclonal antibodies, emerge as potential causes of aphasia, which are not 

reported in the SIDER database. Crucially, since there is at least some evidence of 

increased cancer risk in schizophrenia39, we could expect a more common use of 

these drugs in patients with schizophrenia than in controls. Therefore, the adverse 

reaction could influence how well a predictive model could detect psychotic disorders 

from speech or language patterns, at least in complex machine learning models. 

Nevertheless, these drugs have never been mentioned - to our knowledge - in 

previous studies of communication-related biomarkers as possible confounders.  

 

4.3 Drug-induced communicative impairment mechanisms 

We contextualized the drugs emerging as possible confounders for communication-

related biomarkers according to their plausible mechanism of action (see Figure 4). 

Indeed, biological plausibility is one element of robustness for hypotheses emerging 

from disproportionality analyses. Furthermore, understanding the mechanism 

underlying drug-induced communication atypicalities may allow to identify other 

plausible involved drugs not detected in our study (e.g., because of unaccounted for 

biases, or because still not on the market). Finally, this knowledge may drive us to 

shape machine learning techniques using the knowledge of exactly how 

communication-related biomarkers are affected by each drug (e.g., change in pitch 

or in prosody). 
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Figure 4 – Summary of drug-related communicative atypicalities’ plausible mechanisms. 

 

4.3.1 Drug-induced speech impairment mechanisms 

The role of drugs in inducing phonatory impairment, often reported as 

hoarseness, is already consolidated for multiple drugs (see Table S3). The primary 

responsible - in terms of numbers - is plausibly anticholinergic toxicity because of 
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xerostomia and larynx desiccation (antimuscarinic inhaled bronchodilators, 

spasmolytics, drugs for overactive bladder, muscle relaxants, antidepressants, 

antipsychotics, antihistamines)2. Notably, we observed a signal for second and third 

generation antihistamines which, trespassing less the blood brain barrier, preserve 

from central anticholinergic toxicity (mainly sedation) but may nonetheless exert their 

peripheric effect on salivary glands.  The drying effect of diuretics, secondary to 

hypovolemia, is controversial3, while drug-related laryngeal irritation is an 

established common condition, whether because of inhalant drugs (corticosteroids – 

especially dry powders4 – beta-agonists and mast-cell stabilizers), drugs inducing 

cough such as angiotensin converting enzyme inhibitors5, or improperly taken 

bisphosphonates6. In fact, for inhalants and other respiratory drugs (xanthines, 

leukotriene receptor antagonists, respiratory monoclonal antibodies), it is often 

difficult to differentiate between the role of the drug and the underlying disease. 

Drug-induced organic lesions of vocal cords may also be responsible for 

dysphonia, as in the case of hemorrhages induced by anti-thrombotics, anti-

inflammatories, and 5-phosphodiesterase inhibitors7, reversible nodules due to 

excessive granulation response induced by acitretin and isotretinoin8,9, or necrosis 

due to the antiangiogenetic activity of VEGFR-inhibitors10–15. Sex hormones may 

also be involved16, as for androgens and antigonadotropins inducing vocal cords 

thickening and voice deepening through androgen receptors on the larynx17. 

Furthermore, antineoplastics and immunomodulating drugs are also known to be 

associated with dysphonia, plausibly due both to the cytotoxic18 and 

immunomodulating role of the drug19,20, to the disease21, and to concomitant 

radiotherapy22. 

Finally, a functional impairment in phonation may be due to extrapyramidal 

dystonia (mainly antipsychotics, but also dopamine antagonist antiemetics such as 

metoclopramide, that was subjected to an FDA black box warning for dyskinesia, 

with involuntary movements of the tongue) or to botulinum-related flaccid paralysis 

(a black box warning for systemic toxicity was added to the package insert on 2009). 

Other drug classes expected based on SIDER are insulins, 5HT3 antagonist 

antiemetics, antimycotics, antivirals, dopamine agonists, cholinergic drugs, cough 

preparations, antiepileptics, analgesics and anesthetics, anxiolytics and sedatives, 

and cardiovascular drugs. These drug are themselves not totally free of confounding, 

such as confounding by indication (DAG C: diabetes23, cough, and vomit) and 
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reverse causality (DAG B: proton pump inhibitors – for dysphonia supposedly due to 

laryngo-esophageal reflux24,25– and antibiotics –for dysphonia supposedly due to 

respiratory infections7–). 

The role of drugs in inducing motor control or execution impairment, often 

reported as stuttering, is already consolidated for dopamine antagonists-related 

acute dystonia and tardive dyskinesia (antipsychotics), agents inducing sedation and 

reduced motor control (anxiolytics, antiepileptics, opioids, antidepressants, 

anticholinergic drugs, muscle relaxants), neurotoxic drugs (anti-infective, 

antineoplastic and immunomodulator agents), dopamine agonists26, and drugs 

interacting with catecholaminergic and GABAergic pathways27. We also observed an 

association with antineoplastics and immunomodulators – plausibly due to their 

neurotoxicity – and with cardiovascular agents and hormones. Interestingly, the 

signal for antithrombotic medications persisted when excluding ischemic and 

unspecified stroke cases. Even if we cannot exclude reverse causality and indication 

bias, this signal may point to the possibility of drug-induced cerebral hemorrhages. 

 

4.3.2 Drug-induced language impairment mechanisms 

Multiple cases of iatrogenic aphasia have been reported in the last decade28, 

often concerning reversible conditions induced by immunomodulators, chemotherapy 

and fluoroquinolones-related neurotoxicity29–33. A similar toxicity may also manifest 

because the increased permeability of the blood brain barrier due to contrast media 

may allow endogenous and exogenous neurotoxins to reach the central nervous 

system. Dopamine antagonism34, shared by antipsychotics and the propulsive 

domperidone, may also be responsible for aphasia, as well as antithrombotic-related 

hemorrhages. Altered productivity in speech or thought may be the manifestation of 

neurotoxicity, too. Furthermore, drugs inducing sedation (e.g., antiepileptics, 

pramipexole, antipsychotics, lithium, benzodiazepines, antidepressants, 

antihistamines, cannabinoids) or excitation (levothyroxine, psychostimulants) may 

contribute to reducing or enhancing productivity in speech or thought. 
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4.4 Limitations and future directions 

4.4.1 Formalized query 

In the attempt to retrieve cases of interest in the FAERS, we found an often-

ambiguous lexicon covering communicative impairments. Our effort to explicitly 

formalize a MedDRA query is a necessary step to focus the attention and to create a 

common framework for disproportionality analyses on these impairments. 

The current query presents some limitations. For instance, one might more 

closely investigate how physicians describe and report these impairments. For 

example, common terms used by physicians to report dysphonia are acute laryngitis, 

nonspecific dysphonia, benign vocal fold lesions, and chronic laryngitis40, and for 

retrieving antipsychotic-related dysarthria cases one may search also for 

extrapyramidal syndrome and laryngospasm. More work is needed to cover these 

labels and validate the results of searches that integrate them. 

Perhaps more crucially, we observed a high proportion of communication-

related FAERS cases submitted by the general public. This suggests that 

communicative adverse events might be at the same time underplayed by medical 

practitioners, and of crucial importance to patients, caregivers, and families. In fact, 

we observed that patients with communicative impairment tend to specify the 

resulting disability more frequently in their reports than patients with other adverse 

events but the same underlying condition. This suggests that future involvement of 

patient perspectives and the development of a better MedDRA lexicon and 

corresponding definitions for speech and language preferred terms might be an 

important step. 

One could also question whether FAERS’ and SIDER information is 

sufficiently sensitive to the kind of properties analyzed in the search for 

communication-related biomarkers. For example, minor articulatory impairments 

(e.g., increased jitter, that is, low-level irregularities in voice pitch) – useful in 

predictive, machine learning algorithms41 – could not be perceived, or at least not 

perceived as enough of an issue, by patients and clinicians to be reported and 

precisely labeled. 

Nevertheless, the construction of an initial query enables initial explorations of 

medication-based confounders and facilitates proposals, thus representing an 

important step in the development of a useful Standardized MedDRA Query (SMQ). 
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4.4.2 Causal inference 

Although still uncommon in disproportionality analyses, formalized causal 

inference, and the use of DAGs, in particular, are promising endeavor31,42. These 

tools provide a standardized framework for the formalization, visualization, and 

communication of confounding. These tools also provide structured and more 

reproducible procedures to account for at least some of the biases when designing 

analyses31.  

We have built four relatively simple DAGs of the mechanisms underlying 

observed drug event observations. Thus, we have tried to identify the most 

problematic biases for our questions and accordingly adjusted our analyses and 

interpretation. However, it is important to note that many biases could not be fixed 

and that the characteristics of the reporting (often incomplete and unverified) 

complicate attempts at causal inference. For example, proton pump inhibitors are 

always used for gastroesophageal reflux, which may be responsible for laryngitis and 

dysphonia, and therefore the causal direction cannot be easily identified. Further, our 

broad focus did not permit us to delve into the richness of spontaneous reports (e.g., 

information on concomitants, therapy regimen, co-occurring events) and to map 

more complex scenarios (e.g., variables affecting at the same time the use of the 

drug, the incidence of the adverse event, and the reporting of it). For example, 

botulinum toxin has been referred to as a potential cause and treatment for 

dysphonia, and more research is needed to disentangle these possible scenarios. In 

addition, biases, such as notoriety bias, and masking bias, adjustment for the Weber 

effect27, are beyond the purpose of this study but should be considered when 

investigating specific drugs more closely. 

4.4.3 Integrating additional sources 

The main objective of spontaneous reporting systems is to collect useful data 

to identify unexpected associations between a drug and an adverse event in a timely 

and cost-effective manner. This identification enables early intervention and 

therefore limits the costs of drug-related harm. To effectively target currently not 

known, it is extremely important to integrate already acquired knowledge, which may 

come from the literature, or from regulatory sources - primarily package inserts 

(FDA) and Summaries of product characteristics (EMA). 
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Databases that store this information in an easily accessible way are a 

promising tool for large-scale analyses because reading each individual package 

insert is time consuming. The SIDER uses a natural language processing algorithm 

to extract the information from regulatory sources and has not been updated since 

201617, therefore, it plausibly contains errors and outdated information. 

A worldwide database in which data for each marketed drug is compiled and 

regularly updated by the marketing authorization holder and stored in an accessible 

way would enrich both regulatory activities and disproportionality analyses. In the 

meantime, the use of the SIDER or similar databases may help in large-scale 

analyses to reduce the risk of classifying already known reactions as unexpected 

signals.  

We acknowledge that we cannot be sure whether some of the unexpected 

associations have already appeared as notes in clinical trials (but not reported in the 

package insert) or in subsequent scientific literature. Future work could attempt to 

integrate these additional sources of information. However, independent of the 

novelty, our list aggregates large amounts of otherwise dispersed information in an 

easier to consult format.  

Future work could integrate additional sources of information (e.g., scientific 

literature) and provide weights to different sources according to the degree of 

evidence available (e.g., via Bayesian analysis). 

4.4.4 Large-scale analyses 

Traditional disproportionality analyses focus on at most a handful of drugs 

and/or adverse events43,44. Thus, they can provide a fine-grained analysis of 

potential confounders, including a nuanced analysis of how sociodemographic 

variables might affect drug prescription and adverse reactions45. 

Large-scale analyses require a broader overview, which cannot match the 

same level of detail and discussion.  The strategies we implemented to 

simultaneously assess large sets of adverse events and drugs may help design 

future large-scale analyses. These strategies range from correction for multiple 

testing and automatic integration with regulatory databases, to an attempt to 

formalize possible underlying causal mechanisms and the use of a priori expected 

biases to implement robustness analyses. Large-scale analyses, however, provide 
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only an initial perspective and must be complemented with more detailed studies of 

specific associations and their confounds. 

4.5 How should this list be used? 

We advocate for the list of drug confounders (Figure 4 and Table 1)– whether 

as a cause of a speech or language atypicality or as a proxy of an underlying 

susceptibility – to be used in future studies of communication-related behavioral 

biomarkers by either including the presence of a medication as a covariate, removing 

participants who take medication, or interpreting results and study limitations as a 

function of which medications were taken. We know that, as observed by multiple 

reviews, most studies of such markers involve small sample sizes2,46,47. Such studies 

would be at a loss trying to adjust for such a large number of medications and would 

lack reliable evidence related to all but the most commonly used ones. Although a 

single study can still check the list for the most likely confounders (e.g., much higher 

use of drug x in the target population than in the controls), the real potential lies in 

the cumulative aggregation of this information across studies. The key is to report 

medications used by participants in individual studies, which would allow future 

mega-analyses48 (aggregating datasets across studies preserving individual-level 

data) to directly assess the impact of a large variety of relevant medications. 

Accounting for confounders is also important in machine learning studies. 

Current reviews and perspectives on the study of communication-related behavioral 

biomarkers advocate the collection of larger and more diverse samples and the use 

of state-of-the-art machine learning techniques, such as deep learning6,7,14. In these 

contexts, the algorithms can detect even the presence of weak confounding if it 

improves prediction. In other words, many machine learning models are likely to 

recognize small differences between groups they try to classify. If these differences 

are due to higher levels of medication being used and not due to the target disorder, 

the models may not generalize well to other samples of the disorder where the 

medication use is different, which is common when changing countries and 

sociodemographic settings. Accordingly, a deeper understanding of the confounders 

and mechanisms at work is a key component also for more data-driven machine 

learning approaches, for instance, to guide bias assessment or even to identify more 

rigorous pipelines (e.g., presenting medication-balanced validation sets). 
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Finally, this list may also help identify more general hypothesized 

mechanisms underlying adverse events beyond a specific drug. Pharmaco-

surveillance can thus act not only as a guide for precautionary regulatory action, but 

also as a hypothesis generation tool for scientific research, which could lead to 

follow-up studies involving, e.g., electronic health records (to assess adverse events 

before and after drug administration), experimental setups, and clinical studies. For 

instance, a more thorough investigation of the association between domperidone 

and aphasia would be of particular interest, given the biological plausibility –i.e., its 

activity as a dopamine antagonist– and the existence of conditions that increase the 

blood-brain barrier permeability. This might lead to more generalizable predictions as 

regards confounding drugs and increased understanding of the communicative 

features of the disorders over time. 

4.6 Applications of the methods to other neuropsychiatric conditions 

In the current study, we have currently focused on affective and psychotic 

disorders since previous research explicitly called for better investigation of 

medication-related confounders in identifying communication markers for these 

populations1,2,5. However, with proper consideration, the list could be easily extended 

when assessing communication-related behavioral biomarkers for other conditions. 

Neurodevelopmental conditions (e.g., autistic spectrum disorder), and neurological 

diseases (e.g., Parkinson’s disease) seem obvious follow-ups. 

 

Conclusions 

 Motivated by the increasing interest in communication-related behavioral 

biomarkers of affective and psychotic disorders, we set out to investigate the 

potential role of medications in affecting communication-related markers of these 

disorders. We extracted the drugs already expected to cause communicative 

impairment from the SIDER. This paved the way for a pharmaco-surveillance 

analysis of a larger set of communication-related adverse events and drugs, 

controlling for prominent biases.  

We corroborated known/suspected associations: e.g., corticosteroids-related 

dysphonia and immunosuppressant-related stuttering. We also identified novel 

signals: e.g., domperidone-associated aphasia or VEGFR inhibitors-related 

dysphonia. The results are combined in a list of medications to be accounted for in 
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future studies on communication and biobehavioral markers of affective and 

psychotic disorders. 

The work showcases methodological innovations to facilitate large-scale 

disproportionality analyses and identifies current shortcomings, along with discussing 

potential causal and pathogenetic mechanisms. In particular, the existing lexicon to 

identify communicative adverse events is underarticulated, perhaps due to an 

underappreciation of the perspectives of patients. We advocate for future work on 

this. 

Drugs that confound the effect between communication-related behavioral 

biomarkers and psychiatric disorders are abundant. There should be concern not 

only for confounding drugs and comorbidities, but also non-medical substances and 

habits (e.g., smoking, vocal use). Here, we provide a tool for learning about and 

potentially adjusting for the confounders to improve digital phenotyping research. 
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