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Objective This study investigated whether digital PCR (dPCR)-based circulating tumor 

DNA (ctDNA) monitoringcan allow longer intervals between computed tomography 

(CT) scans during postoperative surveillance of colorectal cancer (CRC).  

Design The longitudinal dynamics of ctDNA for 52 patients with CRC as measured by 

dPCR using probes targeting 87 individual tumor-specific mutations (1-5 per patient) 

were compared with results from conventional (i.e., clinical) surveillance using serum 

tumor markers and CT. A total of 382 CT procedures were carried out for the patient 

cohort (3.3/year per patient) and the median lead time from ctDNA relapse to clinical 

relapse was 182 days (range 0-376 days). If the CT interval was annual, potential delays 

in detection of clinical relapse would have occurred for 7 of the 10 patients who 

experienced clinical relapse (9 of 13 events), with a median delay of 164 days (range, 

0-267 days). If annual CT surveillance was performed together with ctDNA monitoring, 

218 (57.1%) CTs would not have been needed to detect the first clinical relapse. 

Nonetheless, ctDNA monitoring would still have provided a lead time of 339 days for 

detection of clinical relapse (range, 42-533 days).  

Conclusion Our findings suggest that the ctDNA monitoring as part of post-operative 

surveillance and clinical relapse detection for patients with CRC could allow the CT 

interval to be lengthened.  

 

Keywords: circulating tumor DNA, colorectal cancer, postoperative surveillance, digital 

PCR, tumor-specific mutations. 
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INTRODUCTION 

In 2020, over 1.8 million new cases and 915,000 deaths due to colorectal cancer (CRC) 

were reported worldwide.1 Approximately two-thirds of patients with stage II or III 

CRC undergo resection with curative intent.2 For patients with relapse, resection of 

metastatic sites followed by systemic chemotherapy have been shown to improve 

outcomes.3, 4 A main goal of postoperative surveillance as part of current therapeutic 

strategies is to improve disease-specific and overall survival (OS) through early 

detection of relapse and timely treatment interventions. During the 2000s, results of 

several meta-analyses suggested that intensive follow-up after CRC resection with 

curative intent could prolong OS and reduce the re-resection rate for recurrent 

disease.5-7 However, neither data from randomized trials nor a large cohort study 

conducted in the 2010s showed that intensive surveillance for patients with CRC 

provided significant benefit.8-11 In the 2020s, practical guidelines still recommend 

intensive surveillance including a computed tomography scan (CT) every 6-12 months 

and serum carcinoembryonic antigen (CEA) testing every 3-6 months for 5 years after 

the initial surgery. 12-15 

 Circulating tumor DNA (ctDNA) has emerged as a promising noninvasive 

biomarker for molecular diagnosis of several cancer types.16-22 A pan-cancer analysis of 

ctDNA by Bettegowda et al. demonstrated that ctDNA detection rates were higher for 

CRC than for other cancer types.23 In CRC ctDNA was detectable in approximately 

70% of patients with localized disease (stages I-III) and 100% of those patients with 

metastatic disease (stage IV).23 The clinical validity of ctDNA monitoring as defined by 

Merker et al.24 was demonstrated in terms of therapeutic efficacy in patients with 

metastatic CRC25-28 and for relapse prediction for those with localized CRC.18, 21, 29, 30 

Recent prospective studies also reported that postoperative ctDNA status (i.e., positive 

or negative) can be used to stratify patients with resectable stage II/III CRC into patients 

who would likely benefit from adjuvant chemotherapy (ACT) and those for whom ACT 

can be safely omitted. 31,
 
32 Importantly, other investigators have suggested that reducing 

ACT doses according to ctDNA status realized substantial cost savings and improved 

quality-of-life.33  

 In daily practice, the most informative marker should quantitatively reflect the 

real time tumor burden rather than providing simple stratification based on snapshot 

molecular profiling. To carry out real time tumor burden monitoring using ctDNA, the 

marker should be sensitive, simple, and affordable, which are all essential factors for 

intensive surveillance. Although dPCR meets some of these requirements, preparation 

of a large number of validated mutation-specific primer/probe sets is a challenge in 
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daily practice. In our previous work we overcame this challenge by establishing an 

original dPCR probe library including probes against >1,000 somatic mutations that are 

frequently found in human cancer, a resource we term Off-The-Shelf (OTS)-1000ex. 

The OTS-1000ex library allows immediate selection of validated dPCR primer/probe 

sets corresponding to somatic mutations identified in patient samples without need for 

optimization of dPCR conditions. Our previous studies also demonstrated that 

tumor-informed ctDNA monitoring has the clinical validity in terms of early relapse 

prediction, treatment efficacy evaluation, and non-relapse corroboration in management 

of several types of gastrointestinal cancers, including CRC.34-37 In the present study, we 

further investigated whether ctDNA monitoring by dPCR can alter intervals of CT 

testing during postoperative intensive surveillance without loss of critical therapeutic 

opportunities for clinical relapse. 

 

METHODS 

Patients and sample collection 

This study was approved by the Institutional Review Board of Iwate Medical University 

(IRB #HGH28-15 and #MH2021-073). Written informed consent was obtained from all 

patients. Among 116 patients registered in the current study (UMIN Clinical Trial 

Registry: UMIN000045114), 52 who had undergone complete resection within at least 

3 years of the initial surgery were enrolled (figure 1). These 52 patients were 

histologically confirmed to have CRC [n=4, 26, 20, and 2 having stage I, II, III, and IV 

disease, respectively] and were enrolled in the study between March 11, 2016, and June 

20, 2018. All patients underwent primary tumor resection as a first-line therapy. Nearly 

all (51/52, 98.1%) of the patients underwent R0 resection during the initial operation. 

The remaining patient (CC16010) underwent two-stage resection with curative intent 

for the primary tumor and a metastatic liver tumor. Twelve patients (1 stage II, 10 stage 

III, and 1 stage IV) received ACT after curative resection. A summary of the patient 

characteristics is provided in online supplementary table S1. Surgically acquired 

primary tumor tissue samples and corresponding serial blood samples were obtained for 

somatic mutation screening and ctDNA monitoring, respectively. 

 

Panel sequencing of primary tumors 

Samples were divided into three sets: Set 1, Set 2, and Set 3 (n=11, 27, and 14, 

respectively) and DNA samples from the tumor and corresponding peripheral blood 

mononuclear cells (PBMCs) were subjected to panel sequencing using three different 

platforms (online supplementary methods and figure 1). The highest priority of the 
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primary tumor sequencing in this study was to detect a select number of somatic 

mutations that have high variant allele frequencies (VAF). Comprehensive descriptions 

of methods used to identify somatic mutations are presented in the online 

supplementary methods.35, 37 

 

Monitoring ctDNA levels using dPCR 

The dPCR assay for quantitative monitoring of ctDNA levels was performed as 

described previously.34-37 Briefly, primers and probes labeled for wild-type and mutant 

alleles were specifically designed for each mutation identified in a primary tumor. 

Between 1 and 4 mutations per tumor that had a VAF >10% in primary tumors were 

prioritized for dPCR analysis. The criteria for mutation selection for the ctDNA assay 

and the definition of positive and negative ctDNA findings for dPCR are described in 

the online supplementary methods. ctDNA data for VAFs were plotted on a time course 

along with therapeutic regimens and clinical information. CEA levels were also 

measured at the same timepoints during ctDNA monitoring. 

 

Reduction of CTs for relapse detection during postoperative surveillance 

In the relapsed group in the present cohort, patients underwent, on average, 3.3 CTs per 

year, whereas the number of CTs that actually returned a relapse diagnosis was 0.8 per 

patient per year. Hence, we hypothesized that reducing the number of CTs may have a 

limited effect on detection of relapse, particularly under circumstances in which ctDNA 

monitoring could complement relapse prediction by CTs. To test this hypothesis, we 

restricted the number of CTs timepoints to once per year and examined the relapse 

diagnosis. "Annual CT" timepoints were defined as CTs conducted at annual timepoints 

from periodic imaging examinations.  

 

Relapse detection using CT and ctDNA monitoring 

The timing of clinical relapse was defined based on the timepoint at which a radiologist 

in daily clinical practice confirmed or suspected a lesion to represent a relapse (i.e., the 

word "relapse" was present in the radiographic report). Meanwhile, ctDNA relapse was 

defined as the time of the first ctDNA-positive detection of at least two consecutive 

ctDNA-positive timepoints. The lead time was defined as one day from the first 

ctDNA-positive indication of ctDNA relapse to the clinical relapse. 

 

Statistical analysis 

For contingency table analysis, diagnostic ability to detect clinical relapse by both 
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ctDNA and CEA was expressed as sensitivity/specificity, as well as positive/negative 

predictive values. Over the course of serial monitoring, ctDNA was defined as positive 

when the VAF was above the below detection limit (BDL). CEA values were binarized 

according to the upper limit of the normal level. For group comparisons, Mann-Whitney 

U and Fisher’s exact tests were used. Kaplan-Meier estimates with log-rank tests were 

used to compare relapse-free survival (RFS) and were stratified based on the ctDNA 

status (i.e., positive or negative) before treatment, at the first postoperative timepoint 

after the initial surgery, and throughout the postoperative surveillance period. Clinical 

RFS based on CT findings, estimated clinical RFS based on annual CT, and 

ctDNA-RFS based on ctDNA status were also compared. A Cox proportional hazards 

model was used to estimate risks. P values <0.05 were considered to be statistically 

significant for all analyses. All analyses were performed using GraphPad Prism 8 

(GraphPad Software, San Diego, CA). 

 

RESULTS 

Mutations in primary CRC 

At least one somatic mutation was identified in all 52 patients. The samples were 

divided into three sets, Set 1, Set 2 and Set 3. Online supplementary tables S2 and S3 

and figure S1 summarize the mutation profiles. For Set 1, the detailed mutation profile 

is available in our previous report.35 For Set 2, an average of 3 mutations per sample 

(range, 1-24) and for Set 3 an average of 3 mutations per sample (range, 1-36) were 

identified using the respective customized panels. Among the 3 different sequencing 

platforms, the most frequently mutated genes were TP53 (37/52, 71.2%), APC (28/52, 

53.8%), KRAS (24/52, 46.2%), PIK3CA (13/52, 25.0%), and BRAF (8/52, 15.4%). The 

average VAFs for these five genes were: TP53, 44.8% (range, 7.78%-85.9%), APC, 

33.3% (range, 12.0%-61.0%), KRAS, 31.1% (range, 3.6%-81.7%), PIK3CA, 28.5% 

(range, 8.0%-40.5%), and BRAF, 28.1% (range, 12.9%-48.2%). Among the 52 patients, 

50 (96.2%) had mutations in at least one of the five genes, and 41 of 52 (78.8%) had 

more than two mutations in one of the five genes.  

 

Mutations selected for ctDNA detection 

A total of 87 mutations were selected from the 52 patient samples according to our 

mutation selection algorithm (online supplementary methods) for dPCR. On a 

per-patient basis, the number of mutations used for ctDNA testing ranged between 1 and 

5 (1: 30 patients; 2: 13 patients; 3: 6 patients; 4: 2 patients and 5: 1 patient (mean 1.7 ± 

0.8)). Among the 87 mutations analyzed by dPCR, 48 (55.2%) were recurrent and 
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covered by 14 primer/probe sets (figure 2). Preoperative plasma from 31 of the 52 

(59.6%) patients was positive for ctDNA (figure 3). Of these preoperative 

ctDNA-positive patients, 1/4 (25.0%), 14/26 (53.8%), 15/20 (75.0%), and 1/2 (50%) 

were stage I, II, III, and IV disease, respectively.  

 

Longitudinal ctDNA monitoring in postoperative surveillance 

The median observation period was 1,503 days (range, 322-1,951 days). A total of 1,526 

plasma samples from 867 timepoints, resulting in 16.7 analyzable timepoints per patient, 

were analyzed for ctDNA. The first postoperative plasma samples from the initial 

surgery were collected an average of 34.0 days (range, 20-58 days) after resection. To 

categorize longitudinal data, ctDNA levels for each timepoint were binarized (i.e., 

ctDNA-positive and -negative; figure 3). Clinical relapse occurred for 10 out of the 52 

(19.2%) patients with CRC. Patients who had clinical relapse had significantly higher 

ctDNA-positive rates at all analyzed points compared to patients who did not have 

relapse [59.1% (114/193) vs. 4.0% (27/674), P <0.0001, Fisher’s exact test]. The ctDNA 

dynamics and detailed clinical information for the 10 relapsed and 42 non-relapsed 

patients are shown in figure 4 and online supplementary figure S2, respectively. For the 

42 patients without relapse, ctDNA-negative results were obtained throughout the 

postoperative surveillance period, which ranged from 10.7 months to 65.0 months. Of 

these 42 non-relapsed patients, 23 were preoperative ctDNA-positive. However, these 

23 patients exhibited a ctDNA level that was below the detection limit at the first 

postoperative timepoint after the initial surgery and they continued to be 

ctDNA-negative. Meanwhile, for the 10 patients that had clinical relapse, 9 (90%) had 

an increased ctDNA level when clinical relapse and tumor growth was noted; the 

ctDNA level decreased in these patients in response to treatment for the relapse. Taken 

together, these results indicated that ctDNA monitoring by dPCR provided valid 

information for tumor burden estimation during the clinical course for nearly all 

enrolled patients (51/52; 98.7%).  

 

Patterns of ctDNA dynamics in a therapeutic context 

The dynamics of ctDNA during the postoperative surveillance period in patients with 

clinical relapse who received ACT could be divided into 3 patterns: continuously 

positive (Patient CC16041); ctDNA elevation during ACT (Patients CC16003, CC16010, 

CC16019 and CC16042); and ctDNA elevation post-ACT (Patients CC16011 and 

CC16030; figure 4). In the surgery-only patients who had clinical relapse, the ctDNA 

dynamics had either fluctuations in ctDNA positivity (Patients CC16009 and CC16015)  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2022.09.03.22279571doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.03.22279571


Sasaki et al   - 9 - 
 

- 9 - 
 

or were continuously ctDNA-negative (Patient CC16005) (figure 4). Serial ctDNA 

analysis identified clinical relapse with 85.7% sensitivity and 97.6% specificity as well 

as a 92.3% positive predictive rate (PPR) and 95.4% negative predictive rate (NPR) 

during the postoperative surveillance period.  

 

CEA levels in the context of clinical relapse 

The CEA level for each timepoint was also binarized (i.e., above and below the upper 

limit of normal) in a swimmer plot (online supplementary figure S3). Unlike ctDNA, 

positive CEA levels were often observed during the postoperative period in patients 

who did not have clinical relapse (120/613 [19.6%] timepoints; 16/42 [38.1%] patients). 

Furthermore, for clinical relapse patients the dynamics of CEA levels did not reflect 

changes in tumor burden as accurately as ctDNA levels did. The diagnostic performance 

of serial CEA analysis for clinical relapse was 64.3% sensitivity, 61.9% specificity and 

36.0% PPR, and 83.9% NPR. 

 

Plasma ctDNA status and risk of recurrence 

We evaluated, excluding Stage I patients (n=4), the 5-year RFS rate stratified with 

ctDNA status for 47 patients. There was no significant difference in 5-year RFS 

between preoperative ctDNA-positive (n=28) and -negative (n=19) groups (HR 2.5, 

95% CI 0.7–9.4, P=0.22, log-rank test; figure 5A). Patients who had a ctDNA-positive 

finding at the first postoperative timepoint after the initial surgery (n=4) showed a 

significantly higher risk of clinical relapse than those who were ctDNA-negative (n=43) 

(HR 39.6 (95% CI: 6.4–243.9) P < 0.0001, log-rank; figure 5B). Similarly, patients who 

had at least one ctDNA-positive timepoint during the postoperative surveillance period 

(n=9) showed a significantly higher risk of clinical relapse than those who had sustained 

ctDNA-negative results (n=38) (HR 56.3, 95%CI 7.8-407.0, P < 0.0001, log-rank test; 

figure 5C).  

 

Possibly unnecessary CTs during postoperative surveillance 

Patients in the study cohort underwent 382 CT procedures, with an average frequency of 

3.3/year per patient. Of these CTs, 13 (3.4%) procedures contributed to delivery of a 

relapse diagnosis (including multiple relapses per patient) (figure 5D). The timing of the 

CT during the postoperative periodic surveillance period for all patients is presented 

(figure 6 and online supplementary figure S2). If an annual interval for CT procedures 

was used during the surveillance period, fewer CTs would have been carried out (164 vs. 

actual 382). With an annual interval, the relapse detection rate per CT increased from 
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3.4% (13/382) to 7.9% (13/164), meaning that over half the CTs performed might have 

been unnecessary in terms of relapse detection (figure 5D). By extending periodic CT 

intervals to an annual basis, potential delays in detection of clinical relapse detection 

might have occurred for 7 of 10 patients in 9 of 13 events, with a median delay of 164 

days (range, 0-267; figure 6). Hence, extending the interval to an annual basis is not 

recommended if clinical relapse detection relies only on CT.  

 In contrast, the fraction (13.5%, 110/815) of ctDNA-positive timepoints among 

all timepoints was significantly higher than the fraction of relapse-confirming CTs 

among all CTs carried out, suggesting that ctDNA may have more rigorous detection 

ability than CTs (3.4 %, P < 0.0001, Fisher’s exact test, figure 5D). A ctDNA elevation 

(i.e., ctDNA-relapse) was observed before the actual clinical relapse (11 of 13 events) 

for 9 of the 10 clinical relapse patients. The median lead time for this elevation is 182 

days (range, 0-376 days; figure 6), which is largely consistent with previous studies 

(5.6-11.5 months).18, 21,
 

30 If the CT procedure was set for an annual interval during 

surveillance, the estimated lead time from the ctDNA relapse to the clinical relapse with 

annual CT was extended to 339 days (range, 42-533 days).  

 Currently, RFS is largely dependent on the timing of CT as most relapses are 

diagnosed by periodic CT conducted every 3-4 months. Hence, we next evaluated how 

increasing the interval of periodic CT (i.e., conventional CT) to annual (i.e., annual CT) 

could affect RFS. Here ctDNA-RFS was calculated with the event, "relapse", defined as 

the first day ctDNA elevation was detected. We found 9 patients who had analyzable 

events that could be defined as both clinical- and ctDNA-relapse. No significant 

difference in the clinical-RFS rate was seen based on CT interval (i.e., conventional vs. 

annual CT (online supplementary figure S4A)). In contrast, the conventional clinical 

RFS rate was significantly higher than that for ctDNA RFS (online supplementary 

figure S4B). Furthermore, a larger difference in recurrence rates was seen between 

annual clinical RFS and ctDNA RFS (online supplementary figure S4C).  

 

DISCUSSION 

Longitudinal ctDNA monitoring during postoperative surveillance reportedly can 

predict clinical relapse in patients with CRC.18, 21, 30 Although the patient cohort in the 

present study was of moderate size (n=52), here we prioritized detailed (i.e., 16.7 

timepoints per patient) and long-term ctDNA monitoring (i.e., median observation time 

50.0 months). The dPCR system that we developed using OTS-Probes also allows 

essential ctDNA monitoring quality and is supported by the finding that patients who 

had ctDNA-positive results had significantly higher risk for clinical relapse than those 
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who were ctDNA negative. In the present study, in addition to the longitudinal ctDNA 

monitoring, we combined radiographic and clinical data to evaluate whether ctDNA 

monitoring could compensate for a reduction in the frequency of periodic CTs without 

compromising the opportunity for relapse detection during postoperative surveillance.  

 One challenge associated with extending CT intervals during disease 

surveillance is that the likelihood of a delay in relapse detection could increase. 

Conventionally, intensive surveillance involving a CT every 3 months would allow 

early detection of recurrence after surgical resection for colorectal metastasis.12
, 

38 

Indeed, patients in this study underwent CT on average 3.3 times/year. In patients who 

had clinical relapse, small lesions could often be retrospectively identified with a CT 

several months before a diagnosis of clinical relapse was returned. However, suspicious, 

but marginal, findings by CT alone did not result in timely treatment interventions for 

relapse. In terms of the timing of the clinical relapse diagnosis, in the present study we 

saw no significant difference in clinical RFS rates between conventional and annual CT 

intervals. While these results indicate that an annual CT interval would be acceptable in 

terms of relapse detection, additional modalities like ctDNA monitoring may be needed 

to improve outcomes achieved with timely therapeutic intervention. 

 CEA is one of the most widely used serum tumor markers to measure tumor 

burden in postoperative CRC surveillance.39 In fact, a previous study showed that CRC 

patients who had elevated postoperative CEA had an increased risk of recurrence.40 In 

the present study, our results suggest that ctDNA monitoring reflects tumor burden more 

accurately than CEA (50/52, 96.2% vs. 33/52, 63.5%). When ctDNA was used as tumor 

marker, the median lead time from ctDNA relapse to clinical relapse was 182 days 

(range, 0-376 days) suggesting that tumor-specific ctDNA detection may indeed be 

helpful for relapse diagnosis of small lesions that are classified as marginal findings or 

cannot be detected with a CT. If surveillance with annual CTs and periodic ctDNA 

monitoring is carried out, diagnosis of clinical relapse may be delayed, whereas a 

ctDNA relapse diagnosis will be delivered in more timely manner. Although the 

"ctDNA-RFS rate" would be smaller than the "clinical-RFS rate", patients could have 

more opportunities for therapeutic intervention at an early stage of relapse. Overall, our 

findings support a rationale in which CTs for relapse detection that are conducted at 

longer intervals would not delay relapse diagnosis if compensatory data is provided by 

frequent ctDNA monitoring (e.g., every 3 months). 

In terms of ACT for patients with resectable CRC, recent prospective studies 

demonstrated that a ctDNA-guided approach based on ctDNA status determined 4 or 7 

weeks after surgery could reduce ACT use and identify patients who are more likely to 
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benefit from ACT.31
 
32 Our present dPCR-based ctDNA monitoring also demonstrated 

that all 42 patients without relapse were ctDNA-negative at the first postoperative 

timepoint that occurred between 3 and 7 weeks after surgery (figure 3). However, 5 of 

10 (50.0%) patients with clinical relapse were also ctDNA-negative up to 8 weeks after 

surgery (figure 4). These ctDNA-negative clinical relapse patients may not have 

received ACT if a ctDNA-guided approach was used for therapeutic decision making, 

and thus could have had early relapse. Therefore, some patients may not benefit from 

elimination of ACT based on ctDNA-negative results returned at only one or two 

postoperative timepoints. In addition, reports of ctDNA-guided therapy used ultra-deep 

sequencing for qualitative judgement.31 32
 As the principle of current NGS includes 

technological limitations for stable quantification of very low VAF samples such as 

ctDNA from blood, this approach may be difficult to use for serial monitoring of 

ctDNA.41 However, as we demonstrated by measurements using dPCR, the dynamics of 

<1% ctDNA VAFs reflect clinically important information. The ability to detect VAFs 

as low as 0.001% by dPCR42 suggests that a ctDNA-negative result is strongly 

indicative of disease-free status. Our frequent ctDNA monitoring in the present study 

revealed that the median lead time from ctDNA relapse to clinical relapse was 6 months, 

which in fact was indicated by less than 1% of serial VAFs. Therefore, a 

ctDNA-negative status at the first postoperative timepoint does not necessarily indicate 

a lack of benefit from ACT. Instead, our results indicated that frequent ctDNA 

monitoring may be necessary to guide and confirm optimal personalized treatment 

opportunities. 

The current study has some potential limitations. First, most of the serial 

ctDNA monitoring involved samples with 1 or 2 mutations. Although this number of 

mutations seems to be sufficient to reflect tumor burden during the surveillance period, 

it does not fully detect changes in peripheral genetic heterogeneity during therapies. To 

monitor such heterogeneity, panel sequencing is required although NGS may not be 

suitable for monitoring of tumor genetic heterogeneity with extremely low 

quantification of VAF ctDNA.41 Second, therapeutic regimens were not selected based 

on common criteria. Companion diagnostics were occasionally used for anti-EGFR 

antibody therapy whereas chemotherapeutic regimens were selected according to 

guidelines, as well as doctor/patient preference. Finally, although the median follow-up 

time of the present study is over four years, whether long-term follow-up for relapse is 

warranted is unclear. 

 In conclusion, ctDNA monitoring can extend the interval for CT from every 

3-4 months to annually during the postoperative surveillance period for CRC patients 
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without increasing the likelihood that relapse diagnosis would be delayed. To 

accomplish this quality of results, ctDNA monitoring should be sensitive (i.e., 0.1% 

VAF detectable), frequent (i.e., every 3-4 months) and use a suitable number of 

validated probes against personalized somatic mutations in CRC. This level of 

frequency should be attainable using an affordable technology such as dPCR. 

 

Figure legends 

Figure 1. Flow of patient enrollment and sample collection during the study 

period.  

The selection of patients is shown with the type of platform used to analyze samples for 

the three study groups: Set 1, Set 2, and Set 3. CRC, colorectal cancer; ctDNA, 

circulating tumor DNA; UMIN-CTR, University Hospital Medical Information 

Network Center Clinical Trials Registry; NGS, next-generation sequencing; PBMC, 

peripheral blood mononuclear cell; dPCR, digital PCR; CT, computed tomography. 

 

Figure 2. Somatic mutation profile of primary CRC tumors analyzed by dPCR. 

Mutation profile of the 52 CRC tumors analyzed by dPCR is shown. Colored boxes 

indicate the intersection between patients and primer/probe sets. Different shades of 

blue indicate the number of cases analyzed using a single primer/probe set for the 

indicated tumor-specific mutation. Patient number is arrayed along the top and each row 

corresponds to a different gene.  

 

Figure 3. Longitudinal ctDNA monitoring during the postoperative period for 

patients with CRC. Patient numbers are grouped according to disease stage and relapse 

status. The days after initial resection surgery are shown on the bottom. Open and filled 

circles indicate ctDNA-negative and -positive, respectively. Orange bars designate date 

of primary tumor resection. Red bars denote date of clinical relapse and blue bars show 

day of surgery for resection of metastatic tumors. Black, gray, and purple bars denote 

day on which death from cancer, non-cancer cause, or secondary cancer, respectively, 

occurred. Duration of adjuvant (teal) and 1st (light green)-, 2nd (green)- and 3rd (dark 

green)-line chemotherapy is indicated.  ctDNA, circulating tumor DNA. Horizontal 

bars indicate observation periods. 

 

Figure 4. Dynamics of ctDNA during the postoperative period for CRC patients 

with relapse. The history of 10 patients who experienced relapse is shown. The days 

post-surgery are on the x-axis and the percentage ctDNA VAF is on the y-axis. Teal and 
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green rectangles indicate duration of chemotherapy regimens. Genes carrying mutations 

are shown beside the patient number and the colors of the genes correspond to the plot 

of VAF values. Orange and green arrows indicate time of primary and metastatic tumor 

resection, respectively. Open and filled pink triangles note the day of a non-specific 

finding or determination of clinical-relapse, respectively. CRC, colorectal cancer; 

ctDNA, circulating tumor DNA; VAF, variant allele frequency. 

 

Figure 5. Association between ctDNA status and clinical relapse. (A)–(C) 

Relapse-free survival according to ctDNA status at (A) Preoperative timepoint; (B) First 

postoperative timepoint after initial surgery and (C) During the postoperative 

surveillance period. HR, hazard ratio. P values were derived from a Kaplan-Meier 

log-rank test. HR was calculated using the log-rank test. (D) The number of CT and 

ctDNA assays during the postoperative surveillance period. Dark and light blue boxes 

indicate the number of CTs with or without confirmation of clinical relapse, 

respectively. Red and pink boxes indicate the number of ctDNA-positive and -negative 

results, respectively. CT, computed tomography scan; ctDNA, circulating tumor DNA. 

 

Figure 6. Lead time for ctDNA elevation and delay in relapse detection during the 

surveillance period with CT performed annually to detect clinical relapse in CRC 

patients. All time points for CT (gray dots and open circles) and the first time points for 

ctDNA detection after curative resection during the relapse-free period are shown. Blue 

circles indicate date of ctDNA relapse and orange circles indicate date of clinical 

relapse. Red lines correspond to lead time between ctDNA relapse detection and clinical 

relapse. Dotted lines indicate delay time in detection of relapse by annual CT. CRC, 

colorectal cancer; ctDNA, circulating tumor DNA; CT, computed tomography scan; 

PET, positron emission tomography. 
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