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Abstract 

Background: Recommended CVD prediction models do not perform well in people with diabetes. We aimed to 

determine whether models combining polygenic scores (PGS) with clinical risk factors could more accurately 

predict 10-year risk of six facets of CVD, including: coronary heart disease (CHD), heart failure (HF), and atrial 

fibrillation (AF). 

 

Methods:  

Three groups were selected from the UK Biobank: 143,459 control participants without diabetes or a history of 

CVD, 5,229 with diabetes but without CVD, and 1,621 with diabetes and a history of CVD. Data from 29 

phenotype-specific polygenic scores (PGS) were stacked and combined with clinical risk-factors. Performance 

was evaluated using a 20% independent hold-out sample, with results stratified on duration of diabetes.  

 

Results:  

In people without diabetes combining the stacked PGS with clinical risk factor modestly outperformed models 

that exclusively used clinical risk factors, with the largest improvement observed for AF (c-statistic difference: 

0.03). In people with diabetes, models that combined the stacked PGS with clinical risk factors showed marked 

improved performance compared to the risk factor only models. This difference was largest in people with 

newly diagnosed diabetes (without a history of CVD), with a PGS + clinical risk factor model c-statistic: 0.83 

(95%CI 0.83; 0.84) for CHD and 0.84 (95%CI 0.82; 0.85) for HF, compared to a clinical risk factor model c-

statistic: 0.68 (95%CI 0.68; 0.69) and 0.60 (95%CI 0.58; 0.62) for CHD and HF respectively.  

 

Conclusions:  

Combining PGS with clinical risk factors improves CVD risk prediction in people with diabetes. 

 
Keywords  
Cardiovascular disease, Diabetes, Prediction, Risk Score, Polygenic risk score  
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INTRODUCTION 

In clinical practice, mitigation of cardiovascular disease (CVD) is guided by risk prediction algorithms. The UK 

National Institute for Health and Care Excellence (NICE1) guidelines recommend the use of the QRISK2 for 

CVD risk prediction  for people with and without diabetes. Similarly, the American College of 

Cardiology/American Heart Association (ACC/AHA) recommends estimating the 10-year risk of CVD using 

the Atherosclerotic Cardiovascular Disease (ASCVD) risk score2 which includes diabetes as a predictor.  

 

Despite major advances in treatment, CVD remains the main cause of morbidity and mortality in people with 

type 2 diabetes (T2DM)3. Recently, we performed a head-to-head comparison of 22 cardiovascular risk scores, 

including those designed for people with T2DM alone as well as population scores, showing that all scores 

discriminated poorly (e.g., c-statistic less than 0.70), and performed markedly worse than originally reported 

when tested in the general population4. This suggests that the current type of prognostic CVD models and the 

included risk-factors are less applicable to people with T2DM.  

 

In general population studies, polygenic scores (PGS) have been shown to only modestly improve risk 

prediction of CVD5. The shared genetic burden between type 2 diabetes and coronary heart disease (CHD) 6,7 

suggests that people with diabetes are at a higher CVD risk. Polygenic scores attempt to capture an individual’s 

genetic susceptibility to a trait or disease by summarizing information on multiple (sometimes thousands) of 

genetic variants, often identified through genome-wide association studies (GWAS) 8. The UK Department of 

Health and Social Care, and the US Centres for Disease Control and Prevention have set-up programs to 

incorporate genomic advances into routine healthcare, aiming to improve the diagnosis, risk-stratification and 

treatment of diseases 9 10 . Many PGS focus exclusively on discrimination (the ability of a model to separate 

individuals with and without an outcome)11, and do not provide individual risk predictions, making these scores 

difficult to incorporate into pre-existing risk-based management strategies. As such healthcare professionals are 

now increasingly confronted with genetic data but lack guidance on their use.  

 

In the current study we aimed to explore the added benefit of incorporating PGS with conventional clinical risk 

factors and biomarkers to improve CVD prediction for people with type 2 diabetes, specifically deriving models 

that provide estimates of 10-year risk which can be incorporated within current guidelines on risk-stratification. 

To optimize the PGS predictive potential we created 29 univariable PGS, and combined these to derive a 
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multivariable “stacked” PGS model trained to predict individually CHD, ischemic stroke, heart failure (HF) and 

atrial fibrillation (AF), a collective CVD definition (combining CHD, stroke, and peripheral arterial disease 

(PAD)), and a broader definition of major CVD+ additionally including HF and AF - outcomes which are more 

common in people with diabetes12, 13. Models were derived for three distinct UK Biobank (UKB) groups: people 

without pre-existing CVD or type 2 diabetes diagnosis at enrolment, and people with T2DM  stratified by CVD 

history at the time of enrolment. Performance was evaluated in an independent 20% testing set, for diabetes 

patients this was additionally stratified on duration (prevalent or incident T2DM).  

 

METHODS 

 

Data source 

Data was sourced from the UKB,  a cohort of ~500,000 men and women aged 40-69 years between 2006 and 

2010 enrolled from primary care registers across the UK 14. At enrolment, questionnaire, nurse interview and 

clinic investigations collected data on pre-existing conditions, medication, and CVD risk factors. Additionally, a 

blood sample was drawn for biomarkers and DNA extraction. Genetic data is available for the majority of 

participants through genotyping arrays and exome sequencing. Due to the European focus of most GWAS, we 

excluded participants of non-European descent, and additionally removed related individuals (a kinship 

coefficient greater or equal to 0.0442). Applying additional quality control steps (Appendix Figure 1) and 

linking to hospital episode statistics (HES) and general practitioners (GP) data (GP data is only available on 

around half of samples) resulted in 341,516 participants; see Appendix Figure 2. 

 

The study sample was stratified into three groups based on T2DM and CVD histories at the time of UKB 

enrolment: 1) (wo T2DM/CVD) without a history of CVD or evidence of T2DM at enrolment (N = 143,459), 2) 

(w T2DM) individuals with type 2 diabetes but no history of CVD (N = 5,229), before the enrolment date or 3 

months later, and 3) (w T2DM & CVD), individuals with diabetes and a history of CVD (N = 1,621). To predict 

10 year CVD risk, individuals were followed-up from the time of UKB enrolment, recording of the first 

occurrence of a CVD event, death, or end of study, or up to 10 years after enrolment.  

 

Non-genetic predictors were extracted from the cross-sectional UKB assessment centre data, and the 

longitudinal General Practice (GP) records, taking the measurement closest to the enrolment date and no more 
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than 1 year before or 3 months after enrolment. Specifically, data were extracted on sex, age (years), glycated 

haemoglobin (HbA1c, mmol/mol), body mass index (BMI), high-density lipoprotein cholesterol (HDL-C, 

mmol/L), low-density lipoprotein cholesterol (LDL-C, mmol/L), total cholesterol (mmol/L), systolic blood 

pressure (SBP, mm Hg), diastolic blood pressure (DBP, mm Hg), smoking status (never, previous, current); see 

Appendix Tables 1-3. Prescription of antihypertensive and lipid-lowering medicines was extracted from the year 

before enrolment; Appendix Figure 3 and Appendix 2 for the drug keywords. 

 

CVD was defined as the occurrence of fatal or non-fatal myocardial infarction (MI), sudden cardiac death, 

ischemic heart disease, fatal or non-fatal stroke or PAD after the start of follow-up. We additionally considered 

a broader definition of CVD, also including heart failure (HF) and / or atrial fibrillation (AF): ‘CVD+’, as well 

as the individual CVD components: CHD, stroke, AF, and HF; see Appendix Methods.  

 

People with T2DM were identified using a CALIBER phenotyping algorithm (combines data from GP records 

and HES) enhanced by HbA1c measurements and diabetes related medication (Appendix Figure 4, Appendix 

Table 4), labelling participants as prevalent (known) diabetes (based on HES and GP records), incident 

(previously undiagnosed) diabetes (HbA1c at time of enrolment � 48 mmol/mol	, pre-diabetes (from 42 to 48 

mmol/mol), normoglycemic (from 35 to less than 42 mmol/mol	, and low HbA1C (� 35 ����/���	 15. 

People with prevalent and incident (newly diagnosed) diabetes were included in the current manuscript. 

 

Derivation of genetic scores and model stacking 

Given the multifactorial origin of both CVD and T2DM, where for example increased BMI, hypertension and 

hypercholesterolemia are known risk factors for CVD and T2DM, we a priori identified 29 GWAS (Appendix 

Table 5) with publicly available data on the genetic associations (e.g., point estimates) that might be relevant for 

CVD prediction. Next, we applied a 10-fold cross-validation grid-searching algorithm to identify the optimal 

(highest c-statistic) parametrization of each univariable PGS (e.g., a PGS for LDL-C) to predict each type of 

CVD. The following PGS parameters were considered 1) the variant specific p-value inclusion threshold, 2) the 

number of correlated variants contributing to the score (LD threshold), 3) the minor allele frequency (MAF) 

threshold of the genetic variants in the score, and 4) whether the scores should by their variant-specific point 

estimate (weighted or unweighted). This resulted in 29 GWAS-specific univariable PGS which were optimized 

to predict the six CVD outcomes in each of the three groups.  
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The 29 optimized univariable PGS were combined into a single stacked PGS model (referred as “PGS-only”) 

using four distinct machine learners: generalized linear model (GLM)17, Lasso Regression (LR; Logistic 

Regression model with L1 regularization)18, Random Forest (RF)19 , and a joint model of LR and RF, with 10-

fold cross-validation to identify the model with the best discriminative ability (c-statistic). To prevent potential 

overfitting, the more flexible RF models were only applied if the number of training data cases was larger than 

250; see appendix Table 6 for the RF hyperparameters that were considered. 

 

Joint modelling of risk factors and stacked PGS  

PGS performance was compared against CVD risk prediction using clinical risk factors, both alone and in 

combination. Three models were defined based on their candidate set of predictors: 1) age and sex (Age & Sex), 

2) additionally considered clinical characteristics, HbA1c, BMI, HDL-C, LDL-C, total cholesterol, SBP, DBP, 

serum creatine, c-reactive protein, and antihypertensive and lipid lowering medicines (Age & Sex & Clinical), 

and 3) using age, sex, and medicines exclusively (Age & Sex & Medication). The Age & Sex & Clinical model 

was affected by missing biomarker data (Table 1), which were imputed using single imputation procedure 

leveraging the MICE package21, with results were compared to a complete case analysis. The Age & Sex & 

Medication model was not affected by missing data and was used to indirectly assess the impact of missing data. 

Finally, the value of combining PGS with clinical risk factors was evaluated by combining 1) the stacked PGS 

with sex and age (PGS-plus), and 2) a PGS-extended model including the Age & Sex & Clinical candidate 

features; Table  summarizes the considered models, outcomes and groups. 

 

Estimating model performance 

Performance in terms of discrimination (c-statistic) and calibration (calibration-in-the-large, calibration slope) 

was determined through an independent (20% split) test data. Feature importance of each PGS and non-genetic 

variable was evaluated using a permutation feature importance algorithm, assessing the c-statistic change in the 

test data; see Appendix Methods.  Additionally, Net Reclassification Index (NRI) tables were used to compare 

the PGS-extended model against the Age & Sex & Clinical (which differed solely on their PGS inclusion) using 

the following risk cut-offs: <0.10: low risk, between 0.10 and 0.20: intermediate risk, >0.20: high risk. A 

number of sensitivity analyses are described in the Appendix methods and Appendix table 7.  
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RESULTS 

Patient characteristics   

Data were available on 143,459 participants without T2DM and CVD at baseline “wo T2DM/CVD”, 5,229 

participants with T2DM but without a history of CVD at the time of diagnosis “w T2DM”, and 1,621 

individuals who had a history of CVD at the time of T2DM diagnosis “w T2DM&CVD”; Table 1. Participants 

with disease were on average older (w T2DM&CVD: 62.8 SD 5.4, w T2DM: 59.8 SD 7.0, wo T2DM/CVD: 

56.4 SD 8.0), less likely to be female (w T2DM&CVD: 24.7%, w T2DM: 40.0%, wo T2DM/CVD: 56.3%), had 

a higher BMI (w T2DM&CVD: 32.1 kg/m2 SD 5.5, w T2DM: 31.6 SD 5.8, wo T2DM/CVD: 27.2 SD 4.6) and a 

higher HbA1c (w T2DM&CVD: 54.4 mmol/mol SD 13.9, w T2DM: 53.2 SD 13.5, wo T2DM/CVD: 35.1 SD 

4.5). During a median follow-up time of 10 years, CVD, AF or HF events occurred in 13,133 (9.2%) “wo 

T2DM/CVD”  individuals,  1,057 (20.2%) “w T2DM” individuals, and 1,295 (79.9%) of the “w T2DM&CVD” 

individuals; Table .  

 

Stacking multiple PGS into multivariable prognostic models  

We identified the optimal parametrisation of 29 univariable PGS by training each to predict six CVD outcomes. 

Through grid-searching we found that most selected PGS utilized a p-value threshold lower than the 

conventional threshold of GWAS significance22 (less than 20% of the PGS used a p-value of 5 � 10��), and 

showed a clear preference for approximately independent variants (selecting an r-squared of 0.20 or 0.01 at least 

50% of the time); Figure 1. Subsequently the univariate GWAS-specific PGS were combined into multivariate 

(stacked) models to predict each of the six CVD-related outcomes. See Appendix Results, Appendix Table 5,8 

and Appendix Figures 5-16.  

 

Combining clinical characteristics with stacked PGS  

We evaluated the stacked PGS performance to models combining the PGS with clinical risk factors, and 

prediction models that exclusively used clinical risk factors. The PGS only model had a low c-statistic in people 

without diabetes (below 0.60) but attained higher c-statistic values (above 0.60) for the “w T2DM” group 

(Figure 2). Simply adding age and sex improved discrimination considerable improved performance for people 

without diabetes, for example the CVD c-statistic was 0.58 (0.58; 0.58) for the PGS only model, compared to 

0.70 (95%CI 0.70; 0.70) after adding age and sex (Figure 2). Including age and sex did not result in similar 

marked improvements people with diabetes, indicating that these variables do not explain CVD as well in 
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people with diabetes (Figure 2, Appendix Tables 8 - 9). Feature importance (Figure 3) confirmed the importance 

of age for CVD prediction in people without diabetes, and conversely showed that the stacked PGS was the 

most important feature for people with diabetes; Appendix Figures 17-18.  

 

Adding further clinical characteristics including smoking status, BMI, HbA1c, blood lipid measurement, blood 

pressure, and antihypertensive and lipid-lowering medication (PGS-extended) improved the discriminative 

ability of most of the models (Figure 2, Appendix Table 10), when compared to PGS-plus results. For example 

the CHD c-statistic was: 0.73 (95%CI 0.73; 0.73) , 0.75 (95%CI 0.75; 0.75), and 0.72 (95%CI 0.726; 0.72) for 

the “wo T2DM/CVD”, “w T2DM” , and “w T2DM&CVD” participants groups. Feature importance showed a 

similar pattern as before, with the stacked PGS the most important predictor for the two T2DM groups, and age 

the most important predictor in people without diabetes (Appendix Figure 11-13, 19). The calibration plots 

(Figure 4) of the PGS-extended models indicated that these models under-estimated the risk of CVD+, CVD and 

CHD in the “w T2DM&CVD” group, but otherwise showed reasonable calibration; See Appendix Figures 16-

20 and Appendix 3 for the remaining calibration plots and distributions of predicted risk and distributions of 

predicted risk 

 

Comparing the models combining models, to prediction models exclusively sourcing clinical risk factors 

revealed near equivalent performance in people without diabetes (Figure 2); Appendix Tables 10, 14 – 16. In 

people with diabetes however, the clinical risk factor only models (Figure 2) often performed worse than models 

combining the PGS and the clinical risk factors. For example, the c-statistic for 10-year risk of CHD was 0.62 

(95%CI 0.62; 0.63) in “w T2DM”, and 0.68 (95%CI 0.68; 0.68) in “w T2DM&CVD” for a non-genetic model 

including age, sex and clinical measurements “Age & Sex & Clinical”, whereas the PGS-extended c-statistic 

was 0.75 (95%CI 0.75; 0.75) in “w T2DM” and 0.72 (95%CI 0.72; 0.72) in “w T2DM&CVD”; Appendix 

Tables 10, 16.   

 

Finally, NRI tables comparing “Age & Sex & Clinical” and PGS-extended models in their ability to correctly 

classify subjects in low, mid, high-risk groups were calculated for CHD (Table 4, Appendix Tables 17–18), 

which indicated that improved performance of the PGS-extended model in “w T2DM” was due to assigning a 

higher risk to subjects who would develop CHD event and assigning lower risk to individual who would not 
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develop CHD in the considered 10-years follow-up. Sensitivity analyses are described in the Appendix Results 

including Appendix Tables 19 – 20. 

 

Performance in people with prevalent or incident diabetes 

Given that diabetes duration influences CVD risk factor associations, we compared model performance 

stratified by prevalent (before UKB enrolment date) and incident type 2 diabetes (at the UKB enrolment date).  

Similar as before the PGS-extended model outperformed the “Age & Sex & Clinical” model in most cases 

(Figure 5). Performance of the PGS-extended model (combining the PGS with clinical risk factors) 

meaningfully improved in people with newly diagnosed “incident” diabetes without a history of CVD. For 

example the c-statistic for CHD was 0.83 (95%CI 0.83; 0.84), and for HF 0.84 (95%CI 0.82; 0.85). Similar, but 

attenuated, performance was observed in the “w T2DM&CVD” group stratified for timing of diabetes diagnosis; 

Figure 5, Appendix Tables 21 - 22.  Despite the difference in model accuracy between people with prevalent 

and incident diabetes, we did not observe a difference in their cumulative incidence of disease risk; See 

Appendix Figure 21-22. 

 

DISCUSSION   

In the current study we showed that while PGS are important predictors for the 10-years risk of CVD, 

univariable their discriminative potential was modest and by themselves the PGS could not accurately predict 

who developed CVD. When considering multiple potential predictor variables the PGS was however an 

important predictors, and in people with diabetes the PGS was even  the most important predictors outranking 

age; the most important predictor in people without diabetes. Clinical risk factor model with and without 

addition of a PGS did not meaningfully differ in their ability to predict 10-year risk of six types of CVD in 

people without diabetes. In people with diabetes however, the PGS + clinical risk factor models often 

outperformed models exclusively using clinical risk factors. For example, the c-statistic for 10-year risk of CHD 

using the “Age & Sex & Clinical” model was 0.62 (95%CI 0.62; 0.63) in the “w T2DM” group, compared to 

0.75 (95%CI 0.75; 0.75) when adding the PGS. The PGS + clinical risk factor models showed the best 

calibration compared with other analysed models. We additionally showed that model performance changed 

with the duration of diabetes diagnoses, finding censurably improved performance in people with a recent 

diagnosis, for example in this group the c-statistic for CHD was 0.83 (95%CI 0.83; 0.84), and for HF 0.84 

(95%CI 0.82; 0.85).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2022.09.01.22279477doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.01.22279477
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Previous applications of PGS have often attempted to predict a combination of incident and prevalent disease, or 

even exclusively focused on the latter. Stratified analyses have shown that models for prevalent disease often 

show a better discriminative ability than similar models for incident disease23. Given, however, that clinical 

prediction is predominantly concerned with identifying individuals with a high-risk of future disease, one may 

rightly question the utility of prediction models for historical disease. Additionally, some previous PGS 

applications have not specified the time of the predictions, limiting the scores application in clinical practice, 

where clinical guidelines include management options linked to risk-thresholds across a specific follow-up time 

(often 10 years). Furthermore, many previous PGS studies have exclusively considered predicting CVD in 

disease-free “general population” samples similar to our “wo T2DM/CVD”. For example, Khera 11et al showed 

a c-statistic for coronary artery (CAD) and AF of 0.81 (95%CI 0.81; 0.81) and 0.77 (95%CI 0.76– 0.77) 

respectively. Contrary to our current manuscript, the models from Khera et al are problematic to apply out-of-

sample because they were trained (and tested) on a combination of incident and prevalent disease, and 

additionally included study-specific predictors not available (or generalizable) to external data such, as genetic 

principal components and genotyping array. Inouye24 et al focussed on predicting incident CAD using a 

combination of seven known disease risk-factors and a CAD PGS to reach a c-statistic of 0.70 (95%CI 0.69; 

0.70), which is slightly lower than the CHD c-statistic for our PGS-extended model CHD: 0.73 (95%CI 0.73; 

0.73) in people without diabetes.  

 

By considering participants with diabetes stratified by their history of CVD at the enrolment  we find that while 

the PGS was the most important features, the overall predictive performance was attenuated compared to 

participants without diabetes. The attenuated performance in diabetes participants was related to a decreased 

contribution of age to the overall c-statistic (Appendix Figure 19. For example, when predicting AF, permuting 

age resulted in a change in c-statistic of 0.12 for the “wo T2DM/CVD” group, compared to a more modest 

change of 0.06 for “w T2DM” and 0.01 for “w T2DM&CVD”; in contrast, the PGS was important in all three 

groups. Accounting for the duration of diabetes diagnoses, suggested that part of the attenuated performance 

compared to people without diabetes, might be due to inclusion of people with a prevalent diabetes diagnosis. 

Focussing instead on incident diabetes patients meaningfully improved performance, resulting in highly accurate 

models for CHD and HF (c-statistic above 0.80) for the “w T2DM” group. 
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We wish to acknowledge the follow study limitations. Firstly, some of the PGS partially included UKB data due 

to the cumulative nature of GWAS. Exploring the difference in c-statistic between weighted and unweighted 

scores, where the unweighted PGS are less susceptible to overfitting, suggesting this had limited influence 

(difference in c-statistic often below 0.01, Appendix Table 19). Secondly, comparing the UKB enrolled subjects 

to the general UK populations has revealed important differences, where UKB participants are generally 

healthier: they are less likely to be obese, to smoke or drink alcohol25. To further confirm a clinical utility of the 

derived models, it is therefore necessary to perform external validation studies. We note, however, that any 

model, irrespective of its derivation source, requires external validation. When considering deploying a model to 

any local setting, it is good practice to perform such validation studies using data representative of the intended 

population, which can also be used to recalibrate a model to local settings 26. Relatedly, our current paper 

exclusively focussed on performance in participants of European ancestry, reflecting the sampling design used 

by the available source GWAS. Thirdly, in this study we used a limited subset of clinical characteristics that 

might be relevant for CVD prediction. It is highly likely that including additional features may further optimize 

performance.   

 

In summary, we have evaluated the added benefit of PGS scores to predict six types of CVD in participants 

without diabetes and CVD at baseline, compared to performance in participants with T2DM, and participants 

with T2DM and a history of CVD. In isolation, the PGS could only moderately predict incident disease. 

Combining these scores with known clinical risk factors  improved performance, showing relatively good 

discriminative ability especially for CHD, AF, and HF in people with T2DM but no history of CVD at 

enrolment. When considering only individuals with newly diagnosed diabetes, the discriminative ability of the 

models was substantially improved.   
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Figure 1 The polygenic (PGS) parameters selected through a cross-validated grid search.  
 
N.B. Results were stratified by outcome (x-axis) and group (rows). The parameterization of 29 PGS in terms of 
GWAS p-value, linkage disequilibrium r-squared, and whether each variant should be weighted by its regression 
coefficient (weighted/unweighted). The proportion therefore reflects division by 29. The optimal combination of 
parameters was determined through a grid-search algorithm selecting combination with the largest training data 
c-statistic for each outcome listed on the x-axis). Subjects were stratified as followed “wo T2DM/CVD: 
participants without T2DM or CVD at baseline, “w T2DM”: participants with diabetes at baseline, “w 
T2DM&CVD”: participants with T2DM at baseline and a history of CVD. 
 

Figure 2 Discriminative performance of stacked polygenic scores (PGS) and conventional risk prediction 
models attempting to predict the 10-year risk of CVD in patient with or without diabetes.  

N.B. The c-statistics were estimated using an independent test dataset, not used in model training. The stacked 
PGS combined genetic scores for at most 29 GWAS specific PGS, and were step-wise elaborated to consider 
age and sex at baseline (PGS-plus) and additionally smoking status, blood lipids, blood pressure, BMI, HbA1c, 
and medicines (PGS-extended). The conventional, non-genetic models used information only on age and sex 
(Age & Sex), the second model additionally considered clinical characteristics along with antihypertensive and 
lipid lowering medicines (Age & Sex & Clinical), and the last model used age, sex and medication biomarkers 
(Age & Sex & Medication). Individuals were stratified as followed “wo T2DM/CVD: participants without 
T2DM or CVD at baseline, “w T2DM”: participants with diabetes at baseline, “w T2DM&CVD”: participants 
with T2DM at baseline and a history of CVD. 

 
Figure 3 The contribution of each feature (PRS, age, and sex) to the prediction of cardiovascular disease. 

N.B. The permuted feature importance reflects the c-statistic change based on the test data; iteratively the values 
of each variables were randomly assigned to an individual after which the c-statistic was re-estimated with these 
permuted data and the difference in performance used as an estimate of variable contribution to the model's 
predictive potential. 

 
Figure 4  Calibration plots for the PGS-extended models stratified by outcome and participant group. 

N.B., the PGS-extended models considered information from a stacked PGS model, age, sex smoking status, 
blood lipids, blood pressure, BMI, HbA1c, CRP, and creatinine (PGS-extended). Individuals were stratified as 
followed “wo T2DM/CVD: participants without T2DM or CVD at baseline, “w T2DM”: participants with type 
2 diabetes at baseline, “w T2DM&CVD”: participants with T2DM at baseline and a history of CVD. The 
vertical line segments represent 95% confidence intervals calculated using the Clopper-Pearson method33.  
 
 
Figure 5 The discriminative performance of models predicting CVD in people with prevalent and incident 
type 2 diabetes 

 
N.B. N.B. The c-statistics were estimated using an independent test dataset, not used in model training. The 
stacked PGS combined genetic scores for at most 29 GWAS specific PGS, and was combined with non-genetic 
risk factors: smoking status, blood lipids, blood pressure, BMI, HbA1c, and medicines (PGS-extended). The 
Age & Sex & Clinical model only include the clinical risk factors. Individuals were stratified on history of CVD 
and timing of diabetes diagnosis (prevalent: a diagnosis before enrolment, incident: newly diagnosed during 
enrolment). 

 
Tables  

Table 1 Clinical characteristics of UK biobank participants stratified by group: participants without a 
history of CVD and T2DM (wo T2DM/CVD), participants with type 2 diabetes (w T2DM), participants 
with a history of CVD prior to a T2DM diagnosis (w T2DM&CVD). 
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wo T2DM/CVD w T2DM w T2DM&CVD 

Clinical characteristic 
Mean (SD) or 
N(%) Missing data (%) 

Mean (SD) or 
N(%) Missing data (%) 

Mean (SD) or N 
(%) Missing data (%) 

Total no. of individuals 143,459 5,229 1,621 

Women (%) 80,733 (56.3) 0 2,091 (40.0) 0 401 (24.7) 0.0 

Age (years) 56.4 (8.0) 0 59.8 (7.0) 0 62.8 (5.4) 0.0 

Smoking Status:       0.3 

Never 80,991 (56.5)  2,384 (45.6)  485 (29.9)  

Previous 48,110 (33.5) 2,299 (44.0) 905 (55.8) 

Current 13,924 (9.7) 511 (9.8) 220 (13.6) 

BMI (kg/m2) 27.2 (4.6) 0.2 31.6 (5.8) 0.4 32.1 (5.5) 0.6 

HDL cholesterol (mmol/L) 1.5 (0.4) 9.6 1.2 (0.3) 4.5 1.1 (0.3) 4.8 

Total cholesterol (mmol/L) 5.8 (1.1) 4.3 4.5 (1.0) 4.3 4.3 (1.0) 4.9 

LDL cholesterol (mmol/L) 3.7 (0.8) 3.8 2.7 (0.8) 3 2.5 (0.7) 3.0 

HbA1C (mmol/mol) 35.1 (4.5) 4.5 53.2 (13.5) 0.8 54.4 (13.9) 0.4 

SBP (mm Hg) 140.2 (19.7) 0.1 145.0 (18.2) 0.2 143.3 (20.5) 0.1 

DBP (mm Hg) 82.5 (10.7) 6.7 82.3 (10.1) 5.1 78.5 (10.7) 4.2 

Antihypertensive medication 20,437 (14.2) 2,599 (49.7) 1,112 (68.6) 0.0 

Lipid lowering medication 12,738 (8.9)  3,159 (60.4)  1,135 (70.0) 0.0 

n.b. Clinical information was obtained from the UKB assessment centre data, and the longitudinal GP records, 
selecting the measurements closest to baseline from within a time window of 1 year before and 3 months after 
baseline. Medication information reflect any prescription within the  year prior the baseline date (i.e., UKB 
enrolment or diagnosis of T2DM). SD refers to standard deviation. 

T2DM) but without cardiovascular disease history (CVD). 

Table 2 Summary of the considered prediction models, outcomes and groups. 
Groups wo T2DM/CVD: people without a history of CVD or T2DM at enrolment 

w T2DM: people with a T2DM diagnosis but no history of CVD at enrolment 
w T2DM&CVD: people with a T2DM diagnosis and a history of CVD at enrolment 

Outcomes CVD+ : cardiovascular disease including heart failure and/or atrial fibrillation  
CVD : cardiovascular disease consisting of coronary heart disease and stroke  
CHD : coronary heart disease   
HF : heart failure  
AF : atrial fibrillation  
Ischaemic Stroke : ischaemic stroke  

Models Models without PGS  Age & Sex: model using age and sex variables  
Age & Sex & Medication: model using age, sex, antihypertensive and lipid 
lowering medicines 
Age & Sex & Clinical: model using age and sex, HbA1c, BMI, HDL-C, LDL-C, 
total cholesterol, SBP, DBP, serum creatine, antihypertensive and lipid lowering 
medicines  

Models including PGS PGS-only: a stacked PGS model combining 29 trait-specific PGS 
PGS-plus: a stacked PGS model, additionally including age and sex  
PGS-extended: a stacked PGS model, additionally including HbA1c, BMI, HDL-
C, LDL-C, total cholesterol, SBP, DBP , serum creatine, antihypertensive and 
lipid lowering medicines 
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Table 3 Number of CVD events during a 10-year follow-up period stratified by training and testing 
samples.  

Outcomes wo T2DM/CVD w T2DM w T2DM&CVD 

 Train 
114,732 

Test 
28,727 

Overall (%) 
143,459 

Train 
4,181 

Test 
1,048 

Overall (%) 
5,229 

Train 
1,279 

Test 
342 

Overall 
1,621 

CVD+ 10,456 (9.1) 2,677 (9.3) 13,133 (9.2) 833 (19.9) 224 (21.4) 1,057 (20.2) 1,023 
(80.0) 

272 (79.5) 1,295 (79.9) 

CVD 6,814 (5.9) 1,796 (6.3) 8,610 (6.0) 628 (15.0) 160 (15.3) 788 (15.1) 969 (75.8) 255 (74.6) 1,224 (75.5) 

CHD 5,255 (4.6) 1,386 (4.8) 6,641 (4.6) 486 (11.6) 122 (11.6) 608 (11.6) 895 (70.0) 237 (69.3) 1,132 (69.8) 

Ischaemic 
Stroke 

1,192 (1.0) 328 (1.1) 1,520 (1.1) 103 (2.5) 29 (2.8) 132 (2.5) 127 (9.9) 30 (8.8) 157 (9.7) 

HF 1,336 (1.2) 316 (1.1) 1,652 (1.2) 157 (3.8) 39 (3.7) 196 (3.7) 287 (22.4) 78 (22.8) 365 (22.5) 

AF 5,110 (4.5) 1,278 (4.4) 6,388 (4.5) 377 (9.0) 96 (9.2) 473 (9.0) 340 (26.6) 90 (26.3) 430 (26.5) 

N.B.. events were stratified by training (80%) and testing samples (20%) using the model derivation and 
evaluation. The UK biobank participants are stratified into groups: participants without a history of CVD and 
T2DM (wo T2DM/CVD), participants with type 2 diabetes (w T2DM), participants with a history of CVD prior 
to a T2DM diagnosis (w T2DM&CVD). 
 
 
Table 4 Net reclassification comparing the predicted CHD risk distributions of Age & Sex & Clinical and 
PGS-extended, among individuals with type 2 diabetes (group: “w T2DM”) with and without an CHD 
event during the 10 years of follow-up. 

Age & Sex & Clinical PGS-extended  Total 

Low risk [0.0, 0.1] Intermediate risk [0.1, 
0.2] 

High risk [0.2, 1.0] 

In participants without CVD      

  Low risk 384 99 30 513 

  Intermediate risk 256 94 50 400 

  High risk 3 4 6 13 

  Total 643 197 86 926 

In participants with CVD     

  Low risk 17 17 15 49 

  Intermediate risk 25 16 29 70 

  High risk 0 1 2 3 

  Total 42 34 46 122 
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NRI estimates 

NRI 0.378 (0.210, 0.511) 

Event NRI 0.287 (0.118, 0.423) 

Non-event NRI 0.091 (0.047, 0.146) 

 

Pr(Up|Event) 0.500 (0.411, 0.589) 

Pr(Down|Event) 0.213 (0.149, 0.308) 

Pr(Down|Non-event) 0.284 (0.261, 0.311) 

Pr(Up|Non-event) 0.193 (0.170, 0.220) 

n.b. Calculations are based on the test data. Various NRI estimates are provided, including the probabilities of 
an increased (Up) or decreased (Down) predicted risk conditional on event status. The “w T2DM” group 
consists of individuals with type 2 diabetes ( 
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