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Abstract 
Background: Disruptions in language and speech are considered promising markers 

of affective and psychotic disorders. However, little is known about the mechanisms 

and confounders underlying such communicative atypicalities. Medications might 

have a crucial, relatively unknown role both as potential confounders and relatedly 

offering an insight about the mechanisms at work.  The integration of regulatory 

documents with pharmacovigilance techniques could provide a more comprehensive 

picture to account for in future investigations of communication-related biomarkers.  
Objectives: Our aim was to identify a list of drugs potentially associated with speech 

and language atypicalities within psychotic and affective disorders. 
Methods: To structure a search for potential drug-induced communicative atypicalities 

on the FDA Adverse Event Reporting System (FAERS, updated June 2021), we 

developed a query using the Medical Dictionary for Regulatory Activities (MedDRA).  

We performed a Bonferroni corrected disproportionality analysis (Reporting Odds 

Ratio) on three separate populations: psychotic, affective, and non-neuropsychiatric 

disorders, to account for the confounding role of different underlying conditions. 

Unexpected drug adverse event associations, which were not already reported in the 

SIDER database of labeled adverse drug reactions, were subjected to further 

robustness analyzes to account for expected biases. 

Results: We identified a list of 291 expected and 91 unexpected potential confounding 

medications. We corroborated known/suspected associations: e.g., corticosteroids-

related dysphonia and immunosuppressant-related stuttering. We also identified novel 

signals: e.g., domperidone-associated aphasia or VEGFR inhibitors-related 

dysphonia. 

Conclusions: We provide a list of medications to account for in future studies of 

communication-related biomarkers in affective and psychotic disorders. The 

methodological tools here implemented for large scale pharmacosurveillance 

investigations will facilitate future investigations of communication-related biomarkers 

in other conditions and provide a case study in more rigorous procedures for digital 

phenotyping in general.  
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1. Introduction 

1.1. The confounding role of medications on communication-related 

biomarkers 

Affective and psychotic disorders have long been associated with atypical 

communicative patterns - e.g., decreased emotional expression and flat prosody1,2. 

This awareness is widely used during the assessment of the disorders, and is 

increasingly investigated through automated voice and content analysis3–7. The 

combination of new powerful forms of machine learning,  pervasive smartphone data 

collection, and other sources of big data will allegedly identify historically elusive 

markers for affective and psychotic disorders and therefore enable more reliable 

diagnoses, continuous evaluation of symptoms, and perhaps even personalized 

treatment8–12. However, communication is a complex phenomenon and its relation to 

specific disorders is not straightforward, with many potential confounders and ethical 

considerations6,13,14. 

Medications, which can be disproportionately associated with neuropsychiatric 

diagnoses and their co-morbidities, can affect not only mental health but also speech 

(more related to voice and prosody) and language patterns (more related to content). 

For example, commonly used medications with anticholinergic effects (e.g., 

antihistamines and antidepressants) can cause reduced salivation flow (xerostomia) 

and sedation of the mouth, which could cause dysphonia and difficulty in articulation15. 

As another example, high D2R occupancy antipsychotics are administered to patients 

with psychotic disorders, but have also been shown to associate with slower speech 

and increased pauses16. Therefore, it is often not clear whether the communicative 

atypicalities identified as behavioral biomarkers of affective and psychotic disorders 

could be at least partially confounded by medications. Unfortunately, more general 

investigations of the associations between communicative atypicalities and 

medications are still sparse, and no comprehensive overview is available (see 

Supplementary Material 1 – Section A for an overview of studies assessing the effect 

of medication on speech patterns in schizophrenia). 
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Therefore, the objective of the current study was to identify a list of drugs that could 

be associated with atypicalities in speech and language, which should be evaluated in 

the future as potential confounders in communication-related biomarkers of affective 

and psychotic disorders. We first (Section 1.2) introduce our two key sources of 

information: clinical-trial-based information (SIDER17) and spontaneous reports 

(FAERS18). We then (Section 1.3) briefly discuss four common causal mechanisms 

underlying observed associations between drugs and adverse events. We present 

how the potential biases thus highlighted can be accounted for in our analyses 

(Section 1.4) before detailing our materials and methods (Section 2). Finally, we report 

and discuss the resulting list of drugs associated with communicative atypicalities 

(Sections 3 and 4). 

1.2. Information sources  

As medications are tested in clinical trials, adverse drug reactions are 

evaluated, and if the drug is approved for market distribution (marketing authorization) 

these adverse reactions are reported in the insert of the medication package19. 

However, as the drug is used outside of clinical trials (post-marketing phase) 

unexpected drug reactions are often detected. For example, an adverse drug reaction 

could arise in populations not investigated in clinical trials (e.g., older or younger 

cohorts, pregnant women, patients with additional comorbidities). In addition, multiple 

drugs are often administered together (polytherapy), and an adverse drug reaction 

could arise from their interaction. Such suspected adverse reactions to drugs can be 

spontaneously reported to the regulatory agencies by physicians, marketing 

authorization holders, and the general public. Pharmacosurveillance is the method that 

critically collects these spontaneous reports to provide a more comprehensive safety 

profile of medications20. 

Clinical trials and pharmacosurveillance have complementary strengths. 

Clinical trials have obvious advantages, primarily that, by carefully selecting 

homogeneous samples and randomly distributing them across interventions, they 

remove many possible confounders and provide a strong causal assessment. 

However, the weaker evidence provided by pharmacosurveillance can cover a much 

broader variety of patients and drug uses. In addition, spontaneous reports that inform 

pharmaco-surveillance can contain adverse reactions that are commonly 
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underreported during clinical trials. For instance, rashes are easy to observe, and 

arrhythmias could be fatal, and therefore, both are relatively prominent in clinical trial 

reports21,22 as compared with symptoms such as raspy vocal quality, or 

mispronunciations of speech sounds. However, communication impairments can be 

disabling from the patients’ and their families’ point of view, and therefore be more 

likely to be spontaneously reported, as has been shown for stuttering23–26. 

Pharmacosurveillance has long acknowledged that spontaneous reports 

provide very noisy information riddled with well-known biases. For example, reports 

may be incomplete or duplicated, lack quality control of the information provided (e.g., 

patients do not have the right language and knowledge to accurately label their 

symptoms), contain potential biases, and may ignore external factors such as the 

novelty of a drug and how media coverage of adverse reactions affects the number of 

reports19,27,28. In other words, causal connections between drugs and adverse 

reactions should not be established based solely on pharmacosurveillance data. 

Nevertheless, by taking these biases into account, pharmacosurveillance can 

generate hypotheses for further investigation by analytical studies (cohort and case-

control studies). Finally, with large enough sample sizes, there are methods for 

approximately estimating the causal effect of drugs in observational studies by 

adjusting for these newly considered confounders through confounding-adjustment 

methods29 such as propensity score matching. 

1.3. Causal models underlying drug adverse event associations 

Pharmacosurveillance approaches identify adverse events that are more 

frequently present in reports about a given drug than in reports not containing that 

drug. However, the observed association could be generated through different causal 

mechanisms, with four common ones represented in Figure 1. 
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Figure 1 common causal mechanisms underlying drug adverse event associations. The four 

diagrams (A-D) represent four possible mechanisms which can all give rise to the observed association 

(in the center). The diagrams are direct acyclic graphs (DAGs), that is, graphs in which the nodes 

(ellipses) are the observable phenomena, and the arrows are the causal connections (which can only 

be acyclical, that is, go one direction and not form loops). DAG A represents the case in which the event 

is an actual Adverse Reaction caused by the administration of the drug of interest. DAG B represents 
a case of Reverse Causality, in which the drug is administered to treat the adverse event but is 

incorrectly reported. DAG C represents a case of Confounding by Indication, in which the underlying 

condition that justifies the use of the drug also more frequently present the adverse event. DAG D 

represents a case of Confounding by Concomitant, in which the adverse event is a reaction to a 

coadministered drug (administered for the same condition or a related comorbidity). 

 

The first possible causal model is simply that the adverse event is indeed 

caused by the drug (an Adverse Reaction to it; DAG A). For example, administering 

anticholinergic drugs often results in reduced salivation flow (xerostomia) and sedation 

of the mouth, which can cause speech impairment15.  

However, the association might also result from Reverse Causality (DAG B): 

the drug is taken because of the event (e.g., to treat it)1. For example, botulinum toxin 

is approved to treat spasmodic dysphonia, and antipsychotics are administered off-

label to reduce stuttering30. These drugs can be reported as associated with a speech 

impairment because, for example, the lack of specific fields for symptoms of the 

underlying condition or for comorbidities often generates ambiguity in the reported 

information. Furthermore, when therapy does not reduce symptoms, reports might 

 
1 While the adverse event is causing the prescription of the drug, the drug itself could be affecting the 
symptom (e.g., diminishing it) and therefore a more nuanced causal model than this simplified DAG 
would have to include bidirectional causal arrow, or a temporal dimension to causation. 
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incorrectly record the indication for use (pre-existing stuttering) as an adverse reaction 

(after drug administration, stuttering is still there). 

A third common possibility is the so-called “common cause” or fork31. Here the 

underlying condition is causing both the prescription of the drug and the adverse event, 

without there being any direct causation between the latter two (Confounding by 
Indication; DAG C). For example, psychotic disorders can involve some degree of 

communication impairment (e.g., alogia, i.e., reduced and vague speech, or 

disorganized speech), as well as the administration of antipsychotics. Therefore, when 

assessing all reports on FAERS, one might find an association between 

communication impairments and antipsychotics simply due to their co-presence, even 

if there were no direct causal association. Another example of the “common cause” 

problem is seen with gastroesophageal reflux, for which proton pump inhibitors (PPI) 

are administered. Acid reflux can also affect the larynx and vocal cords, resulting in 

dysphonia32, which would then appear to be associated with PPI even in the absence 

of a direct causal link. 

A fourth common possibility is that the adverse event is indeed an adverse 

reaction, but to a different concomitant drug also prescribed due to the underlying 

condition (Confounding by Concomitant; DAG D). For example, diuretics are usually 

administered in conjunction with angiotensin-converting enzyme inhibitors (ACEI), 

which are known to cause bradykinin-related cough and laryngeal irritation. Therefore, 

diuretics might appear to be associated with dysphonia, even if the latter were 

exclusively due to ACEIs. 

Finally, the relationship between a drug and an event may also not be reducible 

to one DAG only. Botulinum toxin may indeed be used to treat spasmodic dysphonia 

(DAG B), but it was also subject to a warning by the FDA because the systemic spread 

of the toxin can lead to flaccid paralysis and related dysphonia (DAG A)33. 

 

1.4 From causal models to statistical analyses 
 

When pharmacosurveillance identifies an association between a drug and an 

adverse event, how do we discriminate between the possible causal mechanisms? It 

turns out that there is no replacement for clinical and scientific knowledge: evidence 
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from previous studies, clinical expertise, and informed mechanisms hypotheses. This 

knowledge must play a meta-statistical role in guiding the construction of statistical 

analyses. In other words, it is up to clinically and scientifically informed pharmaco-

surveillance analyses, not statistics alone, to identify plausible directions of causality 

and the necessary follow-up studies. 

Specifically, reverse causality (DAG B in Figure 1) could be anticipated by 

carefully considering which drugs are used to treat the condition investigated. For 

instance, one could run analyses only on reports that do not include drugs used to 

treat communication disorders. Similarly, clinical expertise can identify whether 

underlying conditions are also likely to cause the adverse events of interest 

(Confounding by Indication, DAG C in Figure 1). This is the case of psychotic and 

affective disorders being associated with communicative impairment (e.g., flat prosody 

for both types of disorders, and semantic incoherence for psychotic disorders). A 

solution to this bias is to explicitly include the common cause in the model (“blocking 

the backdoor path”31), for instance, by analyzing the populations separately: in our 

case, this implied separately analyzing individuals with affective disorders, individuals 

with psychotic disorders, and individuals without any neurologic medication in order to 

test whether patients with, e.g., affective disorders on vs. off a specific drug display 

higher rates of the adverse event of interest. By looking at reports for individuals not 

assuming any neurologic medication, we exclude (and therefore can correct for) 

psychiatric patients as well as other communication-impairing conditions such as 

anxiety, Parkinson’s disease, and dementia. This analysis is, of course, a first 

approximation: affective and psychotic disorders are complex conditions with very 

heterogeneous clinical profiles, comorbidities, and therapies. To move one step 

further, one could identify other underlying comorbid conditions likely to cause 

communicative impairment and produce a control analysis where all these conditions 

are excluded. Similarly, in the Confounding by Concomitant case (DAG D in Figure 1), 

one could identify drugs known to produce communicative impairment and exclude 

reports containing these drugs from the analysis. This also deals with what is known 

as “competition bias”27: known adverse drug reactions are easier to detect and 

therefore reported more frequently. Thus, established adverse drug reactions result in 

stronger associations, which mask the less reported unexpected ones. When known 

signals are removed, new associations may become visible. 
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While these techniques provide information about potential mechanisms, they 

do not guarantee accurate causal inference. Nevertheless, they contribute to the 

collective construction of more accurate knowledge on the relationship between drugs 

and communicative impairment by providing hypotheses to be explored and assessed 

in future investigations. 

 

2. Methods 

 
2.1. Overview of the analyses 
 

The general pipeline of the analysis is represented in Figure 2, the details of which 

are explained in the following paragraphs. 
 

 
Figure 2 - Analysis pipeline. Each step of the analysis is represented as a block and arrows indicate 

the flow of data from one step to the other. Descriptions of each step are provided in text. 

2.2. Definition of search terms 

We relied on two information sources: SIDER for clinical trial reports of adverse 

drug reactions and FAERS for spontaneous post-marketing reports. Both sources 

employ a standardized hierarchical lexicon to code for adverse events, the Medical 
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Dictionary for Regulatory Activities or MedDRA. In MedDRA, the highest organization 

level is the System Organ Class (SOC, e.g., nervous system vs. vascular disorders), 

followed by the High-Level Group Terms (HLGTs, e.g., neuromuscular vs. neurological 

disorders), followed by High-Level Terms (HLTs, e.g., muscle tone abnormal vs. motor 

neuron disease) and Preferred Terms (PTs, e.g., hypertonia vs. hypotonia). Both 

SIDER and FAERS code their adverse events as preferred terms. 

The MedDRA lexicon has some limitations. First, it does not always include the 

most adequate preferred terms to report a given adverse event; therefore, some 

events are less likely to be reported or are reported relying on only partially relevant 

terms. At the same time, preferred terms are quite detailed, and reporters are not 

always aware of the differences between terms (e.g., dysarthria and dyslalia), leading 

to their indiscriminate use. Thus, good pharmacovigilance practices involve so-called 

Standardized MedDRA Queries (SMQs), which are validated search queries that 

aggregate many partially overlapping preferred terms to identify and retrieve cases of 

interest. In the absence of an SMQ for speech and language disorders, we selected 

the preferred terms concerning communicative impairment. To increase 

understanding of the results, we clustered strongly overlapping terms, which were then 

traced, when possible, to separate Speech and Language categories. The use of 

generic preferred terms (e.g., speech disorder) often implies low expertise in the 

reporter and could therefore indicate any speech or language impairment. 

Consequently, we chose to consider them separately, not to contaminate the other 

analyses. This clustering was performed independently by six clinical and domain 

experts (pharmaco-surveillance experts, speech-language pathologists, 

psychologists, and experts on voice markers; see the list of co-authors), and 

disagreements were discussed until resolved. The aggregated list consists of nine 

main categories (sub-queries) and 16 isolated terms. It is represented in Figure 3 and 

it is available in the Supplementary Material 1 – Section B – Table S1. 
 

2.3. The FDA Adverse Event Reporting System (FAERS) 

The United States Food and Drug Administration (FDA) Adverse Event 

Reporting System (FAERS) collects worldwide spontaneous reports of suspected 

adverse drug reactions and offers the highest accessibility to the public for customized 

analyzes. Specifically, its raw quarterly data include demographic, therapeutic, and 
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outcome details for each individual report. The reaction (adverse event) and indication 

(why the drug was administered) fields are standardized using MedDRA preferred 

terms.  

The entire FAERS - Quarterly Data18 (January 2004 to June 2021) was 

downloaded and pre-processed to remove duplicate reports and standardize preferred 

terms and drug names. For the standardization of preferred terms, we used MedDRA 

24.0. For the standardization of drug names, we used the WHO drug dictionary 

accessed in March 2020 and iteratively integrated to include newly marketed active 

ingredients. Furthermore, drug names were linked to their specific code from the 

Anatomical Therapeutic Chemical (ATC) hierarchical classification (2022 version) to 

allow group visualization of similar drugs. Because individual substances can have 

multiple codes related to distinct indications of use or administration routes, we 

selected only one code for each active ingredient using a semi-automatic prioritizing 

algorithm34. 

2.4. Exposure of interest 

In order to identify medications associated with communicative impairments 

and deal with possible “common cause” biases (DAG C in Figure 1), we separately 

investigated three clinical populations: patients with a) affective, b) psychotic 

conditions, and c) without any neurologic medications (i.e., likely without any 

neuropsychiatric conditions). To identify patients with psychotic and affective 

conditions we selected all reports that recorded any preferred term (PT, for example, 

‘schizophrenia’) belonging to the high-level group terms (HLGT) for psychotic 

disorders ("schizophrenia and other psychotic disorders”) and affective disorders 

("manic and bipolar mood disorders and disturbances" and "depressed mood 

disorders and disturbances"). To identify patients without neuropsychiatric conditions, 

we selected all reports that did not include any neurologic drug (according to the ATC) 

nor any psychotic or affective preferred term. The results of the selection procedure 

are displayed in the Supplementary Material 1 – Section C – Figure S1. 

Descriptive analyses were performed to characterize cases vs. noncases 

separately in the three populations of interest, with a particular focus on demographics, 

concomitants, co-reported events, and comorbidities (Supplementary Material 1 

Section C). Differences between cases and noncases may point to susceptibilities and 
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potential biases not a priori acknowledged. For example, if we find that older people 

are more represented in cases than noncases, this may point to a potential bias related 

to a higher frequency of speech disorders in the elderly.  

2.5. Disproportionality analyzes for drug-event association detection 

Disproportionality analysis (the analysis of a reliably more frequent reporting of 

an adverse event in presence of a drug than in presence of any other drug, Figure 2 

– Step 1) was performed following good pharmacovigilance practice guidelines28. 

Using a contingency table 2x2, we calculated the Reporting Odds Ratio (ROR) 

whenever at least 10 cases of the event investigated (e.g., phonatory preferred terms) 

co-occurred with a drug (e.g., testosterone). The ROR was deemed significant when 

the lower limit of its 95% confidence interval was greater than 1. In other words, we 

report a potential association when the adverse event is more likely to be reported 

together with the drug of interest than with any other drug but the one analyzed. 

We performed a disproportionality analysis evaluating associations between 

drugs (from the ATC 2022 classification, excluding mineral supplements and drugs 

included in the ‘Various’ class) and communication-related adverse events (sub-

clusters of overlapping terms as identified in Figure 3). The analyses were run on all 

reports involving a) affective and b) psychotic disorders, and c) non-neuropsychiatric 

reports. To filter out likely spurious associations, results were subjected to Bonferroni 

correction.  

 

2.6. The Side Effect Resource (SIDER) 

The Side Effect Resource is a public database that grants free access to the 

information contained in the package inserts, that is, the official information on a drug 

and its uses, in particular its side effects, compiled and distributed by the drug 

manufacturers. Package inserts are text-mined, and the information retrieved is coded 

using the ATC classification for medications and the MedDRA classification for 

adverse events.  

For each subquery of potential adverse reactions, we searched the 

specific preferred terms. We considered the identified medications as expected 

associations (Figure 2 – Step 2), which did not require further discussion of potential 
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biases and causal mechanisms. The associations found in FAERS but not present in 

the SIDER were considered unexpected and further assessed for potential causal 

confounding (Figure 2 – Step 3). 

 

2.7. Robustness Analyses 

Drugs unexpectedly associated with the sub-queries investigated were 

stratified according to expected biases (Figure 2 – Step 4) through clinical 

reasoning and according to the causal inference framework discussed in the 

introduction (paragraphs 1.3 and 1.4). We accordingly separated the associations 

into uncontroversial ones (plausible adverse reactions, Figure 1, DAG A, for which no 

specific confounder was expected), potential reverse causality (Figure 1, 

DAG B), potential confounding by indication (Figure 1, DAG C), and by concomitant 

(Figure 1, DAG D). We performed robustness analyzes to adjust the estimates for 

possible confounders (Figure 2 – Step 5). In particular, we excluded reports with the 

specific communicative impairment among indications, or restricted the investigation 

to a specific indication, to account for reverse causality bias (DAG B; Robustness 

Analysis 1). We excluded reports with pathologies that may be responsible for 

indication bias (DAG C; Robustness Analysis 2), at least for drugs that are approved 

for multiple indications. Finally, we excluded reports with the drug responsible for the 

ambiguity to account for the concomitant bias (DAG D; Robustness Analysis 3). The 

procedure applied is documented in Supplementary Material 1 – Section D. 

2.8. Aggregating Results 

The expected adverse drug reactions from the SIDER and robust unexpected 

associations from the FAERS were aggregated in nine lists, one per each main 

subquery (e.g., phonatory issues or incoherence), Figure 2 – Step 6. To provide a 

detailed overview of the results, we visualized each list as a table showing expected 

and previously unexpected adverse reactions organized according to the ATC 

hierarchical classification (see Supplementary Material 1 – Section D).  

To provide a more general overview of the drug classes that should be 

considered for the analysis of communication-related biomarkers, we built a heat map 

showing the associations at the third level of the ATC classification (e.g., 
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antipsychotics, antihistamines, and antidepressants; see Figure 4, and the public 

repository35 for a collated heatmap at the level of single active ingredients).  

 

3. Results 

3.1 MedDRA query for case retrieval 

We defined a MedDRA query with nine main categories: three concerning speech 

(phonatory, prosody, motor control or execution), six concerning language (aphasia, 

high/low productivity speech and thought, stereotypies, incoherence, abnormal 

reasoning) (see Figure 3). Note that some of the selected preferred terms could not 

be included in the larger clusters: seven more idiosyncratic language terms and nine 

more generic terms, which are not included in the subsequent analyses. 

  
Figure 3 – Diagrammatic representation of the query definition. First, MedDRA preferred terms 

concerning communicative atypicalities were divided into Speech (green) and Language (yellow) 

clusters, with less specific terms that could not be classified on the side (white). Within each of these 

clusters, subclusters of more related terms were identified: three for Speech and six for Language. 
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3.2 Populations of interest 

We selected three populations of interest: 302,000 reports involving affective 

disorders, 11,631 psychotic disorders, and 7,703,183 non-neuropsychiatric disorders. 

A detailed presentation of the number of cases (reports with communication-related 

adverse events) and noncases is presented in the Supplementary Material 1 – Section 

C Figures S1-S5 and Table S2. 
 

3.3 Expected and Unexpected Solid Associations 

In the three populations, we performed disproportionality analyses for each category 

(see Supplementary Material 2). We detected both expected and unexpected drug 

associations (see Figure 4) and performed robustness analyses on the latter ones. 

The result was a list of 291 expected and 91 unexpected potential confounding 

medications. Emerging results were shown in Supplementary Material 1 - Section C 

and Table 1. No association was found for prosody or abnormal reasoning.  
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Figure 4 – Heat Map of drug-related communicative atypicalities. We showed expected and 

unexpected associations between drug classes at the third level of the ATC classification (y-axis – 
left, aggregated by the first level of the ATC classification – right) and communicative impairment sub-

queries (x-axis – bottom, aggregated in Speech and Language – top). Blue squares represent 
expected associations based on SIDER, yellow squares unexpected associations, and green squares 

drug classes that included both expected and unexpected medications. Rows and columns with no 
significant association were not shown. 
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Table 1 – List of drugs associated with communicative atypicalities. Expected drugs are those already identified in SIDER. Unexpected drugs are split in 
2 classes: new or integrated, for which drugs within the same class are already known to associate with the impairment. *Robust FAERS signals*. 

	 DYSPHONIA	 MOTOR	CONTROL	 APHASIA	 STEREOTYPIES	 ALTERED	PRODUCTIVITY	 INCOHERENCE	
SUMMARY	DRUG	
CLASS	

53 expected, 10 integrated, 9 new 17 expected, 10 integrated, 10 
new 

19 expected, 10 integrated, 22 new 4 expected 8 expected, 3 integrated, 5 
new 

34 expected, 4 integrated, 6 new 

SIDER	 clomipramine, fluoxetine, citalopram, 
paroxetine, sertraline, fluvoxamine, 
escitalopram, fluphenazine, 
olanzapine, risperidone, aripiprazole, 
paliperidone, ropinirole, 
pramipexole, rivastigmine, 
pilocarpine, cevimeline,nicotine, 
varenicline, naltrexone, clonazepam, 
oxcarbazepine, eslicarbazepine, 
vigabatrin, topiramate, gabapentin, 
nalbuphine, paracetamol, 
dihydroergotamine, sumatriptan, 
rizatriptan, sevoflurane, fentanyl, 
remifentanil, lidocaine, alprazolam, 
buspirone, midazolam, riluzole, 
enalapril, perindopril, cilazapril, 
fosinopril, nifedipine, lercanidipine, 
bisoprolol, flecainide, atropine, 
hyoscyamine, metoclopramide, 
nandrolone, lansoprazole, insulin 
detemir, ondansetron, dipyridamole, 
sorbitol, calcitonin, ofloxacin, 
ciprofloxacin, lomefloxacin, 
levofloxacin, trovafloxacin, 
ertapenem, clindamycin, 
tobramycin, rifapentine, 
amphotericin b, itraconazole, 
posaconazole, caspofungin, 
foscarnet, zidovudine, zalcitabine, 
lamivudine, raltegravir, ribavirin, 
boceprevir, ipratropium, 
beclometasone, flunisolide, 
budesonide, fluticasone, 
mometasone, ciclesonide, 
nedocromil, cromoglicic acid, 
tiotropium, aclidinium, cetirizine, 
levocetirizine, salbutamol, pirbuterol, 
salmeterol, formoterol, 
acetylcysteine, mannitol, 
exemestane, medroxyprogesterone, 
axitinib, sorafenib, pazopanib, 
regorafenib, cabozantinib, nilotinib, 
ponatinib, capecitabine, vinflunine, 

perphenazine, ziprasidone, 
lurasidone, loxapine, clozapine, 
olanzapine, quetiapine, asenapine, 
risperidone, aripiprazole, 
paliperidone, lithium, diazepam, 
oxazepam, lorazepam, clobazam, 
alprazolam, meprobamate, 
buspirone, flurazepam, 
nitrazepam, flunitrazepam, 
triazolam, temazepam, 
midazolam, zolpidem, zaleplon, 
phenytoin, mephenytoin, 
fosphenytoin, clonazepam, 
carbamazepine, eslicarbazepine, 
valproic acid, vigabatrin, tiagabine, 
lamotrigine, felbamate, 
topiramate, gabapentin, 
zonisamide, pregabalin, 
lacosamide, retigabine, 
perampanel, fentanyl, 
bupivacaine, lidocaine, prilocaine, 
ropivacaine, morphine, 
hydromorphone, buprenorphine, 
butorphanol, tramadol, tapentadol, 
amitriptyline, maprotiline, 
fluoxetine, citalopram, paroxetine, 
fluvoxamine, escitalopram, 
moclobemide, trazodone, 
nefazodone, mirtazapine, 
bupropion, duloxetine, 
amantadine, pramipexole, 
rasagiline, ziconotide, sumatriptan, 
rizatriptan, nadolol	

clozapine, quetiapine, risperidone, 
aripiprazole,donepezil, rivastigmine, 
galantamine, memantine,ropinirole, 
pramipexole, selegiline, rasagiline, 
sumatriptan, naratriptan, 
eletriptan,zolpidem, lamotrigine, 
topiramate, gabapentin, pregabalin, 
retigabine, oxcarbazepine, 
eslicarbazepine, phenytoin, 
fosphenytoin,clomipramine, 
citalopram, paroxetine, sertraline, 
escitalopram, trazodone, 
mirtazapine, bupropion, 
venlafaxine, 
reboxetine,fentanyl,ziconotide, 
pilocarpine, cevimeline, nicotine, 
quinidine, bisoprolol, gliclazide, 
glimepiride, ofloxacin, 
ciprofloxacin, norfloxacin, 
lomefloxacin, sparfloxacin, 
levofloxacin, moxifloxacin, 
gemifloxacin, posaconazole, 
rifabutin, ganciclovir, foscarnet, 
ritonavir, zalcitabine, lenalidomide, 
tacrolimus, glatiramer, interferon 
alfa-2b, carmustine, temozolomide 
methotrexate, nelarabine, 
capecitabine, oxaliplatin, 
diclofenac, fluorescein, isotretinoin, 
estradiol, cyproterone, iopamidol, 
iopromide, ioversol, gadobutrol, 
deferoxamine, quinine 

topiramate, 
phenelzine, 
bupropion, 
ifosfamide, 
iopamidol 

ziconotide, clonidine, 
carbamazepine, topiramate, 
zonisamide, pregabalin, 
pramipexole, ziprasidone, 
aripiprazole, alprazolam, 
flurazepam, duloxetine, 
methylphenidate, 
dexmethylphenidate, 
lisdexamfetamine, ifosfamide, 
estradiol 

diazepam, lorazepam, buspirone, 
amobarbital, secobarbital, 
flurazepam, nitrazepam, estazolam, 
triazolam, quazepam, zopiclone, 
zolpidem, zaleplon, eszopiclone, 
ramelteon, suvorexant, 
clomipramine, doxepin, fluoxetine, 
citalopram, paroxetine, sertraline, 
fluvoxamine, escitalopram, 
nefazodone, mirtazapine, bupropion, 
venlafaxine, reboxetine, 
methylphenidate, modafinil, 
dexmethylphenidate, pilocarpine, 
cevimeline, varenicline, 
acamprosate, naltrexone, pergolide, 
ropinirole, selegiline, tolcapone, 
entacapone, olanzapine, quetiapine, 
risperidone, aripiprazole, 
phenobarbital, phenytoin, 
fosphenytoin, carbamazepine, 
oxcarbazepine, valproic acid, 
vigabatrin, tiagabine, felbamate, 
topiramate, gabapentin, 
levetiracetam, pregabalin, fentanyl, 
propofol, oxybate sodium, 
morphine, oxycodone, butorphanol, 
tramadol, tapentadol, zolmitriptan, 
eletriptan, frovatriptan, memantine, 
riluzole, betaxolol, esmolol, 
carvedilol, doxazosin, diltiazem, 
nisoldipine, pantoprazole, 
dronabinol, nabilone, sibutramine, 
desmopressin, lomefloxacin, 
sparfloxacin, trovafloxacin, 
moxifloxacin, gatifloxacin, 
amphotericin b, ganciclovir, 
valganciclovir, ritonavir, stavudine, 
efavirenz, cetirizine, levocetirizine, 
azelastine 
salbutamol, acetylcysteine, 
carmustine, paclitaxel, doxorubicin, 
daunorubicin, epirubicin, 
bexarotene, pentostatin, megestrol, 
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paclitaxel, doxorubicin, epirubicin, 
ixabepilone, oxaliplatin, 
procarbazine, estramustine, 
bortezomib, celecoxib, lenalidomide, 
interferon alfa-2b, ibandronic acid, 
ibuprofen, dantrolene, interferon, 
travoprost, acitretin, isotretinoin, 
oxybutynin, solifenacin, trospium, 
sildenafil, testosterone, danazol, 
protamine, flumazenil, edrophonium, 
iopromide, gadoversetamide 

leuprorelin, goserelin, interferon alfa-
2b, glatiramer, mycophenolic acid, 
tacrolimus, thalidomide, 
cyclopentolate, homatropine, 
oxybutynin, darifenacin 

FAERS	 * triamterene, diltiazem, 
evolocumab, corticotropin, 
octreotide, amikacin, umeclidinium, 
rupatadine, procaterol, indacaterol, 
olodaterol, zafirlukast, omalizumab, 
mepolizumab, benralizumab, 
lenvatinib, nintedanib, everolimus, 
bevacizumab, pembrolizumab, 
niraparib, adalimumab, botulinum 
toxin, fenoterol * 
omeprazole, esomeprazole, 
palonosetron, fexofenadine, 
theophylline, bamifylline, 
guaifenesin, dornase alfa  

* haloperidol, benzatropine, 
bisoprolol, hydrochlorothiazide, 
amlodipine, manidipine, 
benidipine, ramipril, 
metoclopramide, 
clopidogrel, ticlopidine, cilostazol, 
alteplase, dexamethasone, 
methylprednisolone, ciprofloxacin, 
vidarabine, cidofovir, 
diphenhydramine, 
cyclophosphamide, 
mercaptopurine, tioguanine, 
cytarabine, vincristine, 
asparaginase, pegaspargase, 
blinatumomab, eculizumab, 
rofecoxib * 
 
natalizumab, fingolimod, interferon 
beta-1a, 
tizanidine 

* lithium, diazepam, lorazepam, 
clonazepam, amitriptyline, 
tramadol, labetalol, nitrendipine, 
atorvastatin, domperidone, 
omeprazole, ondansetron, 
phenprocoumon, ticlopidine, 
alteplase, methylprednisolone, 
levothyroxine, cefepime, 
cyclophosphamide, ifosfamide, 
fludarabine, cytarabine, 
fluorouracil, pegaspargase, 
axicabtagene ciloleucel, 
tisagenlecleucel-t, vincristine, 
etoposide, irinotecan, 
daunorubicin, mitoxantrone, 
erlotinib, dabrafenib, trametinib, 
avapritinib, bevacizumab, 
blinatumomab, diclofenamide, 
drospirenone, mefloquine, 
ivermectin * 
 
procyclidine, fingolimod, 
natalizumab, interferon, beta-1a, 
peginterferon beta-1a 

 * valproic acid, lamotrigine, 
clonazepam, lurasidone, 
quetiapine, olanzapine, lithium, 
lormetazepam, levothyroxine, 
niraparib, ibuprofen, 
ivermectin, lorcaserin * 

* droxidopa, ticagrelor, 
levothyroxine, liothyronine, 
zanamivir, diphenhydramine, 
peginterferon alfa-2b, siponimod, 
rifaximin, mefloquine, ivermectin * 

PROPOSED	
MECHANISM	

Anticholinergic toxicity, 
Extrapyramidal dystonia, laryngeal 
irritation, vocal cord thickening, anti-
angiogenetic action, cytotoxicity, 
vocal cord hemorrages, vocal cord 
nodules 
	

Extrapyramidal dystonia, sedation, 
neurotoxicity, stroke, 
dopaminergic, catecholaminergic 
and GABAergic pathways	

Neurotoxicity, Blood brain barrier 
permeability, dopamine 
antagonism, stroke	

 Altered arousal  
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4. Discussion 

4.1 Overview 

Given the increased focus on communication-related biomarkers of affective 

and psychotic disorders, we need a more careful overview of how medications could 

potentially act as confounders. We developed a rigorous pipeline combining evidence 

from drug package inserts with post-marketing pharmacosurveillance tools and relied 

on causal inference techniques to account for potential biases. We identified a list of 

known (given the package insert) and unexpected medications that could affect 

communication-related biomarkers.  

In the following subsections, we discuss how to interpret and use these findings 

and methods in the broader context of digital phenotyping trying to identify markers of 

neuropsychiatric conditions. First, we discuss expected and unexpected potential 

adverse reactions as they relate to the specific context of communication-related 

biomarkers of psychotic and affective disorders. Second, we present the limitations 

and possibilities of our approach. Finally, we discuss possible realistic uses of the list 

in future research.  

4.2. Known and unexpected adverse reactions 
The final list of potential confounding drugs for communication-related 

biomarkers encompasses both expected (i.e., described in the package insert) and 

unexpected associations. Some of the expected associations are already discussed 

in the literature on communication-related biomarkers. For example, the effects of 

antipsychotics and antidepressants have been directly investigated when evaluating 

communication-related biomarkers1,16,36–38. However, even these expected 

associations are not routinely considered in the actual analysis of communication-

related biomarkers of psychotic disorders2, and when they are, the results are 

inconclusive6,7. 

 In other cases, we found unexpected associations with drugs from already 

known classes (integrated findings, that is, drugs from the same class were already 

known to associate with the adverse reaction). For instance, we found evidence for 

haloperidol being related to adverse reactions concerning motor control or execution 

(e.g., impacting articulatory precision) that are not reported in its package insert. 

However, these reactions are reported in other antipsychotic package inserts and may 
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be a more general class effect. This is also the case for the unexpected signal 

concerning clonazepam (an antiepileptic, also used to treat anxiety) being associated 

with aphasia and for antineoplastic agents (mainly VEGFR-inhibitors) with dysphonia. 

Other associations are even more unexpected. Medications used to treat 

cancer, such as plant alkaloids, cytotoxic antibiotics, protein kinase inhibitors, and 

monoclonal antibodies, emerge as potential causes of aphasia, which are not reported 

in the SIDER database. Crucially, since there is at least some evidence of increased 

cancer risk in schizophrenia39, we could expect a more common use of these drugs in 

patients with schizophrenia than in controls. Therefore, the adverse reaction could 

influence how well a predictive model could detect psychotic disorders from speech or 

language patterns, at least in complex machine learning models. Nevertheless, these 

drugs have never been mentioned - to our knowledge - in previous studies of vocal 

markers as possible confounders.  

4.3 Limitations and future directions 

4.3.1 Formalized query 
In the attempt to retrieve cases of interest in the FAERS, we found an often-

ambiguous lexicon covering communicative impairments. Our effort to explicitly 

formalize a MedDRA query is a necessary step to focus the attention and to create a 

common framework for pharmacosurveillance research on these impairments. 

The current query presents some limitations. For instance, one might more 

closely investigate how physicians describe and report these impairments. For 

example, common terms used by physicians to report dysphonia are acute laryngitis, 

nonspecific dysphonia, benign vocal fold lesions, and chronic laryngitis40, and for 

retrieving antipsychotic-related dysarthria cases one may search also for 

extrapyramidal syndrome and laryngospasm. More work is needed to cover these 

labels and validate the results of searches that integrate them. 

Perhaps more crucially, we observed a high proportion of communication-

related FAERS cases submitted by the general public. This suggests that 

communicative adverse events might be at the same time underplayed by medical 

practitioners, and of crucial importance to patients, caregivers, and families. In fact, 

we observed that patients with communicative impairment tend to specify the resulting 

disability more frequently in their reports than patients with other adverse events but 
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the same underlying condition. This suggests that future involvement of patient 

perspectives and the development of a better MedDRA lexicon and corresponding 

definitions for speech and language preferred terms might be an important step. 

One could also question whether FAERS’ and SIDER information is sufficiently 

sensitive to the kind of properties analyzed in the search for communication-related 

biomarkers. For example, minor articulatory impairments (e.g., increased jitter, that is, 

low-level irregularities in voice pitch) – useful in predictive, machine learning 

algorithms41 – could not be perceived, or at least not perceived as enough of an issue, 

by patients and clinicians to be reported and precisely labeled. 

Nevertheless, the construction of an initial query enables initial explorations of 

medication-based confounders and facilitates proposals, thus representing an 

important step in the development of a useful Standardized MedDRA Query (SMQ). 

4.3.2 Causal inference 
Although still uncommon in pharmacosurveillance, formalized causal inference, 

and the use of DAGs, in particular, are promising endeavor31,42. These tools provide a 

standardized framework for the formalization, visualization, and communication of 

confounding. These tools also provide structured and more reproducible procedures 

to account for at least some of the biases when designing analyses31.  

We have built four relatively simple DAGs of the mechanisms underlying 

observed drug event observations. Thus, we have tried to identify the most 

problematic biases for our questions and accordingly adjusted our analyses and 

interpretation. However, it is important to note that many biases could not be fixed and 

that the characteristics of the reporting (often incomplete and unverified) complicate 

attempts at causal inference. For example, proton pump inhibitors are always used for 

gastroesophageal reflux, which may be responsible for laryngitis and dysphonia, and 

therefore the causal direction cannot be easily identified. Further, our broad focus did 

not permit us to delve into the richness of pharmacosurveillance data (e.g., information 

on concomitants, therapy regimen, co-occurring events) and to map more complex 

scenarios (e.g., variables affecting at the same time the use of the drug, the incidence 

of the adverse event, and the reporting of it). For example, botulinum toxin has been 

referred to as a potential cause and treatment for dysphonia, and more research is 

needed to disentangle these possible scenarios. In addition, biases, such as notoriety 
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bias, and masking bias, adjustment for the Weber effect27, are beyond the purpose of 

this study but should be considered when investigating specific drugs more closely. 

4.3.3 Integrating additional sources 
The main objective of spontaneous reporting systems is to collect useful data 

to identify unexpected associations between a drug and an adverse event in a timely 

and cost-effective manner. This identification enables early intervention and therefore 

limits the costs of drug-related harm. To effectively target currently not known, it is 

extremely important to integrate already acquired knowledge, which may come from 

the literature or from regulatory sources, primarily package inserts (FDA) and 

Summaries of product characteristics (EMA). 

Databases that store this information in an easily accessible way are a 

promising tool for large-scale analyses because reading each individual package 

insert is time consuming. The SIDER uses a natural language processing algorithm to 

extract the information from regulatory sources and has not been updated since 

201617, therefore, it plausibly contains errors and outdated information. 

A worldwide database in which data for each marketed drug is compiled and 

regularly updated by the marketing authorization holder and stored in an accessible 

way would enrich both regulatory activities and pharmacosurveillance analyses. In the 

meantime, the use of the SIDER or similar databases may help in large-scale analyses 

to reduce the risk of classifying already known reactions as unexpected signals.  

We acknowledge that we cannot be sure whether some of the unexpected 

associations have already appeared as notes in clinical trials (but not reported in the 

package insert) or in subsequent scientific literature. Future work could attempt to 

integrate these additional sources of information. However, independent of the 

novelty, our list aggregates large amounts of otherwise dispersed information in an 

easier to consult format.  

Future work could integrate additional sources of information (e.g., scientific 

literature) and provide weights to different sources according to the degree of evidence 

available (e.g., via Bayesian analysis). 

4.3.4 Large-scale analyses 
Traditional pharmacosurveillance studies focus on at most a handful of drugs 

and/or adverse events43,44. Thus, they can provide a fine-grained analysis of potential 
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confounders, including a nuanced analysis of how sociodemographic variables might 

affect drug prescription and adverse reactions45. 

Large-scale analyses require a broader overview, which cannot match the 

same level of detail and discussion.  The strategies we implemented to simultaneously 

assess large sets of adverse events and drugs may help design future large-scale 

analyses. These strategies range from correction for multiple testing and automatic 

integration with regulatory databases, to an attempt to formalize possible underlying 

causal mechanisms and the use of a priori expected biases to implement robustness 

analyses. Large-scale analyses, however, provide only an initial perspective and must 

be complemented with more detailed studies of specific associations and their 

confounds. 

4.4 How should this list be used? 
We advocate for the list of drug confounders (Figure 4 and Table 1)– whether 

as a cause of a speech or language atypicality or as a proxy of an underlying 

susceptibility – to be used in future studies of communication-related behavioral 

biomarkers by either including the presence of a medication as a covariate, removing 

participants who take medication, or interpreting results and study limitations as a 

function of which medications were taken. We know that, as observed by multiple 

reviews, most studies of such markers involve small sample sizes2,46,47. Such studies 

would be at a loss trying to adjust for such a large number of medications and would 

lack reliable evidence related to all but the most commonly used ones. Although a 

single study can still check the list for the most likely confounders (e.g., much higher 

use of drug x in the target population than in the controls), the real potential lies in the 

cumulative aggregation of this information across studies. The key is to report 

medications used by participants in individual studies, which would allow future mega-

analyses48 (aggregating datasets across studies preserving individual-level data) to 

directly assess the impact of a large variety of relevant medications. 

Accounting for confounders is also important in machine learning studies. 

Current reviews and perspectives on the study of communication-related behavioral 

biomarkers advocate the collection of larger and more diverse samples and the use of 

state-of-the-art machine learning techniques, such as deep learning6,7,14. In these 

contexts, the algorithms can detect even the presence of weak confounding if it 

improves prediction. In other words, many machine learning models are likely to 
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recognize small differences between groups they try to classify. If these differences 

are due to higher levels of medication being used and not due to the target disorder, 

the models may not generalize well to other samples of the disorder where the 

medication use is different, which is common when changing countries and 

sociodemographic settings. Accordingly, a deeper understanding of the confounders 

and mechanisms at work is a key component also for more data-driven machine 

learning approaches, for instance, to guide bias assessment or even to identify more 

rigorous pipelines (e.g., presenting medication-balanced validation sets). 

Finally, this list may also help identify more general hypothesized mechanisms 

underlying adverse events beyond a specific drug. Pharmaco-surveillance can thus 

act not only as a guide for precautionary regulatory action, but also as a hypothesis 

generation tool for scientific research, which could lead to follow-up studies involving, 

e.g., electronic health records (to assess adverse events before and after drug 

administration), experimental setups, and clinical studies. For instance, a more 

thorough investigation of the association between domperidone and aphasia would be 

of particular interest, given the biological plausibility –i.e., its activity as a dopamine 

antagonist– and the existence of conditions that increase the blood-brain barrier 

permeability. This might lead to more generalizable predictions as regards 

confounding drugs and increased understanding of the communicative features of the 

disorders over time. 

4.5 Applications of the methods to other neuropsychiatric conditions 
In the current study, we have currently focused on affective and psychotic 

disorders since previous research explicitly called for better investigation of 

medication-related confounders in identifying communication markers for these 

populations1,2,5. However, with proper consideration, the list could be easily extended 

when assessing communication-related behavioral biomarkers for other conditions. 

Neurodevelopmental conditions (e.g., autistic spectrum disorder), and neurological 

diseases (e.g., Parkinson’s disease) seem obvious follow-ups. 

 

Conclusions 
 Motivated by the increasing interest in communication-related behavioral 

biomarkers of affective and psychotic disorders, we set out to investigate the potential 

role of medications in affecting communication-related markers of these disorders. We 
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extracted the drugs already expected to cause communicative impairment from the 

SIDER. This paved the way for a pharmaco-surveillance analysis of a larger set of 

communication-related adverse events and drugs, controlling for prominent biases.  

We corroborated known/suspected associations: e.g., corticosteroids-related 

dysphonia and immunosuppressant-related stuttering. We also identified novel 

signals: e.g., domperidone-associated aphasia or VEGFR inhibitors-related 

dysphonia. The results are combined in a list of medications to be accounted for in 

future studies on communication and biobehavioral markers of affective and psychotic 

disorders. 

The work showcases methodological innovations to facilitate large-scale 

pharmacosurveillance approaches and identifies current shortcomings, along with 

discussing potential causal and pathogenetic mechanisms. In particular, the existing 

lexicon to identify communicative adverse events is underarticulated, perhaps due to 

an underappreciation of the perspectives of patients. We advocate for future work on 

this. 

Drugs that confound the effect between communication-related behavioral 

biomarkers and psychiatric disorders are abundant. There should be concern not only 

for confounding drugs and comorbidities, but also non-medical substances and habits 

(e.g., smoking, vocal use). Here, we provide a tool for learning about and potentially 

adjusting for the confounders to improve digital phenotyping research. 
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