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Abstract: Biological aging of human organ systems reflects the interplay of age, chronic 

disease, lifestyle and genetic risk. Using longitudinal brain imaging and physiological 

phenotypes from the UK Biobank, we establish normative models of biological age for 3 brain 

and 7 body systems. We find that an organ’s biological age selectively influences the aging of 

other organ systems, revealing a multiorgan aging network. We report organ age profiles for 

16 chronic diseases, where advanced biological aging extends from the organ of primary 

disease to multiple systems. Advanced body age associates with several lifestyle and 

environmental factors, leucocyte telomere lengths and mortality risk, and predicts survival time 

(AUC=0.77) and premature death (AUC=0.86). Our work reveals the multisystem nature of 

human aging in health and chronic disease. It may enable early identification of individuals at 

increased risk of aging-related morbidity and inform new strategies to potentially limit organ-

specific aging in such individuals. 
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Introduction 

Age is the greatest common risk factor for chronic diseases1, 2. However, trajectories of age-

related decline vary markedly between individuals and differ across human organ systems3, 4. 

Biological age is thus recognized as a more informative marker of disease risk and mortality 

than chronological age5, 6. As a result, cellular, molecular and physiological aging biomarkers7, 

8 have been developed and studied across multiple species 9-14. 

 

To fulfill the clinical potential of this work, biological aging clocks that are specific to 

particular organ systems, tissue types and aging-related diseases are now required to be 

established in large and diverse longitudinal populations15. A multiorgan characterization of 

biological aging across major chronic dieases can facilitate novel organ-specific therapeutic 

opportunities, yield disease-specific risk calculators and elucidate factors that drive the 

divergence of an organ’s biological age from chronological age. Elucidating such factors will 

inform strategies to potentially slow age-related decline, reduce the risk of chronic diseases 

and promote healthy longevity16-19.    

 

Biological aging of the human brain has been the focus of considerable research20-24. Predictive 

models of brain age derived from neuroimaging can infer apparent age based on brain structure 

and function. The difference between chronological age and predicted brain age, known as the 

brain age gap, provides a measure of biological age and can reveal insight into whether an 

individual’s brain appears older or younger relative to same-aged peers20. While age gaps may 

first emerge in early life and accumulate across the lifespan, longitudinal increases in age gaps 

later in life relate more specifically to aging-related decline. In principle, biological age can be 

estimated in vivo for organs and body systems other than the brain. Organ-specific age gaps 

will enable concurrent investigation of biological aging across multiple body and brain systems. 
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To this end, we develop new assays to measure the biological age (i.e., age gap index) for 7 

body and 3 brain systems using imaging, physiological and blood-derived phenotypes acquired 

cross-sectionally (body: n=143,423; brain: n=36,901) and longitudinally (body: n=1,220; brain: 

n=1,294) in the UK Biobank cohort. We aim to: (i) map the influence of an organ’s biological 

age on the aging of other organ systems; (ii) elucidate body and brain age profiles characteristic 

of 16 aging-related chronic diseases; (iii) establish whether organ-specific biological age 

associates with lifestyle factors and leucocyte telomere length; and (iv) predict the risk of 

mortality using body and brain age profiles. Our work reveals the heterogeneity of biological 

aging across individuals and organs, and its relation to lifestyle factors, risk of specific chronic 

diseases and mortality in midlife and older adults. Quantifying the impact of major chronic 

diseases on organ aging holds substantial promise for precision geriatric medicine and related 

clinical translation.  

 

Results 

Multimodal brain imaging, physiological and blood phenotypes were grouped based on their 

relevance to the structure and function of specific organ systems; namely, 7 body 

(cardiovascular, pulmonary, musculoskeletal, immune, renal, hepatic and metabolic; table S1) 

and 3 brain (gray matter, white matter and brain connectivity; table S2) systems. Cognitive 

performance formed an additional group (table S3). Phenotypes for body systems were 

available for 143,423 individuals (age range 39-73 years, mean 56.7±8.2, 79,980 males), and 

brain phenotypes were available for 36,901 individuals (age range 45-82 years, mean 64.2±7.5, 

17,203 males). Cognitive phenotypes were available for 32,317 individuals (age range 45-82 

years, mean 65.1 ±	7.6, 15,712 males).  
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Healthy adults with no major medical conditions were selected to train machine learning 

models to predict individual chronological age (see Methods). Separate predictive models of 

chronological age were established for each body/brain system and sex. Subtracting actual 

chronological age from predicted chronological age, referred to as the age gap, captures 

whether an individual’s organ system appears older (gap>0) or younger (gap<0) than 

population norms for the individual’s chronological age and sex. Age gaps thus provide 

normative, organ-specific clocks of biological age (Fig. 1).  
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Fig. 1. Overview of study design. (A) Organ systems for which normative models of biological age were established using organ-specific 

phenotypes. Key phenotypes are listed below each system. Image was created with BioRender.com. (B) Predictive models of chronological age 
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were established using phenotypes from healthy adults and 20-fold cross-validation. Separate models were developed for each body/brain system 

and sex. Using models trained on healthy adults, personalized body and brain age gaps were determined for individuals with lifetime diagnoses of 

chronic diseases to investigate the relation of biological age with disease and mortality. Two independent datasets were used to validate brain age 

gap estimates in individuals with dementia. Associations between genetic/environmental factors and biological age were also investigated. 
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Normative aging models  

Chronological age could be predicted with modest to high accuracy for body (female: r=0.79, 

mean absolute error (MAE)=3.71 years; male: r=0.72, MAE=4.46 years) and brain (female: 

r=0.79, MAE=3.52 years; male: r=0.80, MAE=3.68 years) systems and cognition (female: 

r=0.53, MAE=4.87 years; male: r=0.54, MAE=5.21 years, Fig. 2A). Prediction accuracies 

varied between organ systems and sexes (Fig. 2B & fig. S1 & table S4). Comparable accuracies 

for brain systems were achieved in additional datasets (female: r=0.82, MAE=3.52; male: 

r=0.85, MAE=3.41, fig. S2A). Applying the trained models to predict the chronological age of 

all participants resulted in personalized organ-specific age gaps.  

 

Follow-up phenotype and imaging measurements were available for body (n=1,220, 837 males; 

2.1-5.6 years follow-up) and brain (n=1,294, 632 males; 2.0-2.7 years follow-up) systems. 

Chronological age was thus predicted at baseline (t0) and follow-up (t1), yielding two age gaps 

for each organ per individual (Fig. 2C). This enabled estimation of longitudinal rates of change 

in body and brain age.  
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Fig. 2. Age prediction accuracy and multiorgan aging networks. (A) Scatter plots show 

associations between chronological and predicted age for prediction models based on body 

(left), brain (mid) and cognitive (right) phenotypes. Lines of best fit indicated with solid black 

lines. n: training sample size; r: Pearson correlation coefficient; MAE: mean absolute error. (B) 

Bar plots show Pearson correlation coefficients (upper) and MAE (lower) quantifying age 

prediction accuracy (average of 10 repartitions of 20-fold cross-validation). (C) Assessment 

timeline for measures of body and brain function. (D) Influence of body age gaps (left) on brain 

age gaps (right), adjusting for sex, chronological age and the time interval between assessments. 
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discovery rate (FDR) corrected for 8 body ages × 4 brain ages = 32 tests). (E) Influence of 

baseline organ age on longitudinal rate of change in organ age, adjusting for overall body age 

gap, sex and chronological age at baseline. An arrow from organ X to organ Y indicates that 

the age gap of X at baseline significantly influences the rate of aging of Y (p<0.05, FDR 

corrected for 7 × 6 = 42 tests). (F) Same as panel (E) but for brain systems (p<0.05, FDR 

corrected for 3 × 2 = 6 tests). Edge thickness and color reflect regression coefficients (𝛽) 

estimated for edges comprising the structural equation model. Metab., metabolism; Pulmon., 

pulmonary; Muscle, musculoskeletal; Cardiac, cardiovascular; GM, gray matter; WM, white 

matter; FC, functional connectivity.  
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Multiorgan aging networks 

Given that organ systems dynamically interact via nervous, circulatory and lymphatic 

networks25, we hypothesized that an organ’s age would selectively influence the rate of aging 

of several connected organ systems. Using structural equation modeling (SEM) on organ age 

gaps, we found that advanced biological age of several body systems explains advanced brain 

age (Fig. 2D). While these aging pathways are not necessarily causal in the strict sense, they 

reveal directional relationships elucidated through an established process of casual structure 

discovery (see Methods). For example, cardiovascular age demonstrates the strongest influence 

on brain age, where a one-year increase in cardiovascular age explains a 0.074 year (i.e., 27 

day) increase in overall brain age, and 19 and 27 day increases in functional connectivity and 

white matter ages, respectively.  

 

We next tested whether an organ’s baseline biological age influences the rate of change in the 

biological age of other organs. A positive influence would provide evidence consistent with 

faster aging26. Due to minimal overlap between individuals (n=17) with both longitudinal body 

and brain phenotypes, analyses were conducted separately for body and brain systems. The 

influence of one organ’s age gap on the rate of change in the age gap of each other organ was 

modeled using SEM (see Methods), yielding multiorgan aging networks (body: Fig. 2E, brain: 

Fig. 2F). The networks reveal several putative aging pathways. For example, advanced age of 

the pulmonary system leads to faster cardiovascular aging, which in turn results in faster aging 

of the musculoskeletal and renal systems (Fig. 2E). The cardiovascular-renal-metabolic-

musculoskeletal systems form positive feedback loops, where faster aging is reinforced 

between organ systems. The musculoskeletal system is an in-degree hub, suggesting that faster 

musculoskeletal aging is a common sequela of aging across multiple organ systems (Fig. 2E).  
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For the brain, advanced gray matter age leads to faster aging of functional brain connectivity 

(i.e., each one-year increase in gray matter age at baseline leads to 28 days/year increase in the 

rate of aging of functional connectivity), but not the converse. A positive feedback loop is 

evident between functional connectivity and white matter (Fig. 2F). Including baseline and 

follow-up cognitive age gaps in the SEM did not reveal significant influences of baseline 

tissue-specific brain age on the rate of cognitive aging. Patterns of interorgan synchrony in 

biological age are shown in fig. S3 and SEM estimates are provided in table S5. 

  

Genetic, environmental and lifestyle associations with biological organ age 

We next investigated genetic and environmental factors associated with organ age. Partial 

correlations were used to test for associations between organ-specific age gaps and 158 

environmental/lifestyle measures, leucocyte telomere length and polygenic scores indexing 

leucocyte telomere length (see Methods). Several environmental and lifestyle factors explain 

significant variation in the biological age of multiple organs (p<2.6×10-5, Bonferroni corrected 

for 158 factors × 12 organ systems = 1896 tests, table S6). For most body systems (Fig. 3), 

individuals appearing older than same-aged peers were more likely to have smoked tobacco, 

consumed more alcohol and experienced long-standing illness, had menopause early in life and 

lived in areas of greater socioeconomic inequality. In contrast, those who exercised (faster than 

usual walking pace), had a larger birth weight, completed tertiary education and were older at 

first live birth were more likely to appear younger. Some lifestyle factors exclusively associate 

with organ-specific age gaps. For example, advanced pulmonary system age associates with 

exposure to air pollution, but not natural/green environments. Advanced brain age most 

strongly associates with smoking, alcohol consumption, long-standing illness and hearing loss. 

Interestingly, advanced cognitive age not only significantly associates with advanced brain age, 

but also with advanced age of several body systems, including pulmonary and musculoskeletal 
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systems. Associations with tissue-specific brain age are shown in fig. S4. Shorter leucocyte 

telomere lengths weakly associate with older body (r=-0.033, p=2.5×10-34), pulmonary (r=-

0.023, p=1.1×10-17), immune (r=-0.037, p=2.4×10-42) and renal (r=-0.02, p=7.3×10-14) age gaps. 

Similarly, polygenic scores indexing leucocyte telomere length weakly associate with 

cardiovascular (r=0.014, p=2.7×10-7), pulmonary (r=0.016, p=1.5×10-9), immune (r=-0.015, 

p<2.0×10-8) and renal (r=-0.012, p=1.7×10-5) age gaps.
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Fig. 3. Environmental/lifestyle associations with biological organ age. Icons represent organ systems for which biological age was estimated. 

Links are shown between environmental/lifestyle factors significantly associated with organ-specific age gaps (p<2.6×10-5, Bonferroni corrected). 
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Links are suppressed for small effect sizes (|r|<0.05). Left (right) list comprises factors positively (negatively) associated with body/brain age gaps. 

Partial correlation was used to test for associations between organ-specific age gaps and environmental/lifestyle factors, adjusting for chronological 

age and sex. Link widths are proportional to absolute value of correlation coefficient magnitudes. Environmental and lifestyle factors were assessed 

using 158 scales tapping early life experience, socio-demographics, lifestyle, psychosocial, local environmental exposure, general health and 

cognitive age. Results for gray matter, white matter and functional connectivity are shown in fig. S5. 
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Biological organ age and chronic disease  

To investigate the relationship between biological age and chronic disease risk, individuals 

with a lifetime diagnosis of a chronic disease were grouped into 16 disease categories: 

Parkinsonism, multiple sclerosis, stroke, dementia, depression, bipolar disorder, schizophrenia, 

ischemic heart disease, hypertensive diseases, chronic obstructive pulmonary disease (COPD), 

chronic kidney disease (CKD), diabetes, cirrhosis, osteoarthritis, osteoporosis and cancer. 

Additional datasets independent of the UK Biobank were sourced to establish mild cognitive 

impairment (MCI) and validation dementia cohorts. Disease categories were selected based on 

lifelong contribution to brain-associated illness burden (i.e., depression, bipolar disorder and 

schizophrenia), or significant health burden in older adults, including disability and premature 

mortality27. Using the preceding normative models established for healthy individuals, 

biological age was estimated for each body/brain system and disease category.  

 

Body and brain systems of individuals with chronic disease are significantly older on average 

than same-aged healthy peers (body: 0.71-6.15 years older; brain: 0.68-4.64 years older). 

Individuals with CKD have the oldest body ages (mean age gap=6.15±9.32 years) of all 16 

disease categories, whereas Parkinsonism associates with advanced body age the least (mean 

age gap=0.71±5.04 years). Marked heterogeneity in organ-specific ages is evident between 

and within diseases. Figure 4 shows organs with mean age gaps significantly different from 

zero in each disease group (p<2.6×10-4, Bonferroni corrected for 16 diseases × 12 organs = 

192 tests). Organs primarily affected by disease pathology generally show the largest ages gaps 

on average and show the largest effect sizes (fig. S6). For example, renal, pulmonary, metabolic 

and hepatic systems are the oldest in CKD (8.03±11.73 years, Cohen’s d=0.92), COPD 

(6.19±6.03 years, Cohen’s d=1.26), diabetes (5.17±7.34 years, Cohen’s d=0.91) and cirrhosis 

(4.29±10.21 years, Cohen’s d=0.57), respectively. Notably, for many disease categories, 
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organs not typically implicated with disease-specific processes also show evidence of advanced 

biological age. For example, whereas advanced brain age is evident for most major brain 

disorders, such as multiple sclerosis (4.64±5.39 years, Cohen’s d=1.06), dementia (3.52±5.19 

years, Cohen’s d=0.75) and Parkinsonism (2.26±4.54 years, Cohen’s d=0.58), individuals with 

non-brain disorders such as diabetes (2.14 ±3.60 years, Cohen’s d=0.65), CKD (1.66±3.56 

years, Cohen’s d=0.50) and COPD (1.65±3.86 years, Cohen’s d=0.48) also show significantly 

advanced brain age (Fig. 4, fig. S5) with moderate effect sizes (fig. S6). CKD-related advanced 

body and renal ages were replicated in a subgroup of individuals (n=2168, body: 5.85±8.84 

years; renal: 7.62±11.08 years) who had not progressed to the end-stage renal disease. 

Dementia-related advanced brain age was replicated using two additional cohorts (n=284, 3.19 

± 6.13 years, t=16.94, p<2.23´10-308). Brain aging was less pronounced in MCI (n=780, 

1.07±4.25 years) than dementia (t=10.39, p=3.56´10-25), but significantly greater than same-

aged healthy peers (t=10.39, p=3.56´10-25, fig. S2C).  Although rare, some body systems are 

marginally younger than their chronological age for specific disease categories, including the 

cardiovascular (schizophrenia), hepatic (diabetes, hypertensive diseases, osteoporosis) and 

metabolic (osteoporosis, Parkinsonism) systems (Fig. 4B). Disease comorbidity does not 

explain heterogeneity in organ-specific age across brain versus non-brain disease categories 

(fig. S7).  

 

We tested whether diagnostic markers confound the interpretation of disease-related aging 

effects. The exclusion of diagnostic markers for diabetes (i.e., HbA1c) and CKD (i.e., cystatin 

C and creatinine) from the metabolic and renal aging models, respectively, did lead to decreases 

in prediction accuracy of chronological age. However, significantly advanced age of the 

metabolic and renal systems in diabetes and CKD remained evident after these exclusions (see 

Methods). 
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Fig. 4. Body and brain age in chronic disease. (A) Distribution of body and brain age gaps 

(columns) for 16 disease categories (rows), compared to healthy individuals (HC). 

Distributions are colored according to disease- and organ-specific mean age gaps. Colored 

Years

A Body Cardiac Pulmon.Muscle Immune Renal Hepatic Metab. Brain GM WM FC

B Mean age gap

-1 84.5
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distributions have a mean that significantly differs from the healthy group (p<2.6×10-4, 

Bonferroni corrected). Despite significant between-group differences, considerable overlap in 

distributions between disease categories and healthy individuals suggests that factors other than 

diagnostic status manifest significant heterogeneity of biological age among individuals 

comprising the same category. Distributions colored gray have a mean that is not significantly 

different from the healthy group. The three axis ticks on the horizontal axis from left to right 

for each distribution correspond to age gaps of -5, 0 and 5 years.  (B) Icons representing body 

systems and organs are positioned to indicate the mean age gap for each disease category. Icons 

are not shown for organs with age gaps that do not significantly differ from zero. Organs with 

age gaps exceeding 5 years are truncated to 5 years for visualization purposes. Disease 

categories are ordered from top to bottom according to increasing body age gap. COPD, 

chronic obstructive pulmonary disease; CKD, chronic kidney disease. Metab., metabolic; 

Pulmon., pulmonary; Muscle, musculoskeletal; Cardiac, cardiovascular; GM, gray matter; 

WM, white matter; FC, functional connectivity. 
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Given that some hallmarks of biological aging are also pathological features of aging-related 

diseases8, we hypothesized that phenotypic variation related to chronological age would covary 

with disease-related phenotypic variation. Consistent with this hypothesis, estimated feature 

weights of the predictive models of chronological age (one weight per phenotype; number of 

phenotypes, body: n=78, brain: n=2,309) significantly associate with disease-related 

phenotypic variation (body: female/male, r=0.43/0.39; brain: female/male, r=0.47/0.52, 

p<0.0001, Fig. 5A, stratified by disease: fig. S8). Of note, disease and aging phenotypes most 

strongly associate between body age and osteoporosis-related body changes (female/male, 

r=0.62/0.48, p<0.003, Bonferroni corrected for 16 disease groups); brain age and ischemic 

heart disease-related brain changes (female/male, r=0.49/0.55, p<0.003). In contrast, brain age 

only weakly associates with schizophrenia-related brain changes (female/male, r=0.15/0.15, 

p<0.003), while diabetes-related body changes do not significantly associate with body age 

(female/male, r=0.24/0.22, p=0.037/0.056).  
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Fig. 5. Associations between aging and disease effects and progression. (A) Scatter plots 

show associations between regression coefficients (feature weights) of the age prediction 

models (y-axis) and between-group differences (disease vs health, t-statistics) in body (n=78, 

upper) and brain (n=2,309, lower) features (x-axis). The t-statistic quantifies disease-related 

variation for each phenotype. Each data point represents a phenotype. Lines of best fit indicated 

with solid black lines. r: Pearson correlation coefficient. Refer to fig. S8 for stratification by 

disease category. (B) Distributions show the difference in age gaps between individuals with 

established diagnoses at the time of baseline assessment and prodromal individuals who were 

first diagnosed post assessment, both normalized to age-matched peers. Distributions only 

shown for organs and disease categories with a significant difference in age gap (two-sample 

t-test, p<3.9×10-4, Bonferroni corrected). Distributions of the mean differences in age gap were 

estimated with bootstrapping (n=1000). (C) Evidence of faster body (left) and brain (right) 
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aging in chronic disease. Lines of best fit show associations between the rate of change in age 

gap (y-axis) and the average age gap across the two visits (x-axis). Associations were tested 

separately in healthy individuals (HC, green) and individuals with chronic diseases (Other, 

orange). Asterisks indicate significant associations (p<0.0125, Bonferroni corrected). (D) 

Same as panel (C) but stratified according to disease category and organ. Icons are positioned 

to indicate faster aging, quantified by the slope of the line of best fit between rate of change in 

age gap and average age gap across the two visits. Associations were only tested for disease 

categories and/or organs comprising greater than 50 individuals. Icons are shown for organs 

with a nominally significant association (p<0.05, uncorrected), with high icon opacity and 

asterisks indicating associations surviving FDR correction of 5%.    

 

Biological organ age relates to disease progression 

For each disease category, we divided individuals into prodromal and established disease 

groups, based on the date of first diagnosis (if known) and the date of baseline assessment of 

body and brain function. Individuals who did not experience disease onset/diagnosis before the 

time of baseline assessment were considered prodromal. Several organ systems of the 

prodromal groups are significantly older than same-aged healthy peers (fig. S9A), although 

mean age gaps are larger for individuals with established diagnoses, compared to prodromal 

individuals (fig. S9B). Hence, advanced body age predates disease diagnosis. Furthermore, 

between-group differences in mean age gaps (prodromal vs established diagnoses) for several 

body systems and diseases are significantly larger in groups with established diagnoses, 

compared to prodromal groups (p<2.6×10-4, Bonferroni corrected for 12 organs × 16 diseases 

= 192 tests), although effect sizes are modest (Fig. 5B). These effects are greatest in CKD 

(renal: 10.8± 1.2 years older), cirrhosis (musculoskeletal: 3.1± 0.8 years) and diabetes 
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(metabolic: 2.9± 0.1 years), where body systems are significantly older in established 

compared to prodromal groups.   

 

The rate of change in age gaps significantly associates with the average age gap over the two 

assessment time points in individuals with chronic disease (body: 𝛽=0.21, p=0.01; brain: 

𝛽=0.44, p=4.4×10-6; Fig. 5C). This suggests disease-related faster body and brain aging, where 

each one-year increase in the mean body (brain) age gap associates with a 0.21 (0.44) 

months/year increase in the rate of body (brain) aging. On the contrary, the rate of aging is 

constant in healthy individuals (body: 𝛽=0.07, p=0.74; brain: 𝛽=-0.08, p=0.66). Faster aging 

is evident for multiple organ systems in ischemic heart disease, hypertensive diseases, diabetes, 

osteoarthritis and cancer (p<0.05, FDR corrected across 6 disease groups × 12 organ systems 

= 72 tests). Depression shows no evidence of faster aging (p>0.05, Fig. 5D).   

 

Biological organ age predicts mortality risk 

We sought to predict risk of mortality using body and brain age gaps. Mortality was determined 

using data linkages to national death registries in the UK. Cancer (29.6%), circulatory (26.7%) 

and respiratory (11.8%) diseases were the three main causes of death (fig. S10). Survival after 

baseline assessment was ascertained up to 13.41 years for body (n=8,109, age of death 42-83 

years, mean 69.6±7.3, 5,670 males) and 6.07 years for brain (n=330, age of death 53-82 years, 

mean 70.7±6.4, 203 males). Body (2.95±6.56 vs 0.57±4.44 years, p<0.0056, Bonferroni 

corrected for 9 body ages), and brain (1.72±4.07 vs 0.48±3.31 years, p<0.0125, Bonferroni 

corrected for 4 brain ages) age gaps significantly differ between deceased and non-deceased 

individuals. Between-group differences are also evident for specific body (Fig. 6A) and brain 

systems (fig. S11A).  
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Cox proportional hazards regression, where survival durations were right censored for non-

deceased individuals (body: n=135,314; brain: n=36,571), reveal that body age (Fig. 6B,C, 

table S9), but not brain age (fig. S11B,C, table S10) is a significant predictor of mortality. In 

particular, adjusting for chronological age and sex, each one standard deviation (SD) increase 

in a person’s organ age associates with a 7.3% (body, hazard ratio (HR)=1.073, 95% 

confidence interval (CI)=[1.037, 1.136], p=2.2×10-6), 3.6% (cardiovascular, HR=1.036, 95% 

CI=[1.014, 1.056], p=2.7× 10-3), 24.0% (pulmonary, HR=1.24, 95% CI=[1.210, 1.262, 

p=2.6×10-89), 5.9% (immune, HR=1.059, 95% CI=[1.045, 1.078, p=1.0×10-31), 15.1% (renal, 

HR=1.151, 95% CI=[1.116, 1.183, p=3.0×10-24), 7.9% (hepatic, HR=1.079, 95% CI=[1.051, 

1.104], p=1.9×10-10) and 7.1% (metabolic, HR=1.071, 95% CI=[1.043, 1.091], p=3.2×10-9) 

relative increase in the risk of mortality (area under the curve (AUC)=0.75, loglikelihood=-

9.19× 104, Fig. 6B). This model significantly outperformed a baseline mortality model 

including only chronological age and sex (AUC=0.72, loglikelihood=-9.29×104, 𝜒!=1.86×103, 

p<2.23× 10-308). Several body systems (i.e., pulmonary, immune, renal, hepatic) remain 

significant mortality predictors, when controlling for existing disease diagnoses (fig. S12). A 

regression model including chronological age, sex, all 8 body age gaps, existing disease 

diagnoses, general health (i.e., long-standing illness and disability) and key 

environmental/lifestyle factors such as smoking, exercise, tertiary education and 

socioeconomic inequality yielded the most accurate (AUC=0.771) and best fitting model of 

mortality risk (loglikelihood=-8.97× 104, 𝜒! =4.98× 103, p<2.23× 10-308, Fig. 6C). After 

controlling for the above covariates, the composite body age gap outperformed all organ-

specific age gaps in explaining mortality hazard, suggesting that these factors are significant 

confounds. Replacing body age gaps with body phenotypes associated with mortality, 

including systolic blood pressure28, 29, forced expiration volume in 1-second30, 31, hand grip 

strength32, C-reactive protein33, 34, serum creatinine35, serum alanine and asparate 
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aminotransferase36 and the total/high-density lipoprotein cholesterol ratio37 did not improve the 

model accuracy (AUC=0.770) and fit (loglikelihood=-8.98´104, table S11). Similarly, 

replacing brain age gaps with several global brain measures, including whole brain volume of 

gray matter, cerebrospinal fluid, white matter, white matter hyperintensity load and mean 

cortical thickness, mean fractional anisotropy and mean diffusivity did not improve the model 

(AUC=0.722, loglikelihood=-3.14´103, table S12). Mortality risk associated with body (fig. 

S13) and brain (fig. S14) age remained largely unchanged after excluding deaths subsequent 

to the date of coronavirus disease (COVID-19) emergence in the UK38 (n=1,033 for body age 

and n=127 for brain age analyses), suggesting that COVID-19 did not significantly confound 

our mortality risk estimation models. Further analyses of mortality due to specific disease cause, 

including cancer (AUC=0.75, fig. S15A), circulatory diseases (AUC=0.84, fig. S15B) and 

respiratory diseases (AUC=0.86, fig. S15C) reveal similar results, where pulmonary, immune 

and renal age remain significant predictors for all three causes of mortality (table S13). Finally, 

logistic models were developed to predict survival time (5-year: AUC=0.774±0.006; 10-year: 

AUC=0.770±0.003) and premature mortality (death before 70 years old: AUC=0.86±0.003; 

75 years old: AUC=0.86±0.003) using body age gaps (fig. S16).    
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Fig. 6. Body age and the risk of mortality. (A) Body age gaps in deceased (n=8,109) 

compared to non-deceased (n=135,314) individuals. Asterisks indicate significant between-

group differences, controlling for chronological age and sex (p<0.0056, Bonferroni corrected). 

(B) Bar plots show mortality hazard ratios per one standard deviation (SD) increase in organ-

specific age (left) and corresponding z-scores (right). Chronological age and sex are included 

in the regression. Confidence intervals (95%) estimated with bootstrapping (n=100). Colored 

bars indicate organs with significant hazard ratios (p<0.005, Bonferroni corrected for 10 

dependent variables). AUC: area under curve. (C) Same as panel (B), but existing disease 

diagnoses, general health and key lifestyle factors included in the regression. Colored bars 

indicate organs with significant hazard ratios (p<0.0015, Bonferroni corrected for 32 dependent 

variables).  
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Discussion 

By establishing normative models of aging-related decline for multiple brain and body systems 

in the world’s largest population-based biobank, we showed that aging is a complex, 

multisystem process, whereby the biological age of one organ system selectively influences 

the aging of multiple other systems via characteristic aging pathways. While biological aging 

is an established concept12-14, and earlier studies establish aging clocks for individual organs, 

including the kidneys39, heart40, lungs41, skin and blood42, we derived the first whole-body 

multiorgan characterization of aging. Our organ clocks enabled elucidation of unique organ 

age profiles for 16 chronic diseases and discovery of modifiable factors that can potentially 

lead to disease-specific longevity interventions targeted at specific body systems, ultimately 

extending lifespan. 

  

Our work enhances the clinical utility of proxy measures of aging developed for older 

individuals, such as frailty indices43, as well as existing DNA methylation (epigenetic) clocks44, 

45. While epigenetic clocks are clinically useful and provide important insights into aging 

biology across tissue types, it is now recognized that aging varies markedly between organ 

systems and tissues, particularly in disease46. Bespoke organ and disease-specific aging clocks 

are thus needed to enhance the clinical utility of existing pan-tissue clocks, which do not readily 

differentiate between tissue components and body systems15. Addressing this need, we showed 

that deviations from normal aging-related decline can be detected in certain organs (but not all) 

years before disease diagnosis. These deviations predict mortality, even after controlling for 

chronological age, disease burden and other risk factors. Our organ clocks could thus be used 

to identify individuals in midlife, before disease onset, who may benefit from early 

interventions aimed at slowing the aging of specific body systems and organs.  
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Crucially, as with the frailty indices43, many of the biological markers that inform our organ 

clocks are already widely assayed in primary care (e.g., full blood counts, renal and liver 

function, blood pressure, lipids, glucose), are readily accessible at minimal cost (forced 

respiration, grip strength, waist circumference), or are accessible and cost effective when 

benchmarked against the burden of chronic illness (brain MRI scans). Alongside the relatively 

modest computational burden of the model algorithms (especially when pretrained), these 

considerations argue for direct, cost effective and feasible clinical implementation of organ age 

in primary care.  

 

Our investigation into environmental and lifestyle factors can inform real-world personalized 

interventions targeted at specific body systems, through change of lifestyle, such as limiting 

tobacco smoking and alcohol intake, exercise, education, sleep hygiene and maternal nutrition, 

as well as efforts requiring national inputs such as reductions in socioeconomic inequality and 

air pollution, and improvements in residential greenspace and natural environment coverage. 

Studying the impact of such interventions would provide causal evidence for the conditional 

effects presently reported. The pulmonary, metabolic and immune systems are promising 

organ-specific targets for interventions, given that these systems influence the rate of aging of 

multiple body systems (i.e., cardiovascular, musculoskeletal), via interorgan aging pathways 

(Fig. 2E). Notably, the aging pathway linking pulmonary, cardiovascular and musculoskeletal 

systems recapitulates the known epidemiological link between impaired lung function, weak 

muscle strength and elevated risk of adverse cardiovascular outcomes30, 32. While aging-related 

brain gray matter loss is normal47, we found that advanced gray matter age substantially 

influences the rate of aging-related decline in brain connectivity, but not the converse (Fig. 2F). 

Given that body phenotypes were measured several years before brain phenotypes (4-14 years 
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earlier; Fig. 2C), the estimated influence of advanced body age, particularly of the 

cardiovascular system on brain age (Fig. 2D), may thus reveal early signs of brain aging.   

 

While the organs that manifest primary disease processes appear the oldest in individuals with 

the disease, we found that advanced organ age is widespread, involving multiple body and 

brain systems. Brain systems of individuals with non-brain disorders, including diabetes, 

chronic kidney, pulmonary and cardiovascular diseases appear significantly older than same-

aged healthy peers, whereas body systems, particularly pulmonary and renal systems, show 

signs of advanced aging in individuals primarily diagnosed with major brain disorders, 

including schizophrenia, dementia, bipolar disorder, depression, multiple sclerosis and 

Parkinsonism. It is important to acknowledge that some of our clocks are informed by 

diagnostic markers, which may potentially confound the interpretation of disease-related 

differences in biological age. However, confounding can be ruled out for the above examples 

where advanced age is evident for organs that are not informed by diagnostic markers relevant 

to the disease under consideration. Furthermore, excluding key diagnostic markers reduced 

model performance but did not alter our conclusions about the association between disease and 

organ aging.  

 

Chronological age and male sex were found to be the two strongest mortality risk factors, 

consistent with previous literature48, 49. After controlling for these two factors, organ ages 

remained strong mortality risk factors, particularly pulmonary age, followed by ages of the 

renal, hepatic, metabolic, immune and cardiovascular systems. Individuals who subsequently 

deceased had older appearing brains compared to those who survived, consistent with a 

previous study examining brain age and mortality50. However, advanced brain age did not 

predict increased risk of mortality. This may be due to the relatively low mortality rate in 
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individuals with brain age estimates in the UK Biobank (mortality rate: 330/36901=0.0089) 

compared to the Lothian Birth Cohort 1936 used by Cole and colleagues (mortality rate: 

73/669=0.11). Continued follow-up of UK Biobank participants will likely yield more insight 

into the relationship between brain aging and mortality.  

 

Advanced pulmonary age was the strongest predictor of mortality (HR: 1.24), consistent with 

epidemiological observations of associations between impaired lung function and increased 

risk of mortality30, 31. While reduced muscle strength, measured by handgrip strength, is 

commonly associated with increased risk of mortality51, older musculoskeletal age was not a 

significant risk factor of mortality when controlling for chronological age, sex and the age gaps 

of other organs. This is consistent with the configuration of the multiorgan aging network, 

where the musculoskeletal system is a central hub, influenced by the extent of aging of most 

other organ systems. The mortality risk explained by musculoskeletal aging may thus be 

attributable to the biological age of other body systems. Advanced age of the pulmonary, 

immune, renal and hepatic systems significantly raises a person’s mortality risk, beyond that 

explained by existing chronic diseases, chronological age and sex (Fig. 6). Whereas disease 

conditions that primarily affect these organ systems are common causes of death27, our results 

demonstrate the uniqueness of biological age in explaining all-cause mortality, regardless of 

existing diseases.  

  

The divergence of an organ’s biological age from chronological age may emerge early in life 

and widen over the lifespan, increasing the risk of chronic disease and mortality. However, the 

rate of aging reported here more specifically reflects aging-related decline rather than early life 

events. Interventions designed to delay the rate of organ aging may thus effectively delay 

disease onset, resulting in an extended healthy lifespan. Further study is needed to determine 
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whether interventions informed by the observational evidence reported here can reduce these 

risks and potentially slow organ aging in at-risk individuals. Further work is also needed to 

determine the genetic influences on our organ clocks. We showed that leucocyte telomere 

lengths and genetic variants known to index leucocyte telomere length weakly associate with 

several body ages. This complements a recent genome-wide association study13 showing the 

importance of the immune system (major histocompatibility complex on chromosome 6) and 

DNA repair pathways in aging.  

 

Our work addresses several recently identified challenges hindering the clinical translation of 

biological aging research15, 19. We established bespoke clocks that measure the biological age 

of specific brain and body systems using markers that are routinely assayed in primary care, 

elucidated organ age profiles for prevalent chronic diseases and identified modifiable factors 

that can inform new strategies to potentially limit organ-specific aging. Our work is the first to 

map a multiorgan aging network for the human body.  

 

Several caveats pertain to our findings. First, biological aging is multifaceted. As such, it is 

unlikely that a single index of organ aging will be sufficient and conclusive. As with the 

continued refinement of epigenetic clocks over the last decade44, 52-54, and ongoing 

deliberations about how to define frailty in older people43, 55, standardized measures of organ 

age remain to be developed. Second, body phenotypes were measured several years before 

brain phenotypes in the UK Biobank. Due to the sequential and non-randomized participant 

assessment schedule, we were unable to assess the influence of brain aging on body systems. 

Future investigations, leveraging multiple cohort waves, may reveal bidirectional brain-body 

influences. Third, most participants enrolled in the UK Biobank are from a white ethnic 

background. Inclusion of participants from a diversity of ethnicities, demographic and 
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socioeconomic backgrounds will be required to assess the generalizability of our current 

finding. Finally, some imaging modalities (e.g., carotid imaging) were only acquired in select 

individuals, limiting the data available for some organ clocks. Clinical translation could 

proceed by adding these to clinical assays, and/or removing others based upon the trade-off 

between their added predictive value versus their cost. 
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Methods 

Participants 

Individuals (n=502,504, 229,122 males) participating in the UK (United Kingdom) Biobank56 

were analyzed for the primary study (Project ID 60698). They were aged 37-73 years at the 

time of recruitment (2006-2010) and underwent extensive questionaries, physical assessments, 

blood and urine sample assays and genome-wide genotyping at 22 assessment centers 

throughout the UK. A subset of individuals (n=20,345, 9,938 males) was followed up during 

2012-2013 for repeated physical and physiological assessments. Multimodal brain imaging 57 

was acquired during the third visit (2014-2020) at three mirrored imaging centers located at 

Manchester, Reading and Newcastle, respectively, in 49,002 individuals (23,710 males). 

Follow-up brain imaging was conducted from 2019 onwards in 1,503 individuals (754 males), 

providing a longitudinal sample enabling estimation of the rate of change in biological age. An 

assessment timeline is shown in Fig. 2C. Each step in the assessment and processing of 

biological samples was handled and monitored centrally to minimize biases across recruitment 

centers. We found that biological age (i.e., age gaps) showed negligible site-related (fig. S17), 

ethnicity-related (fig. S18) and longitudinal subsampling-related (fig. S19) variation. The UK 

Biobank has approval from the North West Multi-centre Research Ethics Committee (MREC) 

to obtain and disseminate data and samples from the participants 

(http://www.ukbiobank.ac.uk/ethics/). Written informed consent was obtained from all 

participants. Details of participants comprising the independent validation cohorts are 

described below (see Validation of brain age prediction using external datasets). 

 

Body age phenotypes 

Physical and physiological measures known to index the function, structure and/or general 

health of the cardiovascular, pulmonary, musculoskeletal, immune, renal, hepatic and 
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metabolic systems were selected, resulting in 101 organ-specific phenotypes. Physical 

measures included standing height, weight, body mass index (BMI), hip and waist 

circumferences, handgrip strength, ultrasound heel bone densitometry, spirometry and cardio-

respiratory fitness. Physiological assessments included blood pressure, pulse rate, arterial 

stiffness, blood hematology, blood and urine biochemical assays. Further steps included: 

1. Averaging measures if tested for left and/or right side of the body. E.g., handgrip 

strength, heel bone mineral density and ankle spacing width.  

2. Averaging measures if tested more than once at the same visit. E.g., diastolic and 

systolic blood pressure and pulse rate were each measured twice. 

3. Selecting the best performance among multiple repeated tests at the same visit. E.g., 

spirometry test for lung function, including forced vital capacity (FVC), forced 

expiration volume in 1-second (FEV1) and peak expiratory flow (PEF). Each 

participant was asked to conduct up to three blows (lasting for at least 6 seconds) within 

a period of approximately 6 minutes. The quality of each blow result was automatically 

detected by the device and only the best performing blow of acceptable quality was 

selected. The FEV1/FVC ratio was also computed and used for body age estimation.  

4. Excluding measures with missing responses in more than 30% of individuals. As such, 

measures of cardio-respiratory fitness (missing proportion: 85%), arterial stiffness 

(69%), urine microalbumin (76%), blood oestradiol (79%) and Rheumatoid factor 

(93%) were excluded.  

This resulted in 78 body phenotypes for chronological age prediction (table S1). Participants 

with missing responses for any of the 78 phenotypes were then excluded, resulting in a final 

sample comprising 143,423 individuals (age range 39-73 years, mean 56.7±8.2 at the baseline 

assessment of body function, 79,980 males). Follow-up data were available in 1,220 

individuals (age range 44-75 years, mean 61.6±7.7 at the second visit, 837 males) at 2.1-5.6 
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years follow-up. Phenotypes were grouped based on relevance to the structure and function of 

each organ systems, forming 7 phenotype groups. A predictive model of chronological age was 

established using all phenotypes comprising a given organ-specific phenotype group (see 

below). Additionally, a whole-body predictive model was established using all body 

phenotypes, irrespective of organ grouping. Key measures used to assess individual organ 

function are as follows (also see Fig. 1A): 

• Cardiovascular system: pulse rate, systolic blood pressure and diastolic blood pressure. 

• Pulmonary system: FVC, FEV1, PEF and FEV1/FVC ratio. 

• Musculoskeletal system: handgrip strength, standing height, weight, BMI, waist and 

hip circumference, waist/hip circumference ratio, heal bone mineral density, ankle 

spacing width, blood biochemical markers such as phosphatase, calcium, phosphate and 

vitamin D.   

• Immune system: C-reactive protein and blood hematology tests of leukocytes, 

erythrocytes, thrombocytes and hemoglobin.  

• Renal system: biomarkers associated with glomerular filtration and electrolyte 

regulation, including creatinine (enzymatic), potassium and sodium in urine, albumin, 

urea, urate, creatinine, cystatin C, phosphate and total protein in blood.  

• Hepatic system: alanine aminotransferase, aspartate aminotransferase, gamma-

glutamyl transferase, direct and total bilirubin, albumin, alkaline phosphatase and total 

protein in blood.  

• Metabolic system: blood biomarkers associated with lipids and glucose metabolism, 

including apolipoprotein A, apolipoprotein B, cholesterol, glucose, glycated 

hemoglobin, high-density lipoprotein cholesterol, direct low-density lipoprotein 

cholesterol, Lipoprotein A and triglycerides. 
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Several blood biomarkers, including insulin-like growth factor 1, testosterone and sex 

hormone-binding globulin were not assigned to any of the seven systems and were only used 

for overall body age gap estimation. Post-hoc analysis was performed to investigate the 

potential confounding effect of antihypertensive medications (i.e., angiotensin-converting 

enzyme inhibitors, angiotensin receptor blockers, beta-blockers, calcium channel blockers, 

thiazide diuretic agents) on the estimation of cardiovascular age. This grouping of medication 

categories is consistent with a previous UK Biobank study58. Adjusting for chronological age 

and sex, we found no significant difference in the estimated cardiovascular age between 

individuals who regularly take antihypertensive medications (mean age gap=0.32±3.58 years) 

and individuals who do not take any antihypertensive medications (mean age gap=0.46±3.94 

years, t=1.04, p=0.29), suggesting that antihypertensive medications are not significant 

confounds. 

 

Brain age phenotypes 

Structural and functional brain phenotypes (n=2,309, table S2) derived from 3 neuroimaging 

modalities, including T1-weighted magnetic resonance imaging (MRI), diffusion MRI (dMRI) 

and resting-state functional MRI (fMRI) were sourced from the UK Biobank57, 59. The image 

processing pipeline, artefact removal, cross-modality and cross-individual image alignment, 

quality control and phenotype calculation are described in detail in the central UK Biobank 

brain imaging documentation 

(https://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf) and by Alfaro-

Almagro and colleagues59. Participants with missing entries for any of the 2,309 phenotypes 

were discarded, resulting in a final sample comprising 36,901 individuals (age range 45-82 

years, mean 64.2±7.5 at the first imaging visit, 17,203 males) for brain age analyses. Repeated 
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brain imaging phenotypes were available in 1,294 individuals (age range 50-83 years, mean 

65.2±7.2 at the second imaging visit, 632 males) at 2.0-2.7 years follow-up.  

 

Predictive models of chronological age were established using imaging-derived phenotypes 

(IDPs) pertaining to gray matter structure, white matter microstructure and brain functional 

connectivity (FC). Additionally, a whole-brain predictive model was established using all brain 

phenotypes (n=2,309), irrespective of brain tissue class. IDPs used to assess individual brain 

systems are as follows:  

• Gray matter: regional gray matter volume, cortical thickness and surface area, as 

derived from T1-weighted MRI (number of IDPs: 578).  

• White matter: dMRI-derived microstructural measures of white matter tracts including 

mean fractional anisotropy and mean diffusivity (number of IDPs: 92) 

• Brain functional connectivity (FC): connectivity strengths between 55 functional brain 

networks derived from resting-state fMRI (IDPs: 1,485 connection pairs) 

Other IDPs such as regional gray/white matter intensity contrast from T1-weighted MRI and 

volumes of ventricles were only included in the whole-brain predictive model. 

 

Cognitive phenotypes 

Cognitive tests assessing reasoning, memory, attention, processing speed and executive 

function were conducted on the same day of brain imaging in 45,930 individuals (22,307 

males). A predictive model of chronological age was established using 29 distinct measures of 

cognitive performance (table S3). Dummy variables were generated for categorical responses. 

Several cognitive tests, including trail making, matrix pattern completion, tower rearranging 

and symbol digit substitution test were only added to the assessment battery from 2016 onwards, 

resulting in an incomplete assessment for some participants. These participants were omitted, 
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yielding a final sample comprising 32,317 individuals (age range 45-82 years, mean 65.1±7.6, 

15,712 males) for cognitive age analyses.   

 

Normative aging models 

Support vector machines (SVMs) were trained to predict an individual’s chronological age 

using body (n=28,589, age range 40-70 years, mean 52.7±7.8, 15,444 males), brain (n=7,922, 

age range 46-82 years, mean 61.8±7.3, 3624 males) and cognitive (n=7,167, age range 47-82 

years, mean 62.6±7.3, 3,357 males) phenotypes in healthy individuals, defined as no self-

reported and healthcare documented lifetime chronic medical conditions (see Health outcomes 

and clinical characterization). Compared to linear regression, SVM regression can provide 

improved robustness to outliers and overfitting. It automatically learns the relative value of 

each phenotype toward predicting age and fits a hyperplane to the phenotype data. Using 20-

fold cross-validation, predictive models were developed for each body (n=8) and brain (n=4) 

system as well as for cognitive performance (Fig. 2B). Separate models were trained for males 

and females. Each model accepted an individual’s organ-specific phenotypes and yielded an 

estimate of chronological age based on these phenotype inputs. Individuals were thus 

characterized by 12 organ-specific predictions of chronological age.  

 

For each 20-fold cross-validation iteration, a linear SVM was trained to predict chronological 

age using individuals comprising 19 folds (training set). The fitted regression coefficients 

(feature weights) were then applied iteratively to the held out set of individuals (test set), 

resulting in a predicted chronological age for each healthy individual. In this way, the 

prediction model was never trained using the same individuals for which it was applied to 

predict age, minimizing the risk of overfitting. All measures except for categorical variables 

were standardized by weighted column mean and standard deviation, computed within the 
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training set prior to each iteration of model training. For all models, the SVM box constraint 

and kernel scale were set to unity, and the half-width of the epsilon-insensitive band was set to 

a tenth of the standard deviation of the interquartile range of the predicted variable (i.e., 

chronological age). The SVM was solved using sequential minimal optimization, using a gap 

tolerance of 0.001. More specifically, linear SVM regression involved fitting the linear 

function,  

𝑓(𝑥) = 𝒙𝜷 + 𝑏 

for each organ system, where 𝒙  is the matrix of organ-specific phenotypes (subjects × 

phenotypes), 𝜷 is the fitted model coefficients and 𝑏 is the model offset. To estimate 𝜷 and 𝑏 

for each organ system, the following objective function was minimized,  

𝐻(𝛽) = 0.5𝜷"𝜷 + 𝐶4 (𝑠# + 𝑠#∗)
%

#&'
 

subject to the constraints |𝑎𝑔𝑒# − (𝒙#𝜷 + 𝑏)| ≤ 𝜖 ; 𝑎𝑔𝑒# − (𝒙#𝜷 + 𝑏) ≤ 𝜖 + 𝑠# ; (𝒙#𝜷 +

𝑏) − 𝑎𝑔𝑒# ≤ 𝜖 + 𝑠#∗  and 𝑠#, 𝑠#∗ ≥ 0 for all individuals 𝑛 = 1,…𝑁 in the training data set. In 

this formulation, 𝑠# and 𝑠#∗  are the slack variables for each individual, 𝜖	is the model residual 

and 𝐶 is the box constraint constant (𝐶 = 1 in this work). Consistent with recent work60, using 

a non-linear kernel function (i.e., Gaussian or polynomial) did not improve model performance. 

The predicted chronological age of the individual with index 𝑛 comprising the test dataset was 

given by  

𝑎𝑔𝑒#C =𝒙#𝜷 + 𝑏. 

Model performance was quantified using the Pearson correlation coefficient (r) and mean 

absolute error (MAE) between predicted and chronological age in the test sets. The 20-fold 

cross-validation procedure was repeated for 10 trials, randomizing the assignment of 

individuals to folds for each trial. Owing to the large sample size, variation across different 

train-test data splits was negligible (rsd<0.002, MAEsd<0.005; sd: standard deviation). 

Optimization of hyperparameters (i.e., box constraint, kernel function, epsilon) did not 
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substantially improve performance of the predictive models trained on all body or brain 

phenotypes, and thus hyperparameter optimization was not conducted for the organ-specific 

models.    

 

To determine chance-level prediction accuracy intervals, chronological age was randomly 

permuted among individuals and each organ-specific predictive model was re-trained using the 

permuted data. This was repeated for 5000 permutations to generate an empirical null 

distribution for MAE, under the null hypothesis of an absence of predictive utility of body and 

brain phenotypes on chronological age prediction. The observed MAE for all predictive models 

was less than the 5th percentile of the MAE null distribution, enabling rejection of the null 

hypothesis.  The false discovery rate was controlled at 5% across all predictive models (n=26) 

using the Benjamini-Hochberg procedure61. 

  

Prediction accuracies varied considerably between organ systems (Fig. 2A). While prediction 

accuracy often improved with the number of features available, this was not always the case. 

For example, the least accurate organ-specific model (i.e., immune system) comprised the 

largest number of features (n=33), whereas the best performing model comprised 11 

phenotypes pertaining to renal function. Models developed for the pulmonary (n=4) and 

cardiovascular system (n=3) also outperformed the immune system. Prediction accuracy 

variation between organ models could be due to i) insufficient or inaccurate phenotype 

ensembles to fully characterize an organ’s age-related decline; or ii) complex trajectories of 

age-related decline that are nonlinearly related to chronological age. Regarding the latter 

consideration, deep neural networks and nonlinear learners could have improved the prediction 

accuracies reported here, as suggested in recent brain age prediction studies60, 62-65. Regarding 

the former, we note that most physiological measures (e.g., blood biochemistry, urine assays) 
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used in this study are validated with rigorous quality control procedures 

(https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/biomarker_issues.pdf) and are commonly used 

in clinical settings as diagnostic tools to assess organ-specific function and general health. For 

example, elevated serum liver enzyme levels often reflect hepatocyte damage or cholestasis66. 

However, key phenotypes for some body systems were unavailable. For example, 

inflammatory cytokines would have enabled a more holistic characterization of immune 

function67, while cardiac and carotid imaging would have enabled detailed assessment of heart 

function and atherosclerotic plaque morphology68. Of note, cardiac and carotid imaging were 

not primarily used to estimate cardiovascular age in our study as they were available from 2014 

onwards (third visit) in the UK Biobank. The lack of temporal correspondence between cardiac 

and carotid imaging data and other body phenotypes (i.e., blood biochemistry and urine assays) 

precluded a concurrent investigation of biological age across multiple body systems. In 

supplementary analyses, we established a revised cardiovascular normative model that includes 

heart MRI and carotid ultrasound data and compared the accuracy of the revised model to our 

original cardiovascular model. We found modest improvement in the age prediction using the 

revised model (12% and 15% reduction in MAE in females and males respectively, fig. S20). 

This suggests that our original model using blood pressure indices and pulse rate provides a 

reasonable estimation of cardiovascular age. Recent work13 measures cardiovascular age using 

a combination of blood pressure, blood markers (e.g., glucose, lipids) and physical fitness (e.g., 

vital capacity). In contrast, we use blood-derived glucose and lipids, and vital capacity 

measures to instead inform aging models of the metabolic and pulmonary system, respectively. 

This exemplifies the need for future standardization of organ age measures, and we suggest 

that cardiovascular age, as measured by Nie and colleagues13, is based on a broader 

characterization of the cardiovascular system and combines some features of our metabolic and 

pulmonary age models. In supplementary analyses, we also established revised metabolic and 
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renal normative models that exclude diagnostic markers for diabetes (i.e., HbA1c) and CKD 

(i.e., cystatin C and creatinine), respectively. We found that prediction accuracy worsens 

(without HbA1c: females: r=0.45, MAE=5.48; males: r=0.19, MAE=6.59) compared to our 

original model (with HbA1c: females: r=0.50, MAE=5.30; males: r=0.23, MAE=6.51). 

However, the metabolic system still shows significantly advanced biological age in diabetes 

(age gap=0.18±4.64 years, t=6.02, p=1.79×10-9) after excluding this diagnostic marker. 

Similarly, a model excluding cystatin C and creatinine led to less accurate prediction of 

chronological age (females: r=0.43, MAE=5.61; males: r=0.36; MAE=6.15) compared to our 

original model (females: r=0.53, MAE=5.22; males: r=0.45; MAE=5.83). Nevertheless, the 

renal system still shows significantly advanced age in CKD (age gap=3.14±6.32 years, t=35.52, 

p<2.23´10-308) after excluding these two diagnostic markers. 

 

Age prediction models trained using healthy individuals were applied to predict the 

chronological age of individuals diagnosed with one or more diseases (see Health outcomes 

and clinical characterization). For this purpose, all models were re-trained on the full sample 

of healthy individuals.  

 

Age gap index 

Subtracting actual chronological age from predicted chronological age, referred to as the age 

gap, provides a normalized measure of the extent to which an individual’s organ system 

appeared older (gap>0) or younger (gap<0) than same-aged peers of the same sex. Age gaps 

were estimated for each organ, yielding a multiorgan assay of biological age for each individual. 

Chronological age was regressed from all estimated age gaps to adjust for regression-toward-

the-mean bias69, 70 and the residuals of this regression defined adjusted age gaps. All age gaps 

in this study were adjusted as such. Regressing the square of chronological age in addition to 
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chronological age had minimal impact on the adjusted age gaps. Regression coefficients for 

performing age gap adjustment were fitted using the training set and then used to adjust the 

age gaps for individuals comprising the test set. Legacy studies71-75 typically quantify 

biological age using a linear combination of chronological age and selected physiological 

phenotypes13, 76-78,  and are sometimes referred to as “Phenotypic Age”12, 14, 53, 79. In contrast, 

for the age gap index used here, chronological age is the prediction target (i.e., independent 

variable).  An advantage of the age gap index is that it is an inherently personalized measure, 

cross-validated, independent of chronological age, and thereby directly indexes deviations 

from population norms. Likewise, compared to the commonly used frailty index43, which 

characterizes an overall functional decline in older people (usually > 65 years) by counting the 

number of health deficits present80, an advantage of the age gap index is that it is an organ-

specific aging measure applicable across the lifespan. 

 

Longitudinal assessments enabled estimation of the rate of change in age gaps, providing 

organ-specific estimates of the rate of aging3, 14. Of note, all normative models were trained 

using phenotypes measured at baseline and subsequently applied to predict chronological age 

in the follow-up data. Let gapt0 (years) be the organ age gap estimated at baseline, gapt1 (years) 

be the age gap at follow-up and T be the time interval (in years) between baseline and follow-

up assessment. The rate of aging was estimated as ∆ = 12×(gapt1−gapt0)/T, expressed in units 

of months/year. To test for faster organ aging, the rate of change, ∆, was regressed against the 

average age gap, (gapt1+ gapt0)/2, and a significant positive association between these 

quantities across individuals provided evidence consistent with faster aging26. The slope of the 

regression line provided an estimate of the putative acceleration rate (months/year2). Note that 

this is effectively a population-level estimate, and it does not necessarily imply faster or 

accelerated aging for any individual participant.   
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Replication of brain age prediction in additional datasets 

To assess our normative aging model in an older age cohort, we performed supplementary 

analyses combining brain MRI data from the Australian Imaging, Biomarkers and Lifestyle 

Flagship Study of Ageing (AIBL, n=650) (https://aibl.csiro.au/)  and the Alzheimer’s Disease 

NeuroImaging Initiative (ADNI, n=1,677) (http://adni.loni.usc.edu/). The two cohorts 

comprise individuals diagnosed with mild cognitive impairment (MCI) and dementia as well 

as healthy individuals, thus facilitating external validation for our normative brain aging model 

and the relationship between brain age and neurodegenerative diseases.  

 

AIBL study methodology has been reported previously81. The AIBL study was approved by 

the institutional ethics committees of Austin Health, St Vincent's Health, Hollywood Private 

Hospital and Edith Cowan University, and all volunteers gave written informed consent before 

participating in the study. ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment and early Alzheimer's disease. For up-

to-date information, see www.adni-info.org. As per ADNI protocols, all procedures performed 

in ADNI studies involving human participants were in accordance with the ethical standards 

of the institutional and/or national research committee and with the 1964 Helsinki declaration 

and its later amendments or comparable ethical standards. More details can be found 

at adni.loni.usc.edu. 

 

Details of brain image acquisition can be found elsewhere81, 82. T1-weighted MRI brain images 

acquired at baseline assessments were used in this study. Consistent with the brain image 



 45 

processing pipeline used for the primary cohort (UK Biobank), MRI brain images were 

processed using FreeSurfer v683, resulting in 578 regionally specific MRI-derived phenotypes 

representing regional gray matter volume, cortical thickness and surface area. The Destrieux 

atlas84 was used for cortical parcellation. Additional segmentations of hippocampal subfields85, 

amygdala86 and thalamic87 nuclei and brainstem substructures88 were performed using 

FreeSurfer v7. The quality of the T1 images was automatically assessed using the Euler number, 

an index generated by FreeSurfer that measures the topological complexity of a reconstructed 

cortical surface89. Following previous recommendations90, images with a Euler number less 

than -217 were associated with poor quality and thus discarded (AIBL: n=111; ADNI: n=104). 

Images with any MRI-derived phenotypes residing more than six standard deviations from the 

median were also discarded (AIBL: n=7; ADNI: n=17).  

 

Given the older age range of the AIBL and ADNI cohorts compared to the UK Biobank, the 

normative aging model established in the UK Biobank cohort could not be directly applied to 

the two external datasets. We therefore re-trained the brain age prediction model for gray matter 

phenotypes in a combined group of healthy individuals across the three datasets. Before model 

training, data harmonization was performed using ComBat 

(https://github.com/Jfortin1/ComBatHarmonization)91, 92 to control for variation in brain 

phenotypes due to differences in scanners and datasets. Of note, images acquired from MRI 

scanners with less than 10 scanned individuals were further discarded (n=186, ADNI) to ensure 

reliable harmonization, resulting in 532 AIBL (age range 55-96 years, mean 72.4±6.4, 218 

males, 4 scanners) and 1,370 ADNI (age range 50-95 years, mean 72.7±7.5, 656 males, 76 

scanners) individuals for further analyses. Age, sex and diagnostic status were included as 

biological covariates in the harmonization. 
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Consistent with our main findings in the UK Biobank cohort, we found that chronological age 

could be predicted with high accuracy using gray matter phenotypes (female: r=0.82, 

MAE=3.52; male: r=0.85, MAE=3.41, fig. S2A). Gray matter feature weights were highly 

consistent between the original and the re-trained model (female: r=0.86, p<2.23´10-308; male: 

r=0.87, p<2.23´10-308, fig. S2B). The re-trained brain age prediction model was applied to 

estimate brain gray-matter age for individuals diagnosed MCI and dementia. We found that 

brain age appears significantly older in individuals diagnosed with MCI (n=780, mean age 

gap=1.07±4.25 years, p=3.56´10-25) and dementia (n=284, mean age gap=3.19±6.13 years, 

p<2.23´10-308) than same-aged healthy peers (fig. S2C).     

 

Structural equation modeling 

Structural equation modeling was used to infer the influence of each organ’s baseline age gap 

on the follow-up age gap (Fig. 2D), or rate of aging, ∆, (Fig. 2E,F) of other organ systems. The 

fast-greedy equivalence search (FGES) heuristic for continuous variables was performed to 

search for causal Bayesian networks and determine the highest scoring model. FGES is a 

Bayesian heuristic that starts with an empty graph and adds edges to improve the score function 

(i.e., Bayesian Information Criterion, BIC), until no more edges can be added. It then performs 

a backward search that removes edges, until no edge removal increases the score function 93. 

The search was constrained to edges modeling influences consistent with the flow of time. To 

this end, age gaps measured at the same assessment were forbidden from influencing each other, 

age gaps measured at follow-up were forbidden from influencing age gaps measured at baseline, 

and rates of aging were forbidden from influencing baseline age gaps. The FGES heuristic was 

repeated for 500 bootstrapped samples and edges present in 50% of the samples formed a final 

consensus network structure. Regression was used to estimate residual variances and 

coefficients (𝛽) for the edges comprising the final consensus network. Sex, age at baseline and 
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whole-body (Fig. 2E) and whole-brain (Fig. 2F) age gaps were regressed from all organ-

specific age gaps and FGES was performed on the resulting residuals. The time interval 

between baseline and follow-up measurements was also regressed from baseline and follow-

up age gaps, if appropriate (i.e., Fig. 2D). Influences inferred from FGES were represented 

using multiorgan networks, where each organ was denoted with a distinct network node. A 

directed edge was drawn from organ X to organ Y if and only if the age gap of X at baseline 

significantly influenced the follow-up age gap of Y (Fig. 2D) or rate of aging of Y (Fig. 2E,F), 

following false discovery rate (FDR) correction at 0.05 across the set of J(J-1)/2 regression 

coefficients, where J denotes the total number of organ systems. If an edge was detected by 

FGES but the edge’s regression coefficient did not survive FDR correction, the edge was 

removed. Hence, drawing an edge required both statistical and causal evidence. In Fig. 2E,F, a 

positive regression coefficient provided evidence consistent with faster aging of organ Y, 

relative to organ X (i.e., a unit increase in the age of X predicted an increase of 𝛽 in the rate of 

aging of Y). In Fig. 2E,F, the baseline age gap node and rate of aging node were merged into a 

single node for each organ to provide a succinct network representation for visualization 

purposes. The Tetrad software package v6.8.1 (https://github.com/cmu-phil/tetrad) was used 

to perform the FGES heuristic, bootstrapping and parameter estimation. Default parameter 

settings for FGES were used (i.e., Chickering rule; BIC penalty discount: 0.5; T-depth: -1). 

 

Genetic, environmental and lifestyle factors  

Telomere length (TL) shortening and human aging are linked94, and thus we tested for 

associations between organ-specific age gaps and the relative leucocyte TL (adjusted for 

technical parameters95) measured at baseline assessment, as well as genetic variants known to 

index leucocyte TL. Following an established method96, a polygenic score for leucocyte TL 

was computed for each individual based on nine single-nucleotide polymorphisms (SNPs) 
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associated with  leucocyte TL97-99. Larger polygenic scores associate with longer leucocyte TL, 

and vice versa. Age gaps for body and brain systems were also tested for associations with 

numerous environmental and lifestyle factors. We selected 158 variables that tapped individual 

differences in early life experience (e.g., birth weight, breastfed, adoption, maternal smoking 

and traumatic events), socio-demographics (e.g., education, neighborhood measure of 

deprivation, job status and parenting), lifestyle (e.g., smoking, alcohol intake, diet, exercise, 

sleep and e-device use), psychosocial (e.g., social support and mood status), local 

environmental exposures (e.g., air and noise pollution, greenspace and coastal proximity), 

general health (e.g., menstrual cycle, menopause, long-standing illness and disability, hearing, 

vision and falls) and cognitive ability. Individual variation in cognitive ability was measured 

using the cognitive age gap, inferred from the above-described cognitive age prediction model. 

Dummy variables were generated for categorical responses. Several variables were curated to 

enable more intuitive interpretation than the native UK Biobank coding. The curation 

procedure includes: 

• Reponses indicating less than one unit in time, distance, frequency and quantity were 

originally coded as -10 and were recoded to 0 for all relevant variables, including food 

intake frequencies, time spent on watching television, using computer and driving, 

distance between home and job workplace etc.   

• Individuals who did not provide a valid answer, originally coded as -3 (Prefer not to 

answer) or -1 (Do not know) were labelled as missing responses.  

• An average weekly alcohol consumption (in UK standard units) was computed by 

combining information on each person’s response to questionnaire on weekly and 

monthly intake of a variety of beverage type, including red wine, white 

wine/champagne, beer/cider, spirits and fortified wine, consistent with previous 

literature100, 101. Specifically, weekly alcohol intake data was collected from individuals 
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who indicated that they drink more often than once or twice a week, whereas monthly 

alcohol intake was collected from individuals who drink alcohol one to three times a 

month or on special occasions. The alcohol consumption of individuals who indicated 

that they never drink was set to zeros.    

• Reponses to current tobacco smoking: 1-Yes, on most or all days; 2-Only occasionally; 

0-No, were recoded to: 2-Yes, on most or all days; 1-Only occasionally; 0-No, so that 

higher scores denoted higher frequency of current tobacco smoking. 

• Responses to past tobacco smoking were originally coded as: 1-Smoked on most or all 

days; 2-Smoked occasionally; 3-Just tried once or twice; 4-I have never smoked. 

Responses were thus reversed so that higher scores denoted higher frequency of past 

tobacco smoking. 

• Individuals who smoked tobacco on most or all days in the past or current were labelled 

as “daily smokers”, notwithstanding varied definitions of smokers102. 

• Time since stopped smoking was computed for past tobacco smokers by subtracting 

“age stopped smoking” from their chronological age at the assessment.  

• Age started smoking in either past or current smokers was derived.  

• An overall fruit and vegetable consumption (per day) was computed by summing fresh 

fruit, dried fruit, salad, cooked and raw vegetables intake103. 

• Individuals who slept between 7 and 8 hours per night were labelled as had “good sleep 

duration”104. 

• Reponses to facial aging were recoded to 1-younger than you are; 2-about your age; 3-

older than you are, such that higher scores indicated older appearing face.    

• Women who had no regular length of menstrual cycle were labelled as had irregular 

menstrual cycle.  



 50 

• Women who were not sure if they have had menopause because of hysterectomy or 

other reasons were labelled as missing responses.  

• Hearing, as measured by the speech reception threshold, was averaged for left and right 

ears. 

• Visual acuity, as measured by the logarithm of the minimum angle of resolution 

(logMAR), was averaged for left and right eyes.   

See table S6 for a full list of selected variables. The original UK Biobank Field IDs of variables 

were provided where applicable.    

 

Partial correlation was used to test for associations between organ-specific age gaps and genetic, 

environmental and lifestyle factors, adjusting for chronological age and sex. Due to the very 

large sample sizes, statistical significance was Bonferroni corrected for genetic and 

environmental/lifestyle factors separately at p<0.004 (12 organ systems) and p<2.6×10-5 (158 

factors × 12 organ systems = 1,896 tests), respectively. A minimum effect size threshold of 

|r|>0.05 was enforced to suppress weak associations for visualization purpose (Fig. 3). Of note, 

the Bonferroni correction was used to control the family-wise error when sample sizes were 

very large (>10,000). The false discovery rate (FDR) was controlled at 5% using the 

Benjamini-Hochberg procedure elsewhere. 

 

Health outcomes and clinical characterization 

Diagnoses and medical conditions of participants were obtained through self-report (verbal 

interview at assessment centers, UK Biobank Field IDs: 20001; 20002) and health care records 

(e.g., hospital inpatient and primary care) from the UK National Health Services (NHS). 

Hospital inpatient records were summarized by distinct ICD (International Classification of 

Diseases and Related Health Problems)-9 and/or ICD-10 coded primary and/or secondary 
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diagnoses for participants whose health outcomes resulted in a hospital admission. Summary 

inpatient diagnoses (Field IDs: 41270; 41271) in the July 2020 release were used in this study. 

Primary care data (Field ID: 42040) were sourced at record-level on 26 November 2020. Of 

note, primary care data in relation to clinical events were recorded by health professionals 

working at general practices using Read Codes Version 2 (Read V2) and Read Codes Clinical 

Terms Version 3 (Read CTV3). Diagnoses coded in Read were mapped to corresponding ICD 

codes according to the lookup table (‘all_lkps_maps_v2.xlsx’) provided by the UK Biobank 

(https://biobank.ndph.ox.ac.uk/showcase/showcase/auxdata/primarycare_codings.zip). For 

Read V2, the mapping was only performed when the Read code matched to a single ICD-9 or 

ICD-10 code. For Read CTV3, the mapping was only performed for Read code flagged as exact 

one-to-one mapping (‘E’) or target concept more general (‘G’) that had been completely 

refined (‘C’).  Whereas self-report provided past and current medical conditions, health care 

records enabled a lifetime assessment of a participant’s health outcomes.  

 

Based on self-report and health care records, we defined a healthy aging group and 16 clinical 

groups comprising individuals with a lifetime diagnosis of Parkinsonism, multiple sclerosis, 

stroke, dementia, depression, bipolar disorder, schizophrenia, ischemic heart disease, 

hypertensive diseases, chronic obstructive pulmonary disease (COPD), chronic kidney disease 

(CKD), diabetes, cirrhosis, osteoarthritis, osteoporosis and cancer. Each disease category was 

defined broadly with all causes and subtypes included. For example, the COPD group included 

self-reported COPD, emphysema/chronic bronchitis and emphysema; health care recorded 

ICD-9 coded emphysema (code 492) and chronic airway obstruction not elsewhere classified 

(496) and ICD-10 coded emphysema (code J43), MacLeod syndrome (J430), panlobular 

emphysema (J431), centrilobular emphysema (J432), other emphysema (J438), emphysema 

unspecified (J439), other COPD (J44), COPD with acute lower respiratory infection (J440), 
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COPD with acute exacerbation unspecified (J441), other specified COPD (J448) and COPD 

unspecified (J449). Table S7 lists diagnostic codes related to each of the 16 disease categories. 

For each individual, the recorded date of diagnosis was compared across self-report and health 

care sources for each disease category, to determine whether the illness onset/diagnosis 

preceded or occurred after the baseline assessment of body and brain function. However, the 

earliest state of disease onset for some individuals may have not been captured because the 

data from general practitioners only covered approximately 45% of the UK Biobank cohort; in 

contrast to the more than 87% coverage of hospital inpatient records. To enable comparisons, 

the healthy aging group included individuals with no self-reported and/or healthcare 

documented lifetime chronic medical conditions. Proportions of healthy individuals included 

in the body (28,589/143,423=0.199) and brain (7,909/36,901=0.214) analyses subsamples are 

slightly greater than the proportion in the full sample (91,808/502,504=0.183; 

body:	𝜒!=203.43, p<2.2×10-16, brain: 𝜒!=228.01, p<2.2×10-16). This suggests that individuals 

for whom organ age was estimated are not necessarily representative of the full cohort. 

Demographic details of individuals comprising each defined clinical group are provided in 

table S8.   

 

Individuals diagnosed with more than one disease category throughout their lifetime were 

assigned to multiple disease groups. As shown in fig. S7A, most individuals included in either 

body or brain aging analyses (n=169,109; 90,918 males) were linked with a single diagnostic 

category (n=52,113, 54.1%) and the proportion of individuals comorbid with 2 to 8 conditions 

was 28.3% (n=27,215), 11.6% (n=11,171), 4.1% (n=3,991), 1.4% (n=1,308), 0.4% (n=394), 

0.1% (n=103) and 0.026% (n=25), respectively. The largest number of comorbidities was 9, in 

4 individuals (0.0042%). Figure S7B,C shows a comorbidity network, representing a 

population-level lifetime co-occurrence of the 16 disease categories. The extent of comorbidity 



 53 

was quantified by correlating (Pearson correlation) the presence of categorical diagnoses (1-

Yes or 0-No) across individuals for each sex. Permutation testing (n=10,000) was used to 

estimate p-values, and significant correlations (p<4.2×10-4) were Bonferroni corrected for 

(16×15)/2=120 disease pairs. Results were broadly consistent between females (fig. S7B) and 

males (fig. S7C) and that the 16 disease categories were parsed into two large comorbid groups, 

corresponding to major brain and body disorders. Interestingly, brain disorders were also 

comorbid with diseases primarily implicated in body organ systems, with stronger effect sizes 

observed in males. For example, depression was significantly associated with osteoarthritis, 

COPD and hypertensive diseases, and dementia was associated with CKD and stroke.  

 

Mortality risk prediction 

Mortality data released on 4 March 2021 were used in this study. Individual mortality status 

(date of death) was determined using data linkages to national death registries in the UK, 

including NHS Digital (England and Wales) and NHS Central Register (Scotland). Data 

linkage procedures and steps in data cleaning and validation are described in detail in the 

central UK Biobank death linkage documentation: 

(https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/DeathLinkage.pdf).  

 

Mortality was confirmed in 8,109 (age of death 42-83 years, mean 69.6±7.3, 5,670 males) and 

330 (age of death 53-82 years, mean 70.7± 6.4, 203 males) individuals after baseline 

assessment of body and brain function, respectively. We first compared the mean age gap 

between deceased and non-deceased individuals for each organ system using the two-sample 

t-test. Cox proportional hazards regression was then used to estimate the risk of mortality 

associated with organ-specific age gaps. Lastly, we developed a logistic model using 10-fold 

cross-validation to predict an individual’s 5- and 10-year survival and premature mortality 
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based on organ-specific age gaps. The risk of mortality associated with body and brain age 

were estimated separately because of the time difference in assessments (Fig. 2C).  

 

The Cox proportional hazards model was applied under the assumption that mortality hazard 

ratios in relation to organ age gaps do not change over time for any individual. Therefore, the 

estimated hazard ratio represented the relative risk of death for each unit increase in age gap, 

compared to the baseline hazard, which was defined as the mean age gap across individuals. 

To enable comparisons, each organ age gap was first standardized by mean and standard 

deviation (SD). Two Cox regression models were then formulated, where one model estimated 

the mortality hazard ratios per one SD increase in organ-specific age gap, adjusting for sex and 

chronological age (standardized), and the second model further adjusted for existing diagnoses, 

general health (i.e., long-standing illness) and key lifestyle factors including smoking, exercise, 

socioeconomic inequality (deprivation) and tertiary education. Key lifestyle factors were 

selected based on i) significant associations with body/brain age gap (ranked within the top 20 

out of 158 measures); and ii) no missing responses among deceased individuals. Survival was 

ascertained up to 13.41 (mean 7.47±3.2) and 6.07 (mean 2.47±1.49) years after baseline 

assessment of body and brain function, respectively. Non-deceased individuals were right-

censored, where survival duration was calculated as days between the date of body or brain 

assessment and the date of mortality ascertainment (4 March 2021).  

 

Finally, using 10-fold cross-validation, logistic models were trained to predict the probability 

of an individual’s survival time and premature mortality based on body age gaps. A predictive 

model was not developed for brain age gaps, given the lack of evidence for a link between 

advanced brain age and mortality risk, as estimated from Cox regression (fig. S11B,C). For 

survival time (T) prediction, a nominal logistic regression was fitted to classify whether an 
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individual was deceased within 5 years (T<5) or had lived more than 5 years (T≥5, deceased 

or non-deceased) after assessment of body function. The same model was fitted for 10-year 

survival time. All non-deceased individuals had lived more than 10 years (minimal survival 

time: 10.43 years) after body function assessment. Similarly, logistic models were developed 

to predict an individual’s premature death. Premature death is typically defined as death 

occurring before the mean age of death in a certain population, which is approximately 75 years 

in the UK105. Death before age 70 years was also considered based on the mean age of death 

of the current UK Biobank cohort (n=34,003, mean age of death 69.6±7.4 years). Prediction 

models were estimated based on five groups of predictors to assess the extent to which body 

age gaps improved prediction of survival and premature death beyond established predictors, 

including chronological age, sex, existing disease diagnoses and key lifestyle factors. The six 

models were as below: 

• Model 1: chronological age and sex. 

• Model 2: chronological age, sex and eight body system ages. 

• Model 3: chronological age, sex and existing diagnoses of the 16 disease categories. 

• Model 4: chronological age, sex, eight body age gaps and existing diagnoses of the 16 

disease categories. 

• Model 5: chronological age, sex, eight body age gaps, existing diagnoses of the 16 

disease categories, general health and key lifestyle factors included in the Cox 

regression analysis.  

• Model 6: chronological age, sex, existing diagnoses of the 16 disease categories, 

general health and key lifestyle factors included in the Cox regression analysis. 

Chronological age and body age gaps were standardized by mean and standard deviation before 

model training. The area under the curve (AUC) of the receiver operating characteristic curve 
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was used to quantify prediction accuracy. Confidence intervals were estimated with 

bootstrapping (100 samples). 
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Fig. S1. Age prediction accuracy. Scatter plots show associations between chronological and 
predicted age for prediction models based on body and brain phenotypes as well as phenotypes 
pertaining to each individual organ system. Lines of best fit indicated with solid black lines. r: 
Pearson correlation coefficients; MAE: mean absolute error. 
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Fig. S2. Replication of predictive models for brain gray matter age. (A) Scatter plots show 
associations between chronological age and predicted age for prediction model based on brain 
gray matter phenotypes in a combined group of healthy individuals from the Australian 
Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL, n=396, 154 males), the 
Alzheimer’s Disease NeuroImaging Initiative (ADNI, n=467, 192 males) and the UK Biobank 
(n=7,922, 3,624 males). Lines of best fit indicated with solid black lines. n: training sample 
size; r: Pearson correlation coefficients; MAE: mean absolute error. (B)  Scatter plots show 
associations between gray matter feature weights estimated from the original age prediction 
model (primary) and the re-trained model using the replication cohort. Lines of best fit 
indicated with solid black lines. r: Pearson correlation coefficients. (C) Gray matter age (i.e., 
age gap) in individuals diagnosed with mild cognitive impairment (MCI, n=780, mean age 
gap=1.07±4.25 years) and dementia (n=284 mean age gap=3.19±6.13 years), compared to 
healthy individuals (HC). The mean age gap significantly differs across the three groups (F-
statistic=157.49, p=4.71´10-68). Asterisks indicate significant between-group differences, 
adjusting for chronological age and sex (MCI vs HC, t=10.39, p=3.56´10-25; dementia vs HC, 
t=16.94, p<2.23´10-308; MCI vs dementia: t=10.76, p=1.11´10-25). 
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Fig. S3. Synchrony among organ-specific age gaps. (A) Synchrony in biological ages 
between each pair of body systems at baseline assessment was estimated using partial 
correlation, adjusting for sex and chronological age. Correlation coefficients of significant 
pairs of correlations (p<0.002, Bonferroni corrected for 21 pairs) are indicated in the matrix 
(left) and also visualized as a graph (right). In the graph, each node represents one of the 7 
body organs and the edges between them indicate correlations. Edge thicknesses are 
proportional to correlation coefficients. Edges are suppressed for small effect sizes (|r|<0.05) 
(B) Same as (A) but shows the correlations at follow-up assessment. Body systems can be 
differentiated into two groups based on interorgan synchrony in age gaps (Group I: renal, 
hepatic, musculoskeletal; Group II: pulmonary, cardiovascular, metabolic, immune). (C) & (D) 
Same as (A) & (B) but the synchrony in age gaps is shown for different brain systems at 
baseline and follow-up assessment respectively. Biological age is most strongly synchronized 
between white and gray matter, whereas functional connectivity is only weakly synchronized 
with other brain systems (Bonferroni corrected for 3 correlations, p<0.017). GM, gray matter; 
WM, white matter; FC, functional connectivity. Ward’s linkage clustering was used to 
determine the reordering and the cluster tree shown. 
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Fig. S4. Associations between environmental/lifestyle factors and brain age gaps. Icons 
represent specific brain systems for which biological age was estimated. Links are shown 
between environmental/lifestyle factors significantly associated with age gaps of specific brain 
systems (p<2.6×10-5, Bonferroni corrected for 158 factors × 12 body and brain systems = 1896 
tests). Links are suppressed for small effect sizes (|r|<0.05). Left (right) list comprises factors 
associated with brain systems that appear older (younger) than same-aged peers. Partial 
correlation was used to test for associations between brain age gaps and environmental/lifestyle 
factors, adjusting for chronological age and sex. Link widths are proportional to correlation 
coefficients. Results for other organ systems are shown in Fig. 3 in the main text. GM, gray 
matter; WM, white matter; FC, functional connectivity. 
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Fig. S5. Relationship between chronic disease and organ-specific biological age. (A) A 
clock face represents the extent of body aging for 16 disease categories. Body age is older 
(younger) in a clockwise (anticlockwise) direction, with a body age gap of zero at the 12 
o’clock position. Bar plot shows the mean body age gap in each disease, sorted from the 
smallest to the largest value. (B) Same as panel (A) but shows the mean brain age gap across 
disease. Dashed arm indicates replication dementia cohort. (C) Word-cloud representation. The 
font size was normalized according to the mean age gap across the 16 disease groups within 
each organ system. Diseases for which organs appear older than chronological age (gap>0) are 
colored black, whereas diseases for which organs appear younger (gap<0) are colored blue. 
COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease. Organ image 
was created with BioRender.com. 
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Fig. S6. Effect size of body and brain age in chronic disease. Effect sizes of differences in 
organ-specific age gaps between each disease category and healthy comparison group were 
quantified using the Cohen’s d. The Cohen’s d value was multiplied by the sign of the mean 
between-group difference in age gap. Icons representing body systems and organs are 
positioned to indicate the effect size for each disease category. Icons are not shown for organs 
with mean age gaps that do not significantly differ from zero (p<2.6×10-4, Bonferroni 
corrected, Fig. 4A). Disease categories are ordered from top to bottom according to increased 
mean body age gaps as shown in Fig. 4B.  
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Fig. S7. Disease comorbidity. (A) Bar plots show the number of lifetime comorbid diagnoses 
for individuals who completed assessment of body (left) or, brain (middle) function and all 
individuals (right). (B) Comorbidity network for females. The Pearson correlation coefficient 
was used to quantify the extent of lifetime comorbidity between each pair of disease categories. 
Permutation testing (n=10,000) was used to estimate p-values and significant correlations were 
Bonferroni corrected for (16×15)/2=120 disease pairs (p<4.2×10-4). Non-significant 
correlations were suppressed from the correlation matrix (left) and the network graph (right). 
Edge thickness is modulated by correlation coefficients. (C) Same as (D) but for males. Also 
see Methods.  
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Fig. S8. Associations between aging and disease-related changes in body and brain health. 
(A) Bar plots show Pearson correlation coefficients between regression coefficients (i.e., 
feature weights) of the age prediction model and between-group differences (health vs disease) 
in the body features (n=79), stratified by each disease category (p<0.003, Bonferroni corrected 
for 16 disease groups). Bar plots are colored white for non-significant correlations. (B) 
Correlations between the regression coefficients in age prediction and the between-group 
differences (health vs disease) in the brain features (n=2,309), stratified by each disease 
category. 
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Fig. S9. Biological organ age in chronic disease at different illness stages. (A) Distribution 
of body age gaps (columns) for 16 disease categories (rows) in individuals at prodromal stage, 
compared to healthy individuals (HC, first row). Distributions are colored according to disease- 
and organ-specific mean age gaps. Colored distributions have a mean that significantly differs 
from the healthy group (p<3.9×10-4, Bonferroni corrected for 16 disease categories × 8 body 
systems = 128 tests). Distributions colored gray have a mean that is not significantly different 
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from the healthy group. (B) Same as (A) but in individuals with established diagnosis. 
Prodromal groups for brain imaging data were insufficient to investigate the impact of disease 
progression on brain age. 
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Fig. S10. Causes of death. Underlying (A) and/or contributory (B) causes of death among 
8,109 deceased individuals. Each capital letter (x-axis) represents a broad cause of death 
category coded by the International Statistical Classification of Diseases and Related Health 
Problems 10th Revision (ICD-10). A-B, certain infectious and parasitic diseases; C, malignant 
neoplasms (cancer); D, benign and other neoplasms, diseases of the blood and blood-forming 
organs and certain disorders involving the immune mechanism; E, endocrine, nutritional and 
metabolic diseases; F, mental and behavioral disorders; G, diseases of the nervous system; H, 
diseases of the eye and adnexa, ear and mastoid process; I, diseases of the circulatory system; 
J, diseases of the respiratory system; K, disease of the digestive system; L, diseases of the skin 
and subcutaneous tissue; M, diseases of the musculoskeletal system and connective tissue; N, 
diseases of the genitourinary system; Q, congenital malformations, deformations and 
chromosomal abnormalities; R, systems, signs and abnormal clinical and laboratory findings, 
not elsewhere classified; S-T, injury, poisoning and certain other consequences of external 
causes; U, provisional assignment of new diseases of uncertain etiology or emergency use; V-
Z, external causes of morbidity and mortality. 
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Fig. S11. Brain age and the risk of mortality. (A) Brain age gaps in deceased (n=330) 
compared to non-deceased (n=36,571) individuals on 4 March 2021. Asterisks indicate 
significant between-group differences (two-sample t-test, p<0.0125, Bonferroni corrected for 
4 brain systems).  (B) The risk of mortality associated with brain age, after controlling for 
chronological age and sex. This was estimated using Cox proportional hazard regression, where 
survival durations were right censored for surviving individuals. Bar plots show the hazard 
ratio per one standard deviation (SD) change in the age gap (left) and z-scores for each brain 
system in the regression (right). Confidence intervals (95%) estimated with bootstrapping 
(n=100). Colored bars indicate risk factors with significant hazard ratios (Bonferroni correction 
at p<0.05/6=0.008). Gray (p=0.01, uncorrected) and white (p=0.02, uncorrected) matter age 
showed nominally significant hazard ratios. AUC: area under curve. (C) Same as (B) but 
existing disease diagnoses, general health and key lifestyle factors included in the regression. 
Gray (p=0.02) and white (p=0.04) matter age was nominally significantly associated with 
mortality risk after controlling for these factors but did not survive Bonferroni correction at 
p<0.05/29=0.0017. GM, gray matter; WM, white matter; FC, functional connectivity. 
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Fig. S12. Body age and the risk of mortality. (A) Bar plots show mortality hazard ratios per 
one standard deviation (SD) change in organ-specific age gap and (B) corresponding z-scores. 
Hazard ratios estimated using Cox proportional hazard regression, where survival durations 
were right censored for surviving individuals. Chronological age, sex and existing diagnoses 
included as confounds. Confidence intervals (95%) estimated with bootstrapping (n=100). 
Colored bars indicate body systems with significant hazard ratios (p<0.0019, Bonferroni 
corrected for 26 dependent variables). AUC: area under curve. 
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Fig. S13. Body age and the risk of mortality. Supplementary analyses using mortality data 
ascertained before the first recorded death from coronavirus disease (COVID-19) in the UK on 
6 March 202033. Survival after baseline body function assessment was ascertained up to 12.32 
years (n=6,986, age of death 42-82 years, mean 68.9±7.2, 4,899 males). (A) Body age gaps in 
deceased (n=6,986) compared to non-deceased (n=136,437) individuals. Asterisks indicate 
significant between-group differences, controlling for chronological age and sex (p<0.0056, 
Bonferroni corrected). (B) Bar plots show mortality hazard ratio per one standard deviation 
(SD) increase in organ-specific age (left) and corresponding z-scores (right). Chronological 
age and sex are included in the regression. Confidence intervals (95%) estimated with 
bootstrapping (n=100). Colored bars indicate organs with significant hazard ratios (p<0.005, 
Bonferroni corrected for 10 dependent variables). AUC: area under curve. (C) Same as panel 
(B), but existing disease diagnoses, general health and key lifestyle factors included in the 
regression. Colored bars indicate organs with significant hazard ratios (p<0.0015, Bonferroni 
corrected for 32 dependent variables). 
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Fig. S14 Brain age and the risk of mortality. Supplementary analyses using mortality data 
ascertained before the first recorded death from COVID-19 in the UK on 6 March 202033. 
Survival after baseline brain function assessment was ascertained up to 5.22 years (n=203, age 
of death 53-81 years, mean 70.4±6.1, 124 males). (A) Brain age gaps in deceased (n=203) 
compared to non-deceased (n=36,689) individuals. Asterisks indicate significant between-
group differences, controlling for chronological age and sex (p<0.0056, Bonferroni corrected). 
(B) Bar plots show mortality hazard ratio per one standard deviation (SD) increase in organ-
specific age (left) and corresponding z-scores (right). Chronological age and sex are included 
in the regression. Confidence intervals (95%) estimated with bootstrapping (n=100). Colored 
bars indicate organs with significant hazard ratios (p<0.008, Bonferroni corrected for 6 
dependent variables). AUC: area under curve. (C) Same as panel (B), but existing disease 
diagnoses, general health and key lifestyle factors included in the regression. Colored bars 
indicate organs with significant hazard ratios (p<0.0017, Bonferroni corrected for 29 dependent 
variables). 
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Fig. S15. Body age and the risk of mortality. Mortality hazards for the three main causes of 
death, including cancer (A), circulatory diseases (B) and respiratory diseases (C). Bar plots 
show mortality hazard ratios per one standard deviation (SD) change in organ-specific age gap 
(left) and corresponding z-scores (right). Hazard ratios estimated using Cox proportional 
hazard regression, where survival durations were right censored for surviving individuals. 
Chronological age, sex, existing diagnoses, general health and key lifestyle factors included as 
confounds. Confidence intervals (95%) estimated with bootstrapping (n=100). Colored bars 
indicate body systems with significant hazard ratios (p<0.0019, Bonferroni corrected for 32 
dependent variables). AUC: area under curve. 
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Fig. S16. Survival time and premature death prediction. A logistic regression model was 
trained (10-fold cross-validation) to predict an individual’s 5- and 10-year survival (left) and 
premature death (defined as death before 70 or 75 years old, right). Boxplots show prediction 
accuracy, as quantified with area under curve (AUC). A hierarchy of six logistic models was 
established to determine the extent to which biological age improves prediction of survival 
time and premature death above and beyond established predictors (i.e., chronological age, sex, 
diagnoses, lifestyle factors). For prediction of both survival time and premature death, the 
model including body age gaps (Model 2) significantly outperforms the model including only 
chronological age and sex (Model 1, p<0.01). Similarly, the model including body age gaps 
(Model 4) significantly outperforms the model with only chronological age, sex and existing 
diagnoses (Model 3). Nevertheless, Model 5, which includes all predictors, achieves the most 
accurate predictions of survival time (5-year: AUC=0.774 ± 0.006; 10-year: 
AUC=0.770±0.003) and premature death (70 years old: AUC=0.86±0.003; 75 years old: 
AUC=0.86±0.003). Omitting body age gaps (Model 6) leads to significantly reduced accuracy 
(p<0.01) for predictions of survival time (5-year: AUC=0.76 ± 0.005; 10-year: 
AUC=0.76±0.003) and premature death (70 years old: AUC=0.85±0.003; 75 years old: 
AUC=0.85±0.003). Confidence intervals for AUC estimated with bootstrapping (100 samples). 
  
 
 



 83 

 
 
Fig. S17. Site effects on estimated body and brain age.  Body phenotypes were assessed at 
21 different assessment centers, whereas brain images were acquired at 3 different centers. (A) 
Distribution of estimated body age gap across healthy aging individuals assessed in each of the 
21 centers. The bottom and top edges of the boxes indicate the 25th and 75th percentiles of the 
distribution, respectively. The central red line indicates the median. The whiskers extend to the 
most extreme data points that are not considered outliers (1.5-times the interquartile range). 
Outliers are indicated with red dots. After regressing out sex and chronological age, one-way 
analysis of variance (ANOVA) shows that the differences in the mean of estimated body age 
gap across the 21 centers is significant (F statistic=8.98, p=1.35×10-27), but with a small effect 
size (Cohen’s 𝑓=0.079). Inset shows the distribution of values of Cohen’s 𝑑  effect size 
(0.05±0.04) across 210 unique pairs of comparisons (two-sample t-test). (B) Distribution of 
estimated brain age gap across healthy individuals assessed in each of the 3 brain imaging 
centers. After regressing out sex and chronological age, one-way ANOVA shows that the 
differences in the mean of estimated brain age gap across the three centers is significant (F 
statistic=4.67, p=0.0094), but with a small effect size (Cohen’s 𝑓=0.034). The values of 
Cohen’s 𝑑 effect size for the three pairs of comparisons (two-sample t-test) are 0.022, 0.024 
and 0.05. 
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Fig. S18. Ethnicity related variation in body and brain age. (A) Distribution of estimated 
body age gap across individuals from white (n=136,017, mean age gap=0.68±4.59 years) and 
non-white (n=7,406, mean age gap=0.89±5.20 years) ethnic backgrounds. Adjusting for 
chronological age and sex, the difference in the mean of estimated body age gap between white 
and non-white group is statistically significant (t=4.9, p=6.5´10-7), but with a small effect size 
(Cohen’s d=0.01). (B) Distribution of estimated brain age gap across individuals from white 
(n=35,704, mean age gap=0.48±3.33 years) and none-white (n=1,197, mean age 
gap=0.81±3.12 years) ethnic backgrounds. Adjusting for chronological age and sex, the 
difference in the mean of estimated brain age gap between white and non-white group is 
statistically significant (t=4.6, p=4.4´10-6), but with a small effect size (Cohen’s d=0.02). The 
bottom and top edges of the boxes indicate the 25th and 75th percentiles of the distribution, 
respectively. The central red line indicates the median. The whiskers extend to the most 
extreme data points that are not considered outliers (1.5-times the interquartile range). Outliers 
are indicated with red dots. 
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Fig. S19. Subsampling related variation in body and brain age. (A) Distribution of 
estimated baseline body age gap across individuals with (n=1,220, mean age gap=0.005±4.25 
years) and without (n=142,203, mean age gap=0.70±4.63 years) follow-up assessment. 
Adjusting for chronological age and sex, the between-group difference in the mean of estimated 
body age is significant (t=5.62, p=1.8´10-8), but with small effect size (Cohen’s d=0.015). (B) 
Distribution of estimated baseline brain age gap across individuals with (n=1,294, mean age 
gap=0.22±3.11 years) and without (n=35,607, mean age gap=0.50±3.33 years) follow-up 
assessment. Adjusting for chronological age and sex, the between-group difference in the mean 
of the estimated brain age gap is significant (t=2.53, p=0.01), but with small effect size 
(Cohen’s d=0.013). The bottom and top edges of the boxes indicate the 25th and 75th 
percentiles of the distribution, respectively. The central red line indicates the median. The 
whiskers extend to the most extreme data points that are not considered outliers (1.5-times the 
interquartile range). Outliers are indicated with red dots. 
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Fig. S20. Age prediction using phenotypes derived from heart MRI and carotid 
ultrasound images. Scatter plots show associations between chronological age and predicted 
age for prediction model based on 28 imaging-derived phenotypes indexing cardiac function, 
blood pressure and carotid intima-medial thickness (table S14). For heart MRI, phenotypes 
measured during pulse wave analysis with plausible Vicorder results were included. 
Phenotypes derived from the inline VF (ventricle function) were not included due to the lack 
of quality control. Lines of best fit indicated with solid black lines. n: training sample size; r: 
Pearson correlation coefficients; MAE: mean absolute error. 
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Captions for Supplementary Tables 

Table S1.  
Body age phenotypes. 

Table S2. 
Brain age phenotypes. 

Table S3. 
Cognitive phenotypes. 

Table S4. 
Model performance of each aging clock 

Table S5. 

Estimates from structural equation models for multiorgan aging networks.  

Table S6. 
Associations between genetic, environmental/ lifestyle factors and biological organ age. 

Table S7. 
Diagnostic codes related to the 16 disease categories. 

Table S8. 
Demographic details of individuals comprising the 16 clinical groups. 

Table S9. 
All-cause mortality risk estimates of body age gaps. 

Table S10. 
All-cause mortality risk estimates of brain age gaps. 

Table S11. 
All-cause mortality risk estimates of conventional body phenotypes. 

Table S12. 
All-cause mortality risk estimates of conventional brain phenotypes. 

Table S13. 
Cause-specific mortality risk estimates of body age gaps. 
 
Table S14. 
Imaging-derived phenotypes indexing cardiac and carotid function. 
 
 


