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Abstract (200 words) 64 

Neuroinflammation is both a consequence and driver of overfeeding and weight gain in rodent obesity 65 

models. Advances in magnetic resonance imaging (MRI) enable investigations of brain microstructure 66 

that suggests neuroinflammation in human obesity. To assess the convergent validity across MRI 67 

techniques and extend previous findings, we used diffusion basis spectrum imaging (DBSI) to 68 

characterize obesity-associated alterations in brain microstructure in 601 children (age 9-11 years) from 69 

the Adolescent Brain Cognitive DevelopmentSM Study. Compared to children with normal-weight, greater 70 

DBSI restricted fraction (RF), reflecting neuroinflammation-related cellularity, was seen in widespread 71 

white matter in children with overweight and obesity. Greater DBSI-RF in hypothalamus, caudate 72 

nucleus, putamen, and, in particular, nucleus accumbens, correlated with higher baseline body mass index 73 

(BMI) and related anthropometrics. Comparable findings were seen in the striatum with a previously 74 

reported restriction spectrum imaging (RSI) model. Gain in waist circumference over one and two years 75 

related, at nominal significance, to greater baseline RSI-assessed restricted diffusion in nucleus 76 

accumbens and caudate nucleus, and DBSI-RF in hypothalamus, respectively. Here we demonstrate that 77 

childhood obesity is associated with microstructural alterations in white matter, hypothalamus, and 78 

striatum. Our results also support the reproducibility, across MRI methods, of findings of obesity-related 79 

putative neuroinflammation in children.   80 
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1. Introduction 81 

Childhood obesity is a major growing health issue, affecting over 340 million children worldwide 82 

in 2016 (World Health Organization, 2021). It is associated with expensive medical costs (Biener et al., 83 

2020), lower quality of life (Killedar et al., 2020), and elevated risk for health complications including 84 

adult obesity, type 2 diabetes, and cardiovascular diseases (Liang et al., 2015; Simmonds et al., 2016). 85 

Accumulating evidence also identifies childhood obesity as a risk factor for cognitive dysfunction and 86 

Alzheimer’s disease in late-life (Tait et al., 2022). Given the brain’s prominent role in regulating feeding 87 

and metabolism, it is essential to understand the relationship between obesity and brain health. 88 

Determining which brain regions and networks might be involved in the development and maintenance of 89 

childhood obesity could help identify targets for obesity prevention and intervention, thereby mitigating 90 

short and long-term health consequences.  91 

Obesity involves a chronic, low-grade, systemic inflammation affecting multiple organs (Gregor 92 

& Hotamisligil, 2011). In rodent models of obesity, high-fat diets induce inflammation in the central 93 

nervous system, or “neuroinflammation” (Baufeld et al., 2016; Buckman et al., 2013; De Souza et al., 94 

2005; Décarie-Spain et al., 2018; Valdearcos et al., 2017), which in turn cause memory deficits and 95 

anxiodepressive behaviors (Beilharz et al., 2016; Décarie-Spain et al., 2018; Pistell et al., 2010). In 96 

humans, post-mortem tissue analyses have revealed associations between obesity and increased gliosis in 97 

multiple brain regions, including the hypothalamus, a key regulator of feeding and metabolism (Baufeld 98 

et al., 2016; Schur et al., 2015). Aimed at assessing brain health in vivo, a number of magnetic resonance 99 

imaging (MRI) studies have reported associations between obesity and altered brain structure. In adults, 100 

higher body mass index (BMI) and visceral fat are consistently linked to lower cortical thickness and 101 

smaller prefrontal and basal ganglia volumes (Fernández-Andújar et al., 2021; Gómez-Apo et al., 2021; 102 

Raji et al., 2010; Willette & Kapogiannis, 2015), potentially due to neuronal loss consequent of obesity-103 

related neuroinflammation and/or microangiopathy (Gómez-Apo et al., 2021). These relationships are less 104 

clear in children (Willette & Kapogiannis, 2015). Adult obesity has also been associated with 105 

compromised white matter integrity, reflected by lower diffusion tensor imaging (DTI)-derived fractional 106 
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anisotropy (FA) and greater mean diffusivity of water, primarily in frontolimbic tracts and the corpus 107 

callosum (Daoust et al., 2021; Kullmann et al., 2015; Verstynen et al., 2012). However, opposite findings 108 

of greater white matter DTI-FA in obesity have also been noted (Birdsill et al., 2017; Carbine et al., 2020; 109 

Dekkers et al., 2019), and the relationship between obesity and white matter integrity in children remains 110 

unknown. Importantly, the standard single-tensor DTI model could be confounded by neuroinflammatory 111 

processes such as cellularity and edema (Kullmann et al., 2016; Wang et al., 2011, 2015; Winklewski et 112 

al., 2018), which may partially explain the mixed pattern of results.  113 

In recent years, studies using multi-compartment diffusion MRI-based methods, though limited in 114 

number, have yielded consistent observations of putative neuroinflammation in feeding-related brain 115 

regions in obesity (Rapuano et al., 2020, 2022; Samara et al., 2020, 2021). The data-driven multi-tensor 116 

diffusion basis spectrum imaging (DBSI) technique models diffusion-weighted signals as a linear 117 

combination of discrete anisotropic tensors and isotropic diffusion spectra, enabling the in vivo 118 

assessment of brain microstructure (Cross & Song, 2017; Wang et al., 2011, 2015). DBSI metrics, though 119 

indirectly reflecting true anatomy, have been histopathologically validated as neuroinflammation-120 

sensitive using rodent and human neural tissue in multiple sclerosis (Chiang et al., 2014; Wang et al., 121 

2014; Wang et al., 2011, 2015), epilepsy (Zhan et al., 2018), and optic neuritis (Lin et al., 2017; Yang et 122 

al., 2021). Notably, applying DBSI to adults with obesity, we previously observed microstructural 123 

alterations in striatal and limbic regions that suggest cellularity, vasogenic edema, and lower apparent 124 

axonal and dendritic densities (Samara et al., 2020, 2021), in line with the obesity-related 125 

neuroinflammatory phenotype seen in animal and post-mortem human brain studies. In white matter 126 

tracts, we found evidence of increased and widespread DBSI-assessed putative neuroinflammation in 127 

young and middle-aged adults with obesity across two independent samples (Samara et al., 2020). DBSI 128 

has not yet been used to characterize brain microstructure in childhood obesity. However, Rapuano et al., 129 

(2020) used restriction spectrum imaging (RSI), which in contrast to DBSI, models isotropic water 130 

diffusion components based on the ratio of radial and axial diffusivities (Palmer et al., 2022; White et al., 131 

2013), and observed associations between greater purported striatal cellular density and higher baseline 132 
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and future waist circumference and BMI in children in the Adolescent Brain Cognitive DevelopmentSM 133 

(ABCD) Study (Rapuano et al., 2020, 2022). Furthermore, using a non-diffusion method, namely 134 

quantitative T2-weighted MRI, studies have reported that longer hypothalamic T2 relaxation time and 135 

greater T2 signal intensity, both suggestive of reactive microglial and astrocytic gliosis, relate to higher 136 

BMI in adults (Schur et al., 2015; Thaler et al., 2012) and children, including a subset from the ABCD 137 

Study® (Sewaybricker et al., 2019; Sewaybricker, Kee, et al., 2021; Sewaybricker, Melhorn, et al., 2021). 138 

Convergent findings amongst MRI methods in the same group of children would support the feasibility 139 

and reliability of these techniques to assess putative neuroinflammation in childhood obesity. 140 

In this study, we used the baseline ABCD Study® data from 601 children aged 9-11 years (see 141 

section 2.1 for details on sample selection) to test the a priori hypotheses that 1) obesity-associated 142 

microstructural alterations, including greater putative neuroinflammation-related cellularity (reflected by 143 

greater DBSI restricted fraction (RF)) and lower axonal and dendritic densities (reflected by lower DBSI 144 

fiber fraction (FF)) that we had observed in white matter and striatum in adults, and in one novel region 145 

not yet assessed using diffusion MRI, i.e., the hypothalamus, would also be present in children, and that 146 

2) greater hypothalamic and striatal cellularity (DBSI-RF) would relate to greater baseline waist 147 

circumference and BMI metrics in children, similar to the RSI cellular density metric, namely restricted 148 

normalized isotropic (RSI-RNI). We also explored associations between baseline DBSI and RSI metrics 149 

in the hypothalamus and striatum and one and two-year longitudinal changes in anthropometrics. If our 150 

results using DBSI are consistent to those in studies that used RSI and quantitative T2-weighted MRI, 151 

they will support the use of non-invasive MRI-based methods to characterize obesity-related putative 152 

neuroinflammation in vivo in humans, in the absence of histopathological validation. 153 

 154 

2. Materials and methods 155 

2.1. Participants 156 

Participants were from the ABCD Study®, a ten-year, 21-site study tracking brain development in 157 

a diverse cohort of U.S. children and adolescents (Casey et al., 2018; Garavan et al., 2018; Jernigan et al., 158 
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2018). Participants receive annual physical, sociocultural, and behavioral assessments, as well as 159 

neuroimaging and bioassays every two years. Institutional review boards at study sites approved study 160 

procedures; parents/caregivers provided written consent and children gave verbal assent. The ABCD 161 

Study® 2.0.1 release included data from 11,875 participants at baseline and 4,951 participants at one-year 162 

follow-up. In addition to the ABCD Study® inclusion/exclusion criteria (Garavan et al., 2018), we 163 

excluded participants with 1) missing anthropometric or demographic data at baseline or one-year follow-164 

up; 2) current or past diagnosis of neurological (including cerebral palsy, brain tumor, stroke, aneurysm, 165 

brain hemorrhage, intellectual disability, lead poisoning, muscular dystrophy, multiple sclerosis, and 166 

others) and psychiatric (including schizophrenia, autism spectrum disorder, attention-deficit hyperactivity 167 

disorder, and others) conditions and diabetes, similar to Rapuano et al., (2020); and 3) T1 or diffusion-168 

weighted images (DWIs) that did not pass quality control or had clinically significant incidental findings 169 

(Hagler et al., 2019; Li et al., 2021). Also consistent with Rapuano et al., (2020), in order to maximize 170 

harmonization of MRI data across sites, only scans performed on Siemens 3T Prisma platforms (Siemens 171 

Healthineers AG, Erlangen, Germany) were included. As the ABCD Study® 4.0 release became available 172 

during our study, we further included participants with complete data at two-year follow-up to extend 173 

exploratory longitudinal analyses. Lastly, because head motion during MRI scans is known to interfere 174 

with diffusion tensor model estimation and give spurious correlations (Ling et al., 2012; Yendiki et al., 175 

2014), we excluded participants with excessive head motion (defined as mean DWI framewise 176 

displacement ³ 2.5 mm) and covaried for mean head motion in statistical analyses. 177 

Our inclusion/exclusion criteria selected a total of 1,613 qualifying participants (see 178 

Supplementary Fig. 1 for flowchart). Age and sex-adjusted BMI percentiles at baseline were used to 179 

classify participants by weight status (Kuczmarski et al., 2002), including 63 with underweight (BMI < 5th 180 

percentile), 1,140 with normal-weight (NW; 5th to < 85th percentiles), 194 with overweight (OW; 85th to < 181 

95th percentiles), and 216 with obesity (OB; ≥ 95th percentile). To achieve balanced group sizes as well as 182 

reduce computational cost, we randomly selected 216 NW participants (matched to OB group size) 183 

stratified by sex, and included all 194 OW and 216 OB participants. After neuroimaging processing, data 184 
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from 25 participants were excluded due to missing/incomplete T1 or DWI acquisition, missing field 185 

maps, mismatch between field map and DWI dimensions, or missing/unclear DWI directions. The final 186 

analytical sample therefore included 212 NW, 187 OW, and 202 OB participants, for a total n = 601. 187 

Such sample size is similar to those in recent literature and should afford sufficient power to detect 188 

obesity-related microstructural alterations (see Supplementary Methods for power analysis) (Jiang et al., 189 

2023; Sewaybricker, Kee, et al., 2021). 190 

2.2. Obesity-related measures 191 

Participant waist circumference (WC), weight, and height were measured at baseline and one and 192 

two-year follow-ups (Barch et al., 2018). Raw BMI was calculated (weight(lbs)/height(in)
2 ´ 703). BMI z-193 

scores corrected for age and sex were computed using the 2000 CDC growth charts (Kuczmarski et al., 194 

2002). These different measures were used to address the concern that a single index may be less 195 

reflective of true adiposity and/or sensitive to fat gain in children (Cole et al., 2005; Taylor et al., 2000).  196 

2.3. Neuroimaging  197 

2.3.1. MRI acquisition 198 

Details on T1 and DWI acquisition and harmonization across sites are published elsewhere 199 

(Casey et al., 2018; Hagler et al., 2019). T1-weighted anatomical images were collected as a 3D T1-200 

weighted inversion prepared RF-spoiled gradient echo scan, with voxel resolution = 1 mm3 isotropic. Spin 201 

echo echo-planar imaging was used to acquire multi-shell DWIs with the following parameters: total 202 

acquisition time = 7:31, repetition time = 4100 ms, time to echo = 88 ms, matrix size = 140 × 140 × 81, 203 

flip angle = 90°, acceleration factor = 3, and voxel resolution = 1.7 mm3 isotropic. DWIs were imaged 204 

with 7 b = 0 frames and 96 gradient directions (b’s = 500, 1000, 2000, and 3000 s/mm2 with 6, 15, 15, 205 

and 60 directions, respectively).   206 

2.3.2. DWI and DBSI processing 207 

DWIs were corrected for susceptibility-induced distortion, eddy currents, and head motion using 208 

FMRIB Software Library (FSL) topup and eddy (Smith et al., 2004). Multi-tensor DBSI maps were 209 

estimated using an in-house script as previously described (Wang et al., 2011, 2015). Leveraging the 210 
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multi-shell DWI data, DBSI characterizes brain tissue microstructure by partitioning the total water 211 

diffusion signal within each image voxel into isotropic and anisotropic compartments. DBSI modeling 212 

produced maps of anisotropic fiber fraction (DBSI-FF; reflects axonal/dendritic density), isotropic 213 

nonrestricted fraction (f(D) at apparent diffusion coefficient (ADC) > 0.3 μm2/ms; reflects vasogenic 214 

edema/tissue disintegration/extracellular water), and isotropic restricted fraction (DBSI-RF; f(D) at 0 < 215 

ADC ≤ 0.3 μm2/ms; reflects intracellular water/inflammation-related cellularity) (Chiang et al., 2014; Sun 216 

et al., 2020; Wang et al., 2015). Details on DBSI model specification are provided in Supplementary 217 

Methods. Notably, DBSI-FF and RF are consistently lower and greater, respectively, in adult obesity 218 

(Samara et al., 2020, 2021) and serve as the neuroinflammation-related microstructural assessment in the 219 

current study. DBSI maps were registered to T1 space first using epi_reg and a non-diffusion-weighted 220 

image, then by applying the transformation matrix to individual maps using applyxfm.  221 

2.3.3. Tract-based spatial statistics (TBSS) 222 

Voxel-wise analyses of white matter DBSI-FF and RF were performed using TBSS (Smith et al., 223 

2006). The DTI model was fitted to preprocessed DWIs using FSL dtifit, and DTI-FA maps were eroded 224 

by one voxel with end slices removed. Cleaned DTI-FA images were nonlinearly registered to the T1-225 

weighted image of a randomly selected NW participant, averaged, and assigned a threshold at FA > 0.2 to 226 

create a white matter skeleton, onto which the DBSI-FF and RF maps were projected.  227 

2.3.4. Segmentation of the striatum and hypothalamus 228 

The nucleus accumbens, caudate nucleus, and putamen were segmented from T1-weighted 229 

images using FSL FIRST (Patenaude et al., 2011). The hypothalamus was segmented using a novel, 230 

automated algorithm developed with deep convolutional neural networks trained on adult data (Billot et 231 

al., 2020). To assess the algorithm’s accuracy in children, we compared automated and manual 232 

hypothalamus segmentations in 20 participants (10 NW and 10 OB, randomly selected within each 233 

group). Within this group, the automated and manual segmentations had good spatial overlap (mean Dice 234 

similarity coefficient = 0.74, SD = 0.02, one-tailed p < 0.001 against the conventional threshold of 0.7) 235 

and yielded highly correlated volumes (r = 0.74, p < 0.001). Neither spatial overlap nor volumetric 236 
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correlation between the automated and manual segmentations was different by weight group (NW vs. OB; 237 

p’s = 0.58 and 0.97). Although the automated segmentations had smaller volumes than manual 238 

segmentations (means = 747 and 887 mm3, p < 0.001), such volume reduction primarily excluded voxels 239 

near the hypothalamic surface, reducing possible contamination of diffusion signal from neighboring 240 

cerebrospinal fluid and vasculature (Supplementary Fig. 2). Also, the segmented volumes were 241 

consistent with literature values (Neudorfer et al., 2020). Taken together, the automated algorithm reliably 242 

produced hypothalamus segmentations comparable to manual segmentation. For each subcortical 243 

structure, segmentations were visually inspected for accuracy before statistical analyses, and volume and 244 

DBSI-FF and RF metrics were each extracted and combined/averaged between hemispheres. 245 

2.4. Statistical analyses 246 

All analyses, except for TBSS, were performed in R version 4.2.1 (R Core Team, 2013). 247 

Differences in participant characteristics across NW, OW, and OB groups were assessed using analysis of 248 

variance (ANOVA) or chi-square tests.  249 

2.4.1. White matter 250 

For TBSS, we excluded data from 28 randomly selected siblings, eliminating family dependency 251 

confounds. Baseline DBSI-FF and RF in white mater tracts were compared amongst unrelated NW (n = 252 

202), OW (n = 180), and OB (n = 191) participants using voxel-wise TBSS, first by ANOVAs for main 253 

effects of group and second by t-tests for between-group comparisons. FSL Randomize (null distribution 254 

built from 10,000 permutations; with recommended threshold-free cluster enhancement (TFCE)) was 255 

used for these comparisons with spatial family-wise error (FWE) rate corrected at two-tailed p ≤ 0.05) 256 

(Winkler et al., 2014). Briefly, the raw statistical image was TFCE-transformed into an output image in 257 

which voxel-wise TFCE scores were weighted sums of local clustered signals, such that larger TFCE 258 

scores reflected magnitude of cluster-like spatial support greater than a given height (signal intensity) (Li 259 

et al., 2017; Smith & Nichols, 2009). We specified the –T2 option in Randomize (2D optimization for 260 

skeletonized data, cluster height weighted by H = 2, cluster extent weighted by E = 1, voxel connectivity 261 

= 26). Voxel-wise analyses using TBSS and TFCE allowed for sensitive detection of regionally-specific 262 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2023. ; https://doi.org/10.1101/2022.09.01.22279506doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.01.22279506
http://creativecommons.org/licenses/by/4.0/


BRAIN MICROSTRUCTURE IN CHILDREN WITH OBESITY Li et al. 11 

obesity-related DBSI-FF and RF effects in white matter, while stringently controlling for multiple 263 

comparisons across space. Participant age, sex, race/ethnicity, parental education, household income, 264 

parental marital status, pubertal development stage (PDS), mean head motion, and intracranial volume 265 

(ICV) were covaried in TBSS. Group differences in white matter skeleton-average values of DBSI-FF 266 

and RF were assessed with linear mixed-effects models using the lme4 package (Bates et al., 2015), 267 

where the same set of covariates plus weight group were fixed effects and site was the random effect. 268 

2.4.2. Striatum and hypothalamus 269 

DBSI-FF and RF outliers in the nucleus accumbens, caudate nucleus, putamen, and hypothalamus 270 

that were ± 3 SD away from the mean were removed (Supplementary Table 1). One and two-year 271 

changes in obesity-related measures (i.e., WC, BMI, and BMI z-scores) were calculated by subtracting 272 

baseline from respective follow-up. Extreme BMI values (< 10 kg/m2 or > 50 kg/m2) and associated BMI 273 

z-scores were removed, including 1 NW and 1 OB at one-year and 1 OW at two-year. Distributions for 274 

obesity-related measures at and changes between all timepoints are shown in Supplementary Fig. 3.  275 

Associations between DBSI metrics and baseline or future change in obesity-related measures 276 

were assessed using linear mixed-effects models. Age (at baseline, one, or two-year), sex, race/ethnicity, 277 

PDS (at baseline, one, or two-year), parental education, household income, parental marital status, mean 278 

head motion, and ICV were covaried due to potential confounding (Lawrence et al., 2022; Li et al., 2023; 279 

Palmer et al., 2022; Rapuano et al., 2020), and the random effect was family nested within sites. In 280 

longitudinal models, baseline obesity-related measures were also covaried. As we had a priori 281 

hypotheses, and the goal was to describe regionally-specific relations between tissue microstructure and 282 

convergent obesity-related measures, multiple comparisons were corrected with each structure treated as a 283 

family, at two-tailed p = 0.05 / (4 regions ´ 2 DBSI metrics) = 0.00625. Effect size estimates were 284 

standardized β’s with 95% confidence intervals (CIs) and partial R2’s. Models were checked for normality 285 

of residuals, homoscedasticity, and low multicollinearity (variance inflation factors were £ 2.56). As there 286 

were missing data following outlier removal, sample sizes varied and are reported in individual analyses. 287 
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2.4.3. Comparison between DBSI and RSI  288 

Mean RSI restricted normalized isotropic (RSI-RNI) metrics in bilateral nucleus accumbens, 289 

caudate nucleus, and putamen were obtained from the ABCD Study® tabulated dataset (Hagler et al., 290 

2019). The ABCD Study® segmented structures using FreeSurfer v5.3; the hypothalamus was not 291 

specifically segmented and voxel-wise RSI-RNI maps were not available. RSI reflects cellularity as an 292 

increase in the restricted isotropic (originating from intracellular water) diffusion signal, i.e., RSI-RNI 293 

(Rapuano et al., 2020, 2022). Associations between RSI-RNI and baseline or future change in obesity-294 

related measures were evaluated using linear mixed-effects models, as in DBSI described in section 2.4.2. 295 

To further compare model performance, DBSI-RF and RSI-RNI from the nucleus accumbens, caudate 296 

nucleus, and putamen were each tested on classifying NW and OB participants using mixed-effects 297 

logistic regression, with the same fixed and random effect covariates in linear models. Receiver operating 298 

characteristic curves and areas-under-the-curve (AUCs) with 95% CIs were computed using the pROC 299 

package, and AUCs from DBSI-RF and RSI-RNI were compared using DeLong’s test (Robin et al., 300 

2011).  301 

 302 

3. Results  303 

3.1. Sample characteristics 304 

Participant demographics, neuroimaging metrics, and obesity-related measures are described in 305 

Table 1. Qualitatively, the OW and/or OB groups compared to the NW group had more non-White 306 

participants, more advanced pubertal development, lower parental education, household income, and 307 

proportion of married parents, higher baseline obesity-related measures, and greater one and two-year 308 

gain in WC but decrease in BMI z-scores. Groups did not differ significantly in striatal or hypothalamic 309 

volumes; these volumes were thus not covaried in addition to ICV in analyses.   310 
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Variable Group (total n = 601) p-value NW OW OB 
n 212 (35.3% of all) 187 (31.1% of all) 202 (33.6% of all) N/A 
Age (months) 121 ± 8 121 ± 7 120 ± 7 0.89 
Sex  

0.31     Male 113 (53.3%) 98 (52.4%) 120 (59.4%) 
    Female 99 (46.7%) 89 (47.6%) 82 (40.6%) 
Race/ethnicity  

< 0.001 *** 

    Asian 1 (0.5%) 1 (0.5%) 4 (2.0%) 
    Black 16 (7.5%) 23 (12.3%) 27 (13.4%) 
    Hispanic 25 (11.8%) 37 (19.8%) 54 (26.7%) 
    White 156 (73.6%) 112 (59.9%) 99 (49.0%) 
    Other 14 (6.6%) 14 (7.5%) 18 (8.9%) 
PDS category  

< 0.001 ***     1 129 (60.8%) 76 (40.6%) 86 (42.6%) 
    2 53 (25.0%) 49 (26.2%) 51 (25.2%) 
    3+ 30 (14.2%) 62 (33.2%) 65 (32.2%) 
Parental education  

< 0.001 ** 

    No HS diploma 0 (0%) 1 (0.5%) 4 (2.0%) 
    HS diploma/ GED 7 (3.3%) 5 (2.7%) 20 (9.9%) 
    Some college 14 (6.6%) 28 (15.0%) 42 (20.8%) 
    Bachelor 97 (45.8%) 87 (46.5%) 84 (41.6%) 
    Postgraduate 94 (44.3%) 66 (35.3%) 52 (25.7%) 
Household income  

< 0.001 ***     < 50k 32 (15.1%) 45 (24.1%) 62 (30.7%) 
    ≥ 50k & < 100k 64 (30.2%) 74 (39.6%) 74 (36.6%) 
    ≥ 100k 116 (54.7%) 68 (36.4%) 66 (32.7%) 
Parental marriage  

0.005 **     Married 164 (77.4%) 128 (68.4%) 127 (62.9%) 
    Not married 48 (22.6%) 59 (31.6%) 75 (37.1%) 
Mean motion (mm) 1.23 ± 0.25 1.27 ± 0.31 1.27 ± 0.30 0.25 
ICV (mm3) 1539012 ± 128794 1569834 ± 151931 1559140 ± 144992 0.09 
Vhypothalamus (mm3) 737 ± 90 740 ± 104 733 ± 108 0.77 
Vnucleus accumbens (mm3) 1028 ± 204 1057 ± 225 1034 ± 204 0.36 
Vcaudate nucleus (mm3) 7902 ± 990 8038 ± 975 7853 ± 998 0.16 
Vputamen (mm3) 10609 ± 1154 10691 ± 1162 10627 ± 1206 0.77 
Obesity-related measures 
Baseline   
    BMI (kg/m2) 16.82 ± 1.39 20.92 ± 1.06 25.85 ± 3.41 < 0.001 *** 
    BMI percentile 48.51 ± 22.38 90.43 ± 2.90 97.63 ± 1.32 < 0.001 *** 
    BMI z-score -0.06 ± 0.65 1.33 ± 0.17 2.05 ± 0.29 < 0.001 *** 
    WC (inch)  25.13 ± 2.27 29.16 ± 2.68 32.96 ± 4.10 < 0.001 *** 
One-year   
    BMI (kg/m2) 17.61 ± 1.88 21.97 ± 2.24 27.16 ± 4.63 < 0.001 *** 
    BMI z-score -0.01 ± 0.75 1.28 ± 0.47 1.98 ± 0.53 < 0.001 *** 
    WC (in) 25.93 ± 2.68 30.03 ± 2.82 34.89 ± 4.48 < 0.001 *** 
Change (Δ) over one year 
    ΔBMI (kg/m2) 0.79 ± 1.29 1.05 ± 1.97 1.30 ± 3.57 0.12 
    ΔBMI z-score 0.04 ± 0.51 -0.05 ± 0.44 -0.08 ± 0.45 0.024 * 
    ΔWC (in) 0.80 ± 2.34 0.88 ± 2.66 1.94 ± 3.16 < 0.001 *** 
Two-year   
    BMI (kg/m2)  18.43 ± 2.32 22.91 ± 2.48 28.11 ± 4.81 < 0.001 *** 
    BMI z-score  0.01 ± 0.86 1.28 ± 0.50 1.94 ± 0.54 < 0.001 *** 
    WC (in) 27.12 ± 3.01 31.34 ± 3.27 36.02 ± 4.98 < 0.001 *** 
Change (Δ) over two years 
    ΔBMI (kg/m2)  1.62 ± 1.83 1.98 ± 2.27 2.25 ± 3.85 0.07 
    ΔBMI z-score  0.07 ± 0.65 -0.05 ± 0.48 -0.11 ± 0.48 0.002 ** 
    ΔWC (in) 1.99 ± 2.72 2.18 ± 3.01 3.06 ± 3.72 0.001 ** 
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Table 1. Participant demographics, brain volumes, and obesity-related measures. Statistics are 311 
shown as mean ± standard deviation for continuous variables and count (frequency) for categorical data. 312 
Variables were assessed at baseline unless otherwise noted. Comparisons were performed using one-way 313 
analysis of variance or chi-squared tests as appropriate. The “Other” category under race/ethnicity 314 
included participants who were parent/caregiver-identified as American Indian, Alaskan Native, Native 315 
Hawaiian, other Pacific Islander, mixed, or otherwise not listed. Abbreviations: NW, children with 316 
normal-weight; OW, with overweight; OB, with obesity; PDS, pubertal development stage; HS, high 317 
school; GED, General Educational Development; ICV, intracranial volume; V, volume; BMI, body mass 318 
index; WC, waist circumference. *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. 319 
 320 

3.2. Comparison of white matter DBSI metrics across groups 321 

TBSS ANOVAs indicated significant main effects of weight group for both DBSI-FF and RF. 322 

Follow-up TBSS t-tests showed that relative to NW, both OW and OB participants had significantly 323 

lower DBSI-FF (reflecting lower axonal/dendritic density) and greater DBSI-RF (reflecting elevated 324 

cellularity) in widespread white matter tracts (all FWE-corrected p ≤ 0.05). Qualitatively, group 325 

differences in both DBSI-FF and RF appeared more widespread throughout white matter tracts in the OB 326 

vs. NW comparisons than in OW vs. NW comparisons (Fig. 1); nonetheless, white matter voxel-wise 327 

DBSI-FF and RF were not significantly different between OB and OW groups (FWE-corrected p > 328 

0.054). Consistent with voxel-wise comparisons, relative to NW, both OW and OB groups had lower 329 

white matter average DBSI-FF (OW vs. NW, β = -0.39, 95% CI: -0.60 to -0.18, p < 0.001; OB vs. NW, β 330 

= -0.33, 95% CI: -0.54 to -0.11, p = 0.003) and greater DBSI-RF (OW vs. NW, β = 0.50, 95% CI: 0.30 to 331 

0.70, p < 0.001; OB vs. NW, β = 0.36, 95% CI: 0.16 to 0.56, p < 0.001), but these differences were not 332 

significant between OW and OB (p’s = 0.65 and 0.14 for DBSI-FF and RF comparisons). 333 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2023. ; https://doi.org/10.1101/2022.09.01.22279506doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.01.22279506
http://creativecommons.org/licenses/by/4.0/


BRAIN MICROSTRUCTURE IN CHILDREN WITH OBESITY Li et al. 15 

 334 
Fig. 1. Voxel-wise comparisons of white matter DBSI metrics amongst unrelated children with normal-335 
weight (NW; n = 202), overweight (OW, n = 180) and obesity (OB; n = 191). In each panel, axial images 336 
are shown from inferior (top left) to superior (bottom right). In green: white matter skeleton; in blue, light 337 
blue: NW > OB/OW at family-wise error (FWE) rate-corrected p ≤ 0.05 and 0.01; in red, yellow: NW < 338 
OB/OW at FWE-corrected p ≤ 0.05 and 0.01. Comparisons were adjusted for age, sex, race/ethnicity, 339 
parental education, household income, parental marital status, pubertal development stage, mean head 340 
motion, and intracranial volume. DBSI, diffusion basis spectrum imaging. 341 

 342 

3.3. Associations between striatal and hypothalamic DBSI metrics and obesity-related measures 343 

3.3.1. Baseline 344 

Greater BMI at baseline was significantly associated with greater DBSI-RF in the hypothalamus 345 

(β = 0.11, 95% CI: 0.04 to 0.19, partial R2 = 0.014, p = 0.005), nucleus accumbens (β = 0.30, 95% CI: 346 

0.22 to 0.39, partial R2 = 0.096, p < 0.001), caudate nucleus (β = 0.18, 95% CI: 0.08 to 0.27, partial R2 = 347 

0.034, p < 0.001), and the putamen (β = 0.14, 95% CI: 0.06 to 0.22, partial R2 = 0.021, p = 0.001) (Fig. 348 

2A). These results were consistent with WC and BMI z-scores as obesity-related measures. Further, 349 

DBSI Fiber Fraction (FF)
NW > OW NW > OB

NW < OW NW < OB
DBSI Restricted Fraction (RF)
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greater baseline BMI z-scores were significantly related to lower DBSI-FF in the hypothalamus (β = -350 

0.12, 95% CI: -0.20 to -0.05, partial R2 = 0.016, p = 0.002) (Fig. 2B). Similar associations, at nominal but 351 

not multiple comparison-adjusted significance, were seen between lower DBSI-FF in the hypothalamus 352 

and WC (β = -0.08, p = 0.038) and BMI (β = -0.09, p = 0.024); in the nucleus accumbens and WC (β = -353 

0.10, p = 0.009); and in the putamen and BMI (β = -0.08, p = 0.048) and BMI z-scores (β = -0.08, p = 354 

0.048). Detailed statistics for all models are reported in Supplementary Table 2. Follow-up analyses 355 

revealed no DBSI metric by hemisphere interaction in relating to baseline obesity-related measures (i.e., 356 

no laterality effect; p’s ³ 0.30).   357 

Beyond DBSI metrics, variables that were associated with greater obesity-related measures at 358 

baseline included older age, lower parental education, and more advanced pubertal stage. As we did not 359 

specifically power or hypothesize for demographics-related effects, these findings are exploratory and are 360 

noted in Supplementary Table 3. In total, our linear-mixed effects models explained 18-25% of the 361 

variance in baseline obesity-related measures. 362 
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 363 

Hypothalamus Nucleus accumbens

Caudate nucleus Putamen

β = 0.11
p = 0.005

β = 0.30
p < 0.001

β = 0.18
p < 0.001

β = 0.14
p = 0.001

A. Associations with DBSI restricted fraction (RF)

Hypothalamus
β = -0.12
p = 0.002

B. Associations with DBSI fiber fraction (FF)

Children with overweight

Children with obesity

Children with normal-weight
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Fig. 2. Significant associations (A) between baseline body mass index (BMI) and DBSI-RF in the 364 
hypothalamus and striatum and (B) between baseline BMI z-scores and DBSI-FF in the hypothalamus in 365 
children. BMI or BMI z-score residuals (adjusted for age, sex, race/ethnicity, parental education, 366 
household income, parental marital status, pubertal development stage, mean head motion, intracranial 367 
volume, and family nested by site) and DBSI metrics were standardized (std.). Standardized β regression 368 
coefficients were reported with 95% confidence intervals (shaded). DBSI, diffusion basis spectrum 369 
imaging. 370 

 371 

3.3.2. One and two-year change 372 

Greater DBSI-RF in the hypothalamus at baseline, at nominal significance not surviving multiple 373 

comparison correction, predicted greater gain in WC over two years, accounting for baseline WC (β = 374 

0.09, 95% CI: 0.01 to 0.18, partial R2 = 0.008, p = 0.035; Supplementary Fig. 4). However, such effect 375 

was not seen at one-year follow-up, or with changes in BMI or BMI z-scores as obesity-related measures 376 

(p’s = 0.79 and 0.52). Other one or two-year changes in obesity-related measures were not associated with 377 

baseline DBSI metrics (Supplementary Tables 4 and 5). 378 

3.4. Associations between striatal RSI-RNI and obesity-related measures  379 

3.4.1. Baseline 380 

Consistent with a previous study using ABCD Study® baseline data (n = 5,366; Rapuano et al., 381 

2020), greater baseline BMI was associated with higher RSI-RNI in the nucleus accumbens (β = 0.36, 382 

95% CI: 0.27 to 0.44, partial R2 = 0.125, p < 0.001), caudate nucleus (β = 0.15, 95% CI: 0.07 to 0.23, 383 

partial R2 = 0.025, p < 0.001), and putamen (β = 0.17, 95% CI: 0.09 to 0.26, partial R2 = 0.030, p < 0.001) 384 

in the current, smaller sample. Results were similar with WC and BMI z-scores. Detailed statistics for all 385 

linear mixed-effects models are reported in Supplementary Table 6. 386 

3.4.2. One and two-year change 387 

Greater baseline RSI-RNI in the nucleus accumbens and caudate nucleus were respectively 388 

associated, not surviving multiple comparison correction, with one-year gain in WC, accounting for 389 

baseline levels (nucleus accumbens: β = 0.10, 95% CI: 0.00 to 0.20, partial R2 = 0.008, p = 0.042; caudate 390 

nucleus: β = 0.11, 95% CI: 0.02 to 0.19, partial R2 = 0.011, p = 0.017; Supplementary Fig. 5). These 391 
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associations were not seen at two-year follow-up or with changes in BMI or BMI z-scores 392 

(Supplementary Tables 7 and 8). 393 

3.5. Comparison between DBSI and RSI on classifying NW and OB groups  394 

Striatal DBSI and RSI metrics reflective of neuroinflammation-associated cellularity and cellular 395 

density, i.e., DBSI-RF and RSI-RNI, showed similar sensitivity and specificity in classifying NW and OB 396 

children (p’s ≥ 0.13; Fig. 3). Across the striatum, DBSI-RF was positively and strongly correlated with 397 

RSI-RNI (r’s ≥ 0.60, p’s ≤ 0.001; Supplementary Fig. 6). 398 

 399 
Fig. 3. Receiver operating characteristic curves comparing striatal DBSI restricted fraction (RF) and RSI 400 
restricted normalized isotropic (RNI) performance in classifying children with normal-weight (NW) and 401 
obesity (OB). AUC, area-under-the-curve; DBSI, diffusion basis spectrum imaging; RSI, restriction 402 
spectrum imaging. 403 

 404 

4. Discussion 405 

4.1. Overview 406 

Here we present both novel findings and support for the reproducibility of previous neuroimaging 407 

studies that observed microstructural alterations suggestive of neuroinflammation in key feeding and 408 

reward-related brain regions in childhood obesity. First, we demonstrate that elevated DBSI-assessed 409 

cellularity, i.e., putative inflammatory marker, in the striatum relates to higher WC, BMI, and BMI z-410 

scores in 601 children aged 9 to 11 years from the ABCD Study®, reproducing observations made by 411 

Rapuano et al., (2020) that used another diffusion-based RSI model in the same dataset. Quantitatively, 412 

Nucleus accumbens Caudate nucleus Putamen

NW (n = 210), OB (n = 201)
DBSI-RF AUC = 0.834 [0.796 to 0.872] 
RSI-RNI AUC = 0.832 [0.793 to 0.870]

p = 0.80

NW (n = 207), OB (n = 197)
DBSI-RF AUC = 0.822 [0.782 to 0.862] 
RSI-RNI AUC = 0.811 [0.793 to 0.852]

p = 0.13

NW (n = 211), OB (n = 198)
DBSI-RF AUC = 0.804 [0.763 to 0.846] 
RSI-RNI AUC = 0.804 [0.763 to 0.846]

p > 0.99

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2023. ; https://doi.org/10.1101/2022.09.01.22279506doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.01.22279506
http://creativecommons.org/licenses/by/4.0/


BRAIN MICROSTRUCTURE IN CHILDREN WITH OBESITY Li et al. 20 

DBSI-RF and RSI-RNI were associated with obesity-related measures in similar magnitudes, and the two 413 

methods exhibited comparable performance in classifying NW vs. OB children. Such convergence of 414 

findings underpins the sensitivity and utility of diffusion MRI-based techniques in characterizing brain 415 

microstructural alterations in obesity.  416 

Second, we observed associations between obesity and increased purported cellularity consistent 417 

with neuroinflammation in brain white matter tracts and hypothalamus, which were not assessed by 418 

Rapuano et al., (2020). Our results in the hypothalamus align with reports of putative gliosis in this 419 

region, assessed by quantitative T2 MRI, in both childhood and adult obesity (Schur et al., 2015; 420 

Sewaybricker et al., 2019; Sewaybricker, Kee, et al., 2021; Sewaybricker, Melhorn, et al., 2021; Thaler et 421 

al., 2012). Here, our findings add diffusion MRI-derived evidence of obesity-related putative 422 

neuroinflammation in the hypothalamus in children. Furthermore, to our knowledge, our study is the first 423 

to investigate and report overweight and obesity-associated white matter microstructural alterations in 424 

children, in line with our earlier studies of DBSI-assessed putative white matter neuroinflammation in 425 

adults (Samara et al., 2020). Collectively, our findings and those previously reported suggest that young 426 

children manifest obesity-related differences in brain microstructure that are consistent with 427 

neuroinflammation seen in animal and post-mortem human brain studies (Baufeld et al., 2016; Buckman 428 

et al., 2013; De Souza et al., 2005; Décarie-Spain et al., 2018; Schur et al., 2015; Valdearcos et al., 2017). 429 

Such brain differences may affect current and future susceptibility for weight gain and its comorbidities 430 

including cognitive impairment, type 2 diabetes, and late-life dementia (Liang et al., 2015; Simmonds et 431 

al., 2016; Tait et al., 2022). 432 

4.2. Links between obesity, neuroinflammation, and brain function 433 

The highly vascularized hypothalamus responds to feeding-related hormones, neuronal signals, 434 

and nutrients derived from the bloodstream (Velloso & Schwartz, 2011). As a “metabolic sensor”, the 435 

hypothalamus is vulnerable to overfeeding and obesity-related elevations in peripheral pro-inflammatory 436 

molecules including cytokines and saturated fatty acids (Jais & Brüning, 2017). Overfeeding also causes 437 

the blood-brain barrier to break down, further enabling inflammatory factors to infiltrate brain tissue 438 
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(Guillemot-Legris et al., 2016; Guillemot-Legris & Muccioli, 2017; Stranahan et al., 2016). Our finding 439 

that DBSI-assessed cellularity (DBSI-RF) in the hypothalamus is greater in childhood obesity is 440 

consistent with the neuroinflammatory phenotype encompassing the recruitment, proliferation, and 441 

activation of astrocytes and microglia (i.e., reactive gliosis) seen in this brain region in rodents fed with 442 

high-fat diets (Buckman et al., 2013; De Souza et al., 2005). While such immune response may initially 443 

be neuroprotective, chronic gliosis leads to dysregulated neuroinflammatory processes that disrupt 444 

hypothalamic metabolic regulation and contribute to overfeeding, leptin and insulin-resistance, and 445 

development of obesity (Gómez-Apo et al., 2021; Sochocka et al., 2017; Valdearcos et al., 2017). 446 

Persistent neuroinflammation could also cause axonal damage and loss (Frischer et al., 2009; Kempuraj et 447 

al., 2016), which may explain our observed association between obesity and lower DBSI-assessed 448 

axonal/dendritic density (DBSI-FF). 449 

 The striatum plays a key role in reward processing and appetitive behavior (Stice et al., 2011). 450 

Striatal activity, primarily dopamine neurotransmission, is influenced by homeostatic signals from the 451 

hypothalamus and by circulating feeding-related hormones, both acting on receptors on midbrain 452 

dopaminergic cells (Abizaid et al., 2006; Figlewicz, 2016; Hommel et al., 2006; King et al., 2011). 453 

Altered dopamine neurotransmission has been noted in obesity (Geiger et al., 2009; Wang et al., 2001; 454 

Wu et al., 2017). Beyond the hypothalamus, neuroinflammation in the striatum may further contribute to 455 

obesogenic behavior. Indeed, our observation of heightened DBSI-assessed cellularity across the striatum 456 

in childhood obesity matches the microstructural changes characteristic of diet-induced reactive gliosis in 457 

the nucleus accumbens in rodents (Décarie-Spain et al., 2018; Molina et al., 2020). Taken together, MRI-458 

based assessments of hypothalamic and striatal microstructure by us and others consistently suggest 459 

putative neuroinflammation in these regions in childhood obesity, in agreement with studies in rodent 460 

models and human adults. 461 

 Longitudinally, greater DBSI-assessed cellularity in the hypothalamus weakly predicted two-year 462 

gain in WC, aligning with a recent T2 MRI-based report of putative hypothalamic gliosis being associated 463 

with weight gain in children (Sewaybricker, Kee, et al., 2021). Further, greater RSI-RNI in the nucleus 464 
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accumbens and caudate nucleus were linked to one-year WC gain, reproducing findings in Rapuano et al., 465 

(2020). However, these findings were at nominal but not multiple comparison-corrected significance, and 466 

did not generalize across different obesity-related measures or MRI techniques. As our sample size was 467 

not intended to power for the weaker longitudinal effects observed in Rapuano et al., (2020), these 468 

findings require confirmation in larger studies involving more longitudinal observations as the ABCD 469 

Study® continues to release data. Nonetheless, given evidence that striatal neuroinflammation causally 470 

contribute to overfeeding in rodents (Décarie-Spain et al., 2018), plus emerging reports that putative 471 

nucleus accumbens cellularity may mediate the relationships between eating behavior and obesity in both 472 

adults and children (Rapuano et al., 2022; Samara et al., 2021), chronic neuroinflammation should be 473 

evaluated as a potential contributing factor to obesity maintenance.  474 

4.3. Brain microstructure in childhood vs. adult obesity 475 

Overall, the pattern of our results in children agrees with DBSI-assessed microstructural 476 

alterations seen in adult obesity (Ly et al., 2021; Samara et al., 2020, 2021). Obesity-associated decrease 477 

in apparent axonal/dendritic density and increase in cellularity have been observed in white matter in both 478 

adults and children. However, the pattern of results in the striatum differs by age. For example, greater 479 

putative cellularity in the nucleus accumbens is associated with higher BMI and related metrics in 480 

children, but such effect is absent in adults (Samara et al., 2021). Interestingly, it has been noted that in 481 

adults, higher BMI is associated with smaller nucleus accumbens volumes (Dekkers et al., 2019; García-482 

García et al., 2020), whereas in children, such association is reversed (García-García et al., 2020; 483 

Rapuano et al., 2017) or absent, as is in the current study and another analysis of the ABCD Study® data 484 

(Adise et al., 2021). It is possible that as early reactive responses to obesity, striatal cellularity and gliosis 485 

would manifest as microstructural but not volumetric alterations in children, while chronic 486 

neuroinflammation would over time contribute to vasogenic edema and atrophy seen in adults (Dorrance 487 

et al., 2014; Sochocka et al., 2017), as in multiple sclerosis (Kamholz & Garbern, 2005). Furthermore, as 488 

executive control regions such as the prefrontal cortex mature later relative to the striatum (Spear, 2000), 489 

striatal disruptions may lead to a more dysregulated reward system that influences obesogenic behavior 490 
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more strongly in children than in adults. As the ABCD Study® collects biennial neuroimaging scans in the 491 

same participants from childhood through adulthood using harmonized MRI sequences, future research 492 

should capitalize on this longitudinal dataset to delineate obesity-related brain microstructural changes 493 

over development.  494 

4.4. Comparison between DBSI and RSI findings 495 

Although DBSI and RSI differ in their modeling of brain microstructure, their measures of 496 

restricted water diffusion have been interpreted similarly such that the isotropic intracellular water 497 

fraction (DBSI-RF and RSI-RNI) is thought to ultimately reflect the degree of neuroinflammation-related 498 

immune cell infiltration or tissue cellularity (Cross & Song, 2017; Rapuano et al., 2020, 2022; Wang et 499 

al., 2011, 2015). Indeed, in our study, DBSI and RSI-assessed striatal cellularity related similarly to 500 

obesity-related measures and strongly with each other, and classified obesity status with comparable 501 

performance. A true head-to-head comparison of the microstructural properties reflected by DBSI-RF and 502 

RSI-RNI would however warrant a controlled phantom or immunohistological gold standard. In general, 503 

the agreeing findings from DBSI and RSI highlight that diffusion MRI-based techniques are sensitive to 504 

characterizing obesity-associated microstructural alterations in children, adding a novel neuroimaging 505 

tool that assesses putative neuroinflammation in vivo.  506 

4.5. Limitations 507 

Limitations and future directions include, first, the lack of longitudinal timepoints besides one 508 

and two-year follow-ups. It is possible that obesity-related neuroinflammation affects clinical and 509 

behavioral outcomes on a timescale larger than two years. Second, as the ABCD Study® does not record 510 

obesity duration, we could not assess when and to what extent brain microstructural changes occur 511 

relative to obesity onset. Further research tracking children moving from normal-weight to obesity would 512 

be useful. Third, as we focused on assessing associations between brain microstructure and obesity-513 

related measures, factors such as sex and socioeconomic status (SES) that likely impact child 514 

development and complicate said associations, though controlled for in analyses, were not tested. In terms 515 

of sex, girls have greater fat mass and more concentrated trunk adiposity than boys, even at similar BMIs 516 
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(Wisniewski & Chernausek, 2009). Further, though obesity is associated with elevated serum leptin levels 517 

in both sexes, such effect is stronger in girls, who also demonstrate increases in leptin during puberty as 518 

opposed to decreases in boys (Falorni et al., 1997). In terms of SES, socioeconomic adversity is a known 519 

risk factor for childhood obesity (Hemmingsson, 2018; Vazquez & Cubbin, 2020), with physical 520 

inactivity, unhealthy diet, and stress as proposed mediating mechanisms (Caprio et al., 2008; 521 

Gebremariam et al., 2017; Hemmingsson, 2018; Mekonnen et al., 2020). Studies have also noted that girls 522 

from disadvantaged neighborhoods are more susceptible to obesity compared to boys (Kranjac et al., 523 

2021), and that girls and boys experience differential dietary influences and weight expectations from 524 

parents and peers (Caprio et al., 2008; Shah et al., 2020). Regarding brain microstructure, recent analyses 525 

using the ABCD Study® data have shown that girls demonstrate greater RSI-assessed cell and neurite 526 

density in white matter compared to boys (Lawrence et al., 2022), and lower SES interacts with greater 527 

BMI in relating to putative white matter neuroinflammation and smaller brain volumes (Adise et al., 528 

2022; Dennis et al., 2022; Li et al., 2023). Collectively, these results suggest that there exist complex 529 

associations between sex, sociocultural forces, and brain microstructure, and future research should adopt 530 

an integrative framework to investigate how they may individually and interactively shape obesity 531 

development. On a related note, we emphasize growing concerns that current practices of MRI acquisition 532 

and quality control may inadvertently exclude participants in less accessible rural areas, from lower SES 533 

families, and of racial/ethnic minorities (Ricard et al., 2023). The exclusion of neuroimaging data with 534 

excessive head motion, in particular, poses a challenge in obesity research, as greater BMI is causally and 535 

genetically linked to increased motion (Beyer et al., 2020). It is possible that our findings may not 536 

generalize to children of all sociodemographic backgrounds, and confirmation in large samples of 537 

marginalized populations is needed. 538 

Finally, we note the limited interpretability of diffusion MRI-derived microstructural metrics. 539 

While DBSI assessments have been histopathologically validated as neuroinflammation-sensitive in 540 

inflammatory neurological diseases including human and rodent models of multiple sclerosis (Chiang et 541 

al., 2014; Wang et al., 2011, 2015), and rodent optic neuritis (Lin et al., 2017; Yang et al., 2021), 542 
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validation remains ongoing for obesity. Although the cellularity and axonal density effects inferred from 543 

DBSI-modeled water diffusivity agree with the neuroinflammatory phenotype seen in animal models and 544 

human post-mortem brain of obesity (Baufeld et al., 2016; Buckman et al., 2013; De Souza et al., 2005; 545 

Décarie-Spain et al., 2018; Schur et al., 2015; Valdearcos et al., 2017), we recognize that DBSI, as any 546 

MRI technique, is an indirect marker of brain microstructure and could reflect neural development that 547 

otherwise do not involve neuroinflammation (Palmer et al., 2022). On a related note, it is challenging to 548 

determine whether feeding-related regions such as the hypothalamus and striatum are the only ones 549 

involved in obesity-related neuroinflammation, since a true control region in which this phenomenon is 550 

definitively absent has not been identified. Such limitation invites future research to evaluate 551 

microstructure throughout gray matter as well as study potential interactions between gray and white 552 

matter alterations in obesity. The confidence in the validity of MRI-based assessments of obesity-related 553 

neuroinflammation could be explored with rodent models and/or human studies using positron emission 554 

tomography methods for measuring neuroinflammatory indicators (e.g., astrocyte and microglia 555 

activation). 556 

5. Conclusions  557 

With DBSI, we observed microstructural alterations in white matter, hypothalamus, and striatum 558 

in children with overweight and obesity. Agreement between DBSI and RSI suggested that diffusion MRI 559 

is a sensitive and useful tool for assessing obesity-related putative cellularity in children. Given that 560 

childhood and adolescence involve substantial brain development, further longitudinal work is warranted 561 

to elucidate how early changes in brain microstructure may contribute to obesity and its comorbidities in 562 

the long run.   563 
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