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Abstract  
Whole brain, large-scale functional connectivity networks or connectomes have been characterized on 

different temporal and spatial scales in humans using EEG and fMRI. Whole brain epileptic networks 

have been investigated with both EEG and fMRI, but due to the different acquisition approaches it is 

unclear to what extent those results can be related. In consequence clinical research in epilepsy would 

profit from a unified multimodal functional connectome description as a linking framework to better 

map underlying brain function and pathological functional networks. In this study we aim to characterize 

the spatial correlation between EEG and fMRI connectivity in temporal lobe epilepsy.  

 

From two independent centers, we acquired resting-state concurrent EEG-fMRI from a total of 35 

healthy controls and 34 TLE patients (18 right TLE and 16 left TLE). Data was projected into the Desikan 

brain atlas (mean BOLD activity for fMRI and source reconstruction for EEG). Whole brain functional 

connectivity from fMRI (Pearson correlation) and EEG (corrected imaginary part of the coherency) were 

correlated for all subjects. 

 

In healthy controls, average EEG and fMRI whole-brain connectivity was moderately correlated (r~0.3). 

For both imaging centers, correlation between EEG and fMRI whole brain connectivity was increased in 

rTLE when compared to controls for lower frequency bands (EEG-delta, theta and alpha). Conversely 

correlation between EEG and fMRI connectivity of lTLE patients was decreased in respect to healthy 

subjects (EEG-beta vs. fMRI connectivity only). While the alteration of the EEG-fMRI correlation in rTLE 

patients could not be related to a local effect, in lTLE patients it was locally linked to the Default Mode 

Network. 

 

We demonstrated, using two independent datasets, that EEG and fMRI connectivity is correlated for 

both healthy subjects and patients. The increased correlation of EEG and fMRI connectivity in rTLE 

patients vs. controls and decreased correlation in lTLE patients vs. controls suggests a differential 

organization of mono-lateral focal epilepsy of the same type, which needs to be considered when 

comparing fMRI to EEG connectivity. It also demonstrates that each modality provides distinct 

information, highlighting the benefit of multimodal assessment in epilepsy. The observed property of 

distinct topological patterns depending on the lateralization of the epilepsy could be taken into account 

when clinically defining the epileptic focus of patients. 
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Introduction 
It now is consensus that multimodal integration of whole-brain imaging facilitates the clinical 

exploration of brain pathology. However, it is yet an open question how multimodal measures of 

pathological brain networks can help in epilepsy to guide clinical diagnosis, treatment and brain surgery 

(Zijlmans et al., 2019). While epileptic phenomena are clinically characterized by altered brain rhythms 

and paroxysmal local discharges, recorded using the electroencephalogram (EEG), more widespread 

whole brain functional alteration linked to epilepsy has been characterized by functional MRI (fMRI) 

(Centeno and Carmichael, 2014). In a clinical context the fast dynamics of EEG and the finer spatial 

resolution of fMRI can be used to investigate the hemodynamic changes correlated with epileptic spikes 

in order to obtain an improved spatial characterization of the epileptogenic network (Vulliemoz et al., 

2009).  

To investigate whole brain functional network alterations associated with epilepsy, fMRI (Bettus et al., 

2009; Ridley et al., 2015) and EEG (Coito et al., 2015) have been successfully applied, but it remains 

unclear how results extracted from different modalities can be used together in a meta-analysis (Slinger 

et al., 2022; van Diessen et al., 2014). To translate basic research results derived from complex fMRI 

connectivity graph models into clinical management of patients with epilepsy , it is indispensable to 

better understand the correspondence between EEG and fMRI connectivity. 

 

In healthy subjects, moderate correlations between EEG and fMRI functional connectivity (FCfMRI and 

FCEEG) exist (Deligianni et al., 2014; Wirsich et al., 2021) and EEG and fMRI connectivity dynamics are 

linked to each other (Wirsich et al., 2020b) while parts of the FCEEG and FCfMRI provide complimentary 

information (Wirsich et al., 2020a, 2017). Being able to extract both commonalties and discrepancies 

between FCfMRI and FCEEG is encouraging as they point in the direction that whole-brain networks 

extracted from clinical EEG can be generally used instead of a more expensive assessment with fMRI. As 

such mapping FCEEG and FCfMRI into one graph space provides a framework to translate fMRI findings into 

the clinical setting of EEG recordings. For this purpose, it is necessary to understand if the relationship 

between EEG and fMRI is altered when comparing healthy subjects and patients with epilepsy. 

Alterations between healthy and pathological networks in electrophysiology and hemodynamics are 

complex and specific alterations of the EEG-fMRI relationship have been reported in combination with 

several EEG-frequency bands while the reproducibility of those individual studies remains unclear 

(Centeno and Carmichael, 2014). An unaltered FCEEG the FCfMRI relationship would suggest that recording 

a single modality may be enough to characterize functional connectivity alterations in epilepsy, while a 

changed relationship would highlight the importance of multimodal exploration (Forsyth et al., 2019). 

 

In this study we sought to characterize the spatial correlation between whole-brain FCEEG and FCfMRI in 

order to understand if the crossmodal mapping of FCEEG and FCfMRI is modified in patients with epilepsy 

as compared to healthy controls. This will close the knowledge gap of how FCfMRI and FCEEG studies 

compare in focal epilepsies. The advantage of this approach is that the exact topology of reorganization 

is irrelevant: the spatial correlation of whole brain EEG and fMRI connectivity will measure the 

topological alteration of networks that generalize across the patient group while omitting local patient-

specific functional reorganization. We aimed to assess the reproducibility of our results by using two 

independently recorded EEG-fMRI datasets. 
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Methods 
Participants and EEG-fMRI data acquisition 
We included patients with drug resistant focal temporal lobe epilepsy with clear unilateral epileptic 

focus (clinically defined by combined information from imaging, interictal epileptiform discharges (IEDs) 

and seizure onset) alongside with healthy controls. To do so, we retrospectively used data from two 

independent centers using a 256-channel EEG setup in a 3T scanner (dataset will be referenced as 

256Ch-3T) and a 64-channel EEG setup in a 3T scanner (dataset 64Ch-3T). We included data of resting-

state concurrent EEG-fMRI acquisitions in a total of 35 healthy controls (64-3T: 14 and 256-3T: 21) and a 

total 34 patients diagnosed with drug-resistant epilepsy of the temporal lobe (TLE, 64-3T: n=11 and 256-

3T n=23 / distribution of left and right TLE: rTLE n=18 and lTLE n=16).  
 

256Ch-3T: 21 healthy subjects (7 females, mean age: 32, age range 24–47) with no history of 

neurological or psychiatric illness and 23 TLE patients (14 females, mean age: 34, age range 18-60, 13 

lTLE and 10 rTLE) were recorded. Ethical approval was given by the local Research Ethics Committee 

(Commission Cantonale d’Ethique, Genève) and informed consent was obtained from all subjects. The 

control group has been previously analyzed in (Wirsich et al., 2021). 

For patient and control group a variable time period of resting-state simultaneous EEG-fMRI data were 

acquired. In order to have a consistent recording length within the dataset we only analyzed the first 

4min58s of each dataset (see SI Table 1). Subjects were asked not to move, to remain awake and keep 

their eyes closed during the resting-state scan. MRI was acquired using a 3 Tesla MR-scanner (Siemens 

Magnetom Trio / Siemens Magnetom Prisma, update of clinical scanner during protocol see SI Table 1). 

The fMRI scan comprised the following parameters: GRE-EPI sequence, TR=1980/1990/2000 ms (for 

details see update of clinical scanner during protocol see SI Table 1), TE=30 ms, 32 slices, voxel size 3 × 3 

× 3.75mm
3
, flip angle 90°. Additionally, an anatomical T1-weighted image was acquired (176 sagittal 

slices, 1.0 × 1.0 × 1.0 mm, TA=7 min). EEG was acquired using a 258-channel MR-compatible amplifier 

(Electrical Geodesic Inc., Eugene, OR, USA, sampling rate 1 kHz), including 256 electrodes (Geodesic 

Sensor Net 256, referenced to Cz) and 2 ECG electrodes (bipolar montage, placed on the chest, crossing 

the heart). The scanner clock was time-locked with the amplifier clock (Mandelkow et al., 2006). An 

elastic bandage was pulled over the subjects’ head and EEG cap to assure the contact of electrodes on 

the scalp. The MR-compatible amplifier was positioned to the left of the subject and EEG and ECG cables 

were passed through the front end of the bore. 

 

64Ch-3T: 14 healthy subjects (5 females, mean age: 31, age range 20-55) with no history of neurological 

or psychiatric illness and 11 TLE patients (6 females, mean age: 37, age range 22-54, 3 lTLE and 9 rTLE) 

were recorded. Ethical approval was given by local Research Ethics Committee (Comité de Protection 

des Personnes (CPP) Marseille 2) and informed consent was obtained from all subjects. Data of the 

control group has been previously analyzed in Wirsich et al. (2020a, 2017). 

In each subject one run of 21min resting-state simultaneous EEG-fMRI was acquired. Subjects were 

asked not to move and to remain awake and keep their eyes closed during the resting-sate scan. MRI 

was acquired using a 3 Tesla MR-scanner (Siemens Magnetom Verio 3T). The fMRI scan comprised the 

following parameters: GRE-EPI sequence, TR=3600 ms, TE=27 ms, 50 slices, voxel size 2 × 2 × 2.5mm, flip 

angle 90°, total of 350 vols. Additionally, an anatomical T1-weighted image was acquired (208 sagittal 

slices, 1.0 × 1.0 × 1.0mm, TA=6min27s).  

EEG was acquired using a 64-channel MR-compatible amplifier (BrainAMP MR – Brain Products, Munich, 

Germany, sampling rate 5 kHz), 64 electrodes (referenced to FCz, 1 ECG electrode placed on the chest 

above the heart). The scanner clock was time-locked with the amplifier clock (Mandelkow et al., 2006). 

The amplifier was placed as far as possible behind the scanner and the connector cables were fixed with 
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sandbags to avoid distortions due to mechanical vibrations of the scanner. 

Data Processing 
Data preprocessing was carried out as described in Wirsich et al. (2021). 

Brain Parcellation 
We used the Freesurfer toolbox (Fischl, 2012) to process the T1-weighted images (recon-all, v6.0.0 

http://surfer.nmr.mgh.harvard.edu/) by performing non-uniformity and intensity correction, skull 

stripping and gray/white matter segmentation. The cortex was parcellated into 68 cortical regions 

according to the Desikan(-Killiany) atlas (Desikan et al., 2006).  

fMRI Processing 
Slice timing correction was applied to the fMRI timeseries. This was followed by spatial realignment both 

using the SPM12 toolbox (revision 7475; http://www.fil.ion.ucl.ac.uk/spm/software/spm12). The T1 

images of each subject and the Desikan atlas were coregistered to the fMRI images (FSL-FLIRT 6.0.2, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki, (Jenkinson et al., 2012)). We extracted signals of no interest such as 

the average signals of cerebrospinal fluid (CSF) and white matter from manually defined regions of 

interest (ROI, 5 mm sphere, Marsbar Toolbox 0.44, http://marsbar.sourceforge.net) and regressed them 

out of the BOLD timeseries along with 6 rotation, translation motion parameters and global gray matter 

signal (Wirsich et al., 2017). Then we bandpass-filtered the timeseries at 0.009–0.08 Hz (Power et al., 

2014). Like in Wirsich et al. (2021), we scrubbed the data using frame wise displacement (threshold 0.5 

mm, by excluding the super-threshold timeframes) as defined by Power et al. (2012). 

fMRI connectivity measures 
Average timeseries of each region was then used to calculate FCfMRI by taking the pairwise Pearson 

correlation of each regions’ cleaned timecourse (see schema Fig 1). The final connectivity matrix was 

constructed from the unthresholded values of the Pearson correlation. 

EEG Processing 
EEG data was preprocessed individually for the different setups: 

256Ch-3T: EEG was corrected for the scanner gradient artifact using template subtraction with optimal 

basis set and adaptive noise cancelation (Allen et al., 2000; Niazy et al., 2005), followed by pulse-related 

artifact template subtraction (Allen et al., 1998) using in-house code Matlab code for ballistocardiogram 

peak detection as described in Iannotti et al. (2015). Electrodes placed on the cheeks and in the face 

were excluded from data analysis resulting in a final set of 204 used electrodes. This was followed by 

manual ICA-based denoising (for manual removal of gradient and pulse artifact residuals, eye-blinks, 

muscle artifacts, infoMax, runICA-function EEGLab revision 1.29 (Bell and Sejnowski, 1995; Delorme and 

Makeig, 2004)). 

64Ch-3T: The Brain Vision Analyzer 2 software (Brain Products, Gilching, Germany) was used for the 

following processing steps. EEG was corrected for the scanner gradient artifact using template 

subtraction, adaptive noise cancelation and downsampling to 250 Hz (Allen et al., 2000) followed by 

pulse-related artifact template subtraction (Allen et al., 1998). Then ICA-based denoising (for manual 

removal of gradient and pulse artifact residuals, eye-blinks and muscle artifacts, Fast ICA restricted 

mode with probabilistic sphering) was carried out. Data was segmented according to one TR of the fMRI 

acquisition (TR=3600ms). The segments with obvious movement artifacts were semi-automatically 

excluded from further analysis (Wirsich et al., 2017). Finally the data was bandpass-filtered the signal at 

0.3-70 Hz. 

Both datasets: A trained neurologist (L.S.) visually inspected all EEG data to mark interictal epileptiform 

discharges (IEDs), IED segments were not removed but were used as a covariable in our analysis. 

Cleaned EEG data was imported and analyzed with Brainstorm software (Tadel et al., 2011), which is 

documented and freely available under the GNU general public license 

(http://neuroimage.usc.edu/brainstorm, version 15th January 2019).  
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256Ch-3T (the following steps where already carried out in the Brain Vision Analyzer software for 

256Ch-3T data): Data was bandpass-filtered at 0.3–70 Hz. Data was segmented according to one TR of 

the fMRI acquisition (TR=1980-2000ms, see SI Table 1). In order to minimize effect of head motion EEG 

epochs containing motion were automatically detected if the signal in any channel exceeded the mean 

channel timecourse by 4 standard deviations. Then the whole timecourse was also visually inspected to 

exclude all motion segments from further analysis (Wirsich et al., 2021).  

Both datasets: Channels that remained artefactual were removed from the analysis (without 

interpolation). Electrode positions and T1 were coregistered by manually aligning the electrode 

positions onto the electrode artifacts visible in the T1 image. A forward model of the skull was 

calculated based on the individual T1 image of each subject using the OpenMEEG BEM model, (Gramfort 

et al., 2010; Kybic et al., 2005). The EEG signal was re-referenced to the global average and projected 

into source space (15,000 solution points on the cortical surface) using the Tikhonov-regularized 

minimum norm (Baillet et al., 2001) with the Tikhonov parameter set to 10% (Brainstorm 2018 

implementation, with default parameters: assumed SNR ratio 3.0, using current density maps, 

constrained sources normal to cortex with signs flipped into one direction, depth weighting 0.5/max 

amount 10). Finally, the source activity of each solution point was averaged in each cortical region of the 

Desikan atlas. 

EEG connectivity measures 
For each epoch (each TR) the corrected imaginary part of the coherency (ciCoh, (Ewald et al., 2012; 

Nolte et al., 2004)) of the source activity was calculated between each region pair (cortical regions only: 

Desikan atlas - 68 regions) using bins of 2 Hz frequency resolution (Wirsich et al., 2021) (Brainstorm 

implementation, version 15–01–2019; imaginary part was corrected by the real part of the coherence 

coh: ����� �  
��������

�	
�������
 (Ewald et al., 2012), significance of each connectivity value was determined 

according to Schelter et al. (2006), connections with p>0.05 were set to 0). The 2 Hz bins were averaged 

for 5 canonical frequency bands: delta (δ 0.3–4 Hz), theta (θ 4–8 Hz), alpha (α 8–12 Hz), beta (β 12–30 

Hz), and gamma (γ 30–60 Hz). The segments were then averaged across time for each subject to one 

FCEEG matrix (see schema Fig 1). 

 
Fig 1: Overview on the construction of EEG and fMRI connectomes. EEG and fMRI data were parcellated into the 68 regions of 
the Desikan atlas (coregistered to each subject's individual T1) as follows: For fMRI, the BOLD signal timecourse was averaged 
over the voxels in each region for each subject. The Pearson correlation of the region averaged fMRI-BOLD timecourse was 
calculated to build a function connectivity matrix/connectome (FCfMRI). For the EEG, the signal of each sensor was source 
reconstructed to the cortical surface (15,000 solution points) using the Tikhonov-regularized minimum norm. Then, the 
timecourses of the solution points were averaged per cortical region. The corrected imaginary part of the coherency (ciCoh) of 
averaged EEG source signals were used to calculate FCEEG for each subject (Figure adapted from (Wirsich et al. 2021). Please 
refer to the methods for a detailed description of each step). 
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Connectivity Analysis 
Split-half and cross-dataset spatial correlation 
Spatial similarity of monomodal FC was assessed by correlating the split-half averages of the upper 

triangular of the connectivity matrix of each dataset and group. To do so, each group was randomly split 

into two equally sized datasets and the correlation between the two split-averaged matrices was 

calculated for multiple iterations. We report the correlation averaged over each split-half iteration (5000 

iterations or in the case of group sizes n<16 we calculated all possible combinations to split the dataset 

into two parts). As those split-half correlations depend on the group size, the results should be only used 

to qualitatively assess the data and compare them to the results of Wirsich et al. (2021), but not to 

assess differences between controls and patients. Monomodal cross-dataset spatial correlation was 

assessed by correlating group averages of each dataset with the respective participant group in the 

other dataset. 

 

Network based statistics of monomodal measures 
With the goal to better understand if the EEG and fMRI connectomes are altered across groups due to 

local and monomodal shifts of connectivity we used network-based statistics (Zalesky et al., 2010) on 

each modality. For FCEEG this was done for each frequency band. In detail we built 6 linear models with 

FCfMRI (Fisher z-transformed), FCEEG-δ, FCEEG-θ, FCEEG-α, FCEEG-β and FCEEG-γ as response variables, group label 

as regressor of interest and age, sex and dataset site as regressor of non-interest. We tested for 

monomodal network changes between controls and patients by applying the following contrasts: 

controls>rTLE, controls>lTLE, controls<rTLE and controls<lTLE (one-sided t-test, connection level 

threshold T=2, NBS-corrected threshold adapted to 6 models p<0.05/6~0.0083). 

Crossmodal spatial EEG-fMRI connectivity correlation 
Crossmodal spatial correlations between FCEEG and FCfMRI of each group-averaged connectivity matrices 

were calculated. To test if the crossmodal correlation of rTLE and lTLE patients was different to the one 

of healthy controls, we built a distribution of 5000 averaged matrices by randomly switching the group 

labels (Wirsich et al., 2016). Previously, we demonstrated in healthy controls that the spatial 

relationship of EEG-fMRI connectivity can be robustly extracted when averaging around 7-12 subjects 

(Wirsich et al., 2021). This excellent reproducibility of averaged resting state recordings was also 

recently demonstrated on large fMRI datasets (n>1000, r>0.9 for average connectomes with n>10, see 

supplementary Figure 17 within (Marek et al., 2022)). The number of lTLE patients in the 64Ch3T-dataset 

was only n=3, and in consequence we did not carry out any group-averaged analysis using only subjects 

restricted this group/dataset combination.  

To understand how the crossmodal correlation is influenced by age, sex, epilepsy duration (as epilepsy 

onset and duration are correlated, we decided to use only duration), etiology and IEDs we generated 

several bootstrapped distributions (with replacement, Matlab bootstrap function, 1000 iterations) of the 

average EEG-fMRI correlation. This bootstrapping method will generate an average value for each EEG 

and fMRI connection that can be used to generate a bootstrapped FCEEG-FCfMRI correlation alongside with 

subject specific variables such as age (e.g., one bootstrap iteration might result in an EEG-fMRI 

correlation of r=0.3 an average female/male ratio of 0.4 and an average age of 33.1 while the next 

iteration will end up with r=0.35, ratio=0.45 and average age of 34.2). Each iteration of the bootstrapped 

averages were  then used in three linear models to identify the relationship of each bootstrapped, 

averaged variable to the bootstrapped, averaged EEG-fMRI correlation (Model I: controls-lTLE patients: 

r(EEG-fMRI) ~ age + sex + group-label + dataset-site, Model II: controls-rTLE patients: r(EEG-fMRI) ~ age + 
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sex + group-label + dataset-site , Model III: patients: r(EEG-fMRI) ~ age + sex + epilepsy-duration + isHS + 

recorded IEDs per minute + group-label + dataset-site; isHS=binary dummy variable coding for 

hippocampal sclerosis or not, for etiology distribution other than HS see patient description in Error! 

Reference source not found., epilepsy-duration is coded in full years, dataset-site=dummy variable 

coding for 256Ch-3T or 64Ch-3T dataset). To test for significance of the contribution to the EEG-fMRI 

connectivity correlation, the T-value of each coefficient/variable in the linear model was compared to a 

null-model that bootstrapped (1000 iterations with replacement) the averages of the same model 

having the target variable permuted across the dataset (e.g. group-labels switched between lTLE and 

controls, 5000 iterations). 

Spatial subnetwork contribution to the EEG-fMRI connectivity correlation 
To better understand the spatial contributions to cross modal correlations of the whole brain we split 

the FC-matrices into subnetworks of the 7 ICNs (Visual, Somato-motor, Ventral Attention, Dorsal 

Attention, Front-Parietal, Limbic and Default Mode) as defined by Yeo et al. (2011). For each subdivision 

we individually assessed the crossmodal correlation of the intra-subnetwork connections in order to 

statistically compare the difference between controls and patients (lTLE≠controls / rTLE≠controls, 

permutation test of group labels, 5000 iterations). Equally we assessed the contribution of each 

connection to the total crossmodal correlation (Colclough et al., 2016; Wirsich et al., 2021). In brief the 

relative spatial contribution c of each connection i is given by: �� �

�
�
�

�

∑ 
�
�


�

�
�

�  

�
�
�

�

�
 with ��
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  given the Pearson correlation coefficient of two vectors x and y: 
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�
� . This spatial contribution was statistically compared between 

patients and controls (direction of the test was chosen according to the results of the FCEEG-FCfMRI 

correlation lTLE<controls / rTLE>controls, permutation of group labels, 5000 iterations).  

 

All p-values are reported uncorrected, and the corresponding Bonferroni-correction threshold is 

explicitly stated alongside each individual analysis. 

Results 
Behavioral 
No significant difference in head movement measured by framewise displacement (Power et al., 2012) 

was observed between rTLE vs. controls and lTLE vs. controls, (two-sided ttest, all p>0.05 uncorrected). 

 

Monomodal split-half and cross-dataset correlation 
Intra-group monomodal consistency of the subject groups (split by dataset-site and control, lTLE and 

rTLE patient group) was accessed by randomly splitting the dataset into two equally sized parts (5000 

iterations or all combinations in case the number of subjects in the group was n<16) and spatially 

correlating the FCEEG and FCfMRI matrices. The split-half correlation of FCfMRI ranged from r=0.88 (controls, 

dataset 64Ch3T) to r=0.62 (rTLE patients, dataset 256Ch3T). The FCEEG split-half correlation ranged from 

r=0.82 (FCEEG-β, controls, dataset 256Ch3T) to r=0.28 (FCEEG-γ, rTLE patients, dataset 64Ch3T, for all results 

see SI Table 2). 

 

Monomodal contributions 
When comparing the monomodal connectivity we could not find any significant differences between 

rTLE and controls and lTLE and controls for FCfMRI and FCEEG (controls>rTLE, controls>lTLE, controls<rTLE 
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and controls<lTLE, one-sided t-test, connection level threshold T=2, NBS-corrected threshold adapted to

6 models p<0.05/6~0.0083) 

EEG-fMRI correlation 
In line with Wirsich et al. (2021, 2017) healthy controls moderately (r~0.3-0.4) correlated in the 256Ch-

3T and 64Ch-3T dataset. EEG-fMRI correlation was also moderately correlated (r~0.3-0.4) in both patient

groups (Fig 2, SI Table 3). 

Fig 2: Crossmodal correlation between group-averaged FCEEG and FCfMRI (pooled across centers according to (Wirsich et al., 
2021)) using the Desikan atlas (*rTLE patients > controls ** lTLE patients < controls: Bonferroni threshold: p<0.05/5=0.01, 
permutation test with 5000 iterations, for all results see SI Table 3) 

As compared to healthy controls, crossmodal correlation of rTLE patients was increased in FCEEG-δ, FCEEG-θ

and FCEEG-α (corrected Bonferroni threshold: p<0.05/5=0.01, see Fig 2 and Fig 3A). For lTLE patients we

observed significantly decreased beta as compared to healthy controls (r(FCfMRI,FCEEG-β): lTLE< controls,

corrected Bonferroni threshold: p<0.05/5=0.01, see Fig 2 and Fig 3A). 

When combining all subjects to a grand average (patient and control group) the multimodal correlation

peaks at r~0.40 (except γ: r=0.33, see 1
st

 row of SI Table 3) as  observed in Wirsich et al. (2021). As we

have previously demonstrated,  adding more healthy controls will generally increases the correlation

(Wirsich et al., 2021) the higher correlation of rTLE (n=17) compared to all pooled subjects (n=35) makes

the possibility that the result is driven by a random higher SNR of rTLE patients very unlikely (see S

Table 3). 

 

Bootstrapping the group averaged FCfMRI-FCEEG correlation  
Using bootstrapped group averages in a linear model in order to analyze how different resampling-

iterations with replacements change the average EEG-fMRI correlation we observed that: 

1) in a model including controls and rTLE patients (controlling for age, sex and dataset-site): FCfMRI-

FCEEG-δ/-FCEEG-θ/-FCEEG-α/-FCEEG-β correlation was significantly increased for rTLE patients as compared

to healthy controls (p<0.05/5=0.01, Bonferroni corrected). 

2) in a model including controls and lTLE patients (controlling for age, sex and dataset-site): FCfMRI-
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FCEEG-β correlation was significantly decreased (uncorrected only) for rTLE patients as compared to 

healthy controls (uncorrected p<0.05). 

3) in a model including lTLE and rTLE patients (controlling for age, sex and dataset-site, epilepsy 

duration, existence of hippocampal sclerosis and spikes/minute), we observed a significant increase 

of FCfMRI-FCEEG-δ/-FCEEG-θ/-FCEEG-α/-FCEEG-β correlation when comparing rTLE to lTLE patients 

(rTLE>lTLE, p<0.05/5=0.01, Bonferroni corrected) 

For detailed results of the bootstrap analysis see SI Table 5. 

 

Local spatial contributions to the FCfMRI-FCEEG correlation 
We then compared the FCfMRI-FCEEG correlation of subnetworks that take only into account connections 

from one specific ICN between TLE patients and healthy controls. We observed that when comparing 

lTLE patients to healthy controls the FCfMRI-FCEEG-β correlation was significantly decreased for lTLE 

patients in the DMN (lTLE<controls, permutation of group labels, 5000 iterations, p<0.05/(5*7)=0.0014, 

corresponding to a Bonferroni threshold p<0.05, Fig 3B), while no significant alterations were observed 

when comparing rTLE patients to healthy controls (rTLE>controls, permutation of group labels, 5000 

iterations, p>0.05/(5*7)=0.0014, corresponding to a Bonferroni threshold p>0.05). 

When comparing the spatial contribution to the global EEG-fMRI connectome correlation (group 

averaged) between lTLE patients and healthy controls we observed a significantly decreased spatial 

contribution in FCfMRI-FCEEG-β correlation inside the DMN for (see Fig 3B) (lTLE<controls, permutation of 

group labels, 5000 iterations, p<0.05/(5*7)=0.0014, corresponding to a Bonferroni threshold of p<0.05). 

When comparing rTLE patients with healthy controls we did not observe a shift in contribution to the 

global correlation for specific ICNs (rTLE>controls, permutation of group labels, 5000 iterations, 

p>0.05/(5*7)=0.0014, corresponding to a Bonferroni threshold of p>0.05). 
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Fig 3: Scatter plots of all pairwise FCfMRI and FCEEG connection strengths (each point samples the FCEEG and FCfMRI connection
strength of one region pair of the group averaged FC). A (left side): Significant FCEEG-FCfMRI correlation differences in controls
and rTLE patients in the θ-band and A (right side): Controls and lTLE patients in the β-band. B (left side): Spatial contribution
to FCfMRI-FCEEG correlation of lTLE patients (yellow circle depicts DMN network that was significantly decreased in lTLE
patients as compared to healthy controls). B (right side) Scatter plot of FCfMRI and FCEEG connection strengths in the DMN
which are significantly less correlated in lTLE patients as compared to healthy controls; we did not find any significant local
alterations of the crossmodal relationship when comparing rTLE patients to healthy controls (see SI Table 3); VIS: Visual, SM:
Somato-Motor, DA: Dorsal Attention, VA: Ventral Attention, L: Limbic, FP: Fronto-Parietal, DMN: Default Mode Network 
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Discussion 
This study based on simultaneously recorded EEG and fMRI functional connectivity in patients with 

temporal lobe epilepsy and healthy controls in two independent datasets, characterisedhow a whole-

brain network approach in epilepsy relates between both modalities. We replicated the moderate 

relationship between whole-brain FCfMRI and FCEEG in healthy controls (Wirsich et al., 2021) and we 

confirmed for the first time that this relationship also exists in patients with epilepsy. While networks of 

rTLE patients show a widespread change of the relationship for the lower EEG frequency bands, the 

networks of lTLE patients have a global relationship of EEG and fMRI connectivity more similar to 

controls. Nevertheless, alterations between lTLE patients and healthy controls were observed locally (in 

particular the DMN) and were linked to FCEEG-β. This suggests that functional network reorganization 

across multiple timescales undergoes a more widespread or heterogeneous change in rTLE patients, 

impacting the relationship between EEG and fMRI, while alterations of the multimodal relationship are 

more homogenously localized in lTLE patients. 

 

Monomodal relationship 
For both datasets and in line with our previous research (Wirsich et al., 2021) we showed that 

monomodal intragroup correlation was high (FCfMRI) to moderate (FCEEG-γ). When comparing connection-

wise differences in networks between patients and controls we were unable to observe any significant 

differences between controls vs. lTLE patients and controls vs. rTLE patients. This is opposed to our 

previous findings in rTLE (Wirsich et al., 2016), where we observed FCfMRI differences in rTLE patients vs. 

controls (though using a high resolution 512 regions atlas as opposed to the low-resolution atlas of 68 

regions used in this study). The difficulty of identifying a consistent localized network across patients 

reflects the general heterogeneity of network neuroscience literature in epilepsy which can be very 

sensitive to individual methodological choices analyzing resting-state connectivity (Centeno and 

Carmichael, 2014; Slinger et al., 2022; van Diessen et al., 2014). In summary, we observed that spatial 

localization of monomodal FC differences lack a spatial homogeneity that can be detected with the small 

group-size of 34 patients used here. The heterogeneity of connection-wise alterations of individual 

connections observed here can potentially be mediated by describing the network topologically using 

graph theoretic descriptions (Carboni et al., 2020; Ridley et al., 2015; Wirsich et al., 2021, 2016). 

 

FCfMRI-FCEEG correlation 
The simplest way to compare brain networks derived from different modalities on a topological level is 

using the spatial correlation of the connectivity (Honey et al., 2009; Wirsich et al., 2017). We observed 

significantly increased global FCfMRI-FCEEG correlation in rTLE as compared to healthy controls. Conversely 

global alterations between lTLE patients and controls were restricted in timescale to the FCfMRI-FCEEG-β 

relationship which was found to be locally dominant in the Default Mode Network. This is in line with 

the observation of Coito et al. (2015) and Zhao et al. (2022) showing that FCEEG of rTLE patients 

undergoes more widespread alterations in brain networks than those of lTLE patients. 

This finding of functional alterations affecting regions remote to the epileptic focus resulting in global 

shift of functional networks altered by epilepsy as a function of the laterality of the epilepsy is further 

supported by a recent multicentric study showing that while atrophy in lTLE is more restrained to the 

ipsilateral side while in rTLE both ipsi and contralateral side are affected (Park et al., 2021). From a 

structural point of view, we previously observed that FCfMRI of rTLE patients is more closely related to 

structural connectivity derived from diffusion MRI than healthy controls (Wirsich et al., 2016). Together 

with the results in the current study in rTLE patients, this points to a general increase of correlation 

between both structural and functional connectivity across all temporal scales. Interestingly for the 

FCEEG-FCfMRI correlation this does not seem to be the case in lTLE patients. Future work should validate if 
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this is also true for the structure-function relationship.  

We previously demonstrated that FCfMRI and FCEEG hold both distinct and mutual information (Wirsich et 

al., 2020a, 2017). Though we observed a moderate correlation between FCfMRI and FCEEG for both healthy 

controls and TLE patients, this work confirms that FCEEG and FCfMRI studies do not measure exactly the 

same properties in line with the disconnect between FCfMRI and FCEEG graph analysis literature (Slinger et 

al., 2022). The results of our study stress that the relationship between FCfMRI and FCEEG is only partial 

and, more importantly, alters with the lateralization of epilepsy, limiting the direct comparability of EEG 

and fMRI connectome studies. 

 

Spatial contribution of FCfMRI-FCEEG correlation 
From a structural parcelation point of view, asymmetries between left and right temporal lobe have 

been widely described (Van Essen et al., 2012). Rather than a limitation of the functional repertoire 

(Wirsich et al., 2016) the differential spatial contributions in rTLE and lTLE patients suggest different 

adaptations of normal healthy functional networks to epilepsy e.g. more healthy bilateral functional 

integration of right temporal lobe vs. a more localized function of the left temporal lobe (Raemaekers et 

al., 2018). Looking exclusively at the DMN, Haneef et al. (2012) observed that local changes of fMRI 

connectivity are larger in lTLE as compared to rTLE. In line we observed that the decrease in EEG-fMRI 

connectivity relationship was linked locally to the DMN in lTLE but not in rTLE. We extend the 

observation of Haneef et al. (2012) by also showing that the multimodal connectivity reorganization is 

linked to a local change of FCfMRI-FCEEG-β correlation in lTLE. 

The cognitive consequences of differential reorganization in rTLE vs. lTLE are for example illustrated by 

the results of Drane et al. (2013), demonstrating that while rTLE patients have problems with 

recognizing famous faces, lTLE patients rather have problems naming them. From a physiological point 

of view the results are also in line with the general asymmetry of connectivity in temporal regions 

resulting in increased local connectivity in the left hemisphere when compared to the right hemisphere 

(Raemaekers et al., 2018). 

 

Implications for clinical research 
While we looked only at temporal lobe epilepsy the observed lateralized discrepancy in the relationship 

of FCEEG and FCfMRI might not be limited to TLE but could apply more generally to the lateralization of the 

epileptic zone in epilepsy (Ridley et al., 2015). Further, this feature might not only be a sensitive marker 

restricted to epilepsy but it might be also linked to lateralization of brain dysfunction (e.g. one could see 

the same effect in lateralized tumors or strokes that alter the brain network). Further studies would be 

needed to better understand the relationship in EEG and fMRI in other focal neuro-pathologies. 

Apart from lateralization of the TLE - using a bootstrapping approach - we did not observe that clinical 

parameters contribute significantly to the alteration of the EEG-fMRI relationship, suggesting that those 

parameters do modulate FCfMRI and FCEEG in a similar way between differently lateralized epilepsies. 

Consequently, the relationship of FCfMRI and FCEEG might provide a potential additional clinical marker to 

determine lateralization (Douw et al., 2019; Sadaghiani and Wirsich, 2020). Our results are encouraging 

as they generalize across two datasets and future work should validate if the EEG-fMRI can be clinically 

used to determine if a patient has a lateralization of epilepsy in the left or right hemisphere. 

 

Methodological considerations 
From a spatial point of view, reconstructing EEG brain activity from deep cortical regions (such as the 

hippocampus) is still a subject of discussion (Pizzo et al., 2019). As such our approach to symmetrically 

integrate FCfMRI and FCEEG was limited to temporal lobe without the hippocampus as defined by Desikan 

et al. and (2006) and Yeo et al. (2011) but including neighboring cortical regions such as the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2022.09.01.22279214doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.01.22279214


parahippocampal gyrus and temporal pole As improving SNR of FCEEG from hippocampal regions is still 

ongoing research, future work might profit form integrating monomodal FCfMRI asymmetrically in this 

framework. 

 

Further, while separating rTLE patients between the two recording sites, we demonstrated that results 

exist individually for each site. We included only three lTLE patients for the 64Ch-3T dataset, 

nevertheless, using the proposed bootstrap approach, we did not observe any systematic effects of 

dataset-site when pooling all the subjects together. 

In this study we selected only clear cases of lateral temporal lobe epilepsy sampled out of a database of 

~200 EEG-fMRI recordings for the 256Ch3T dataset and ~60 recordings for the 64Ch3T dataset to assure 

relative homogeneity of the groups. The final group of 34 patients was the most homogenous group 

with reasonable sample size. Though, when comparing TLE patients to controls, we demonstrated global 

changes of the FCfMRI and FCEEG relationship, we were unable to extract a common network of 

reorganization based on pair-wise connections (both for EEG and fMRI). Better understanding of 

individual functional networks linked to epilepsy beyond the group-averaged approach taken here  

(Marek et al., 2022; Wirsich et al., 2021, 2016) will need a larger database with data pooling in an even 

more multicentric approach  (Marek et al., 2022; Slinger et al., 2022).  

A larger multicentric approach would equally help to characterize the effect of individual antiseizure 

medication treatment on FC (Wandschneider and Koepp, 2016; Xiao et al., 2019) which was not taken 

into account. This effect is potentially negligible in our data as both rTLE and lTLE patients will undergo 

the comparable treatment and previously measured drug-effects on the EEG-fMRI correlation were 

observed to be small (Forsyth et al., 2019). However, a systematic characterization of a medication 

effect (Wirsich et al., 2018) is still missing in the research field of characterizing functional networks in 

focal epilepsies.  

 

Conclusions 
In this study we investigated the FCfMRI-FCEEG correlation in healthy controls and in TLE patients. We 

observed that monomodal alterations between controls and TLE are hard to track. However, when 

looking at the spatial correlation between FCfMRI and FCEEG we were able to demonstrate global 

alterations between rTLE patients and healthy controls, while alterations between lTLE patients and 

controls were more local. This demonstrates the differential organization of mono-lateral focal epilepsy 

of the same type that needs to be considered when comparing EEG to fMRI connectivity. It also 

demonstrates that each modality provides distinct information, highlighting the benefit of multimodal 

assessment in epilepsy. This property of distinct topological patterns depending on the lateralization of 

the epilepsy could be taken into account when clinically defining the epileptic focus of patients. 
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Supplementary Information 
Dataset Scanner TR Resolution Number of 

controls 
Number of 
patients 

256Ch-
3T 

Siemens 
Trio 

1980ms 3x3x3.75mm 0 8 

256Ch-
3T 

Siemens 
Trio 

1990ms 3x3x3.75mm 17 10 

256Ch-
3T 

Siemens 
Trio 

2000ms 3x3x3.75mm 0 1 

256Ch-
3T 

Siemens 
Prisma 

1990ms 3x3x3.75mm 4 4 

      
64Ch-
3T 

Siemens 
Magnetom 
Verio 

3600ms 2.0x2.0x2.5mm 14 11 

SI Table 1: Scanner setup for both centers. The scanner of the 256Ch-3T dataset received a scanner update during acquisition 
(data from years 2010-2019), which resulted in a slight change of acquisition parameters 

 
 fMRI delta theta alpha  beta gamma 
Controls       
Split half 
256Ch3T 

0.87054  0.73682 0.77674 0.75082 0.82411 0.49047 

Split half 
64Ch3T 

0.87817 0.80862 0.7131 0.56457 0.57558 0.35359 

Cross dataset 0.77132 0.73061 0.66702 0.64033 0.68208 0.4403 
lTLE       
Split half 
256Ch3T 

0.78767 0.71863 0.7437 0.75605 0.82403 0.58585 

rTLE       
Split half 
256Ch3T 

0.62129 0.679 0.7551 0.75985 0.80257 0.56043 

Split half 
64Ch3T 

0.78417 0.58941 0.46924 0.37836 0.48847 0.28072 

Cross dataset 0.66777 0.65887 0.58191 0.45151 0.59768 0.25093 
       
SI Table 2: Splithalf and crossdataset spatial correlation of monomodal FCEEG and FCfMRI (random permutations of splithalf 
assignments with 5000 iterations, in case of n<16 all possible combinations to split the group into two halves). 

 
 delta theta Alpha  beta gamma 
All 0.37 0.40 0.42 0.42 0.31 
Controls 0.33 0.35 0.36 0.40 0.25 
lTLE 0.29 0.33 0.35 0.32 0.26 

rTLE 0.42 0.46 0.48 0.45 0.32 

P (5000 
iterations) 

delta theta alpha  beta gamma 

Controls > 
lTLE 

0.0824 0.2612 0.4858 0.0034 0.6396 
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Controls < 
rTLE 

0.0018 <0.0002 0.0006 0.0116 0.0358 

SI Table 3: Spatial correlation between FCfMRI and FCEEG for each frequency band averaged for each group across both datasets 
(5000 permutations of group labels, significant results marked in dark green bold: Bonferroni threshold p<0.05/5=0.01), Light 
green: Uncorrected threshold p<0.05. 

 

 
 delta theta Alpha  beta gamma 
256Ch-3T      
Controls 0.31 0.33 0.35 0.37 0.23 
lTLE 0.28 0.32 0.33 0.31 0.23 
rTLE 0.38 0.39 0.41 0.39 0.31 

      

64Ch-3T      

Controls 0.29 0.27 0.22 0.29 0.14 

rTLE 0.36 0.38 0.31 0.33 0.15 

P (5000 
iterations) 

delta theta alpha  beta gamma 

256Ch-3T      

Controls > 
lTLE 

0.4024 0.561 0.5904 0.066 0.6464 

Controls < 
rTLE 

0.0046 0.0116 0.0124 0.077 0.0114 

64Ch-3T      

Controls < 
rTLE 

<0.002 <0.002 <0.002 <0.002 0.0876 

SI Table 4: Spatial correlation between FCfMRI and FCEEG for each frequency band for each dataset (rows for lTLE/64Ch-3T are 
not reported as only group is consisting of 3 patients, 5000 permutations of group labels, significant results marked in dark green 
bold: Bonferroni threshold p<0.05/5=0.01), Light green: Uncorrected threshold p<0.05. 

  

 delta theta alpha  beta gamma 
Controls & 
lTLE 

     

Age 0.4400 0.1514 0.1478 0.3968 0.2268 
Sex 0.0022 0.0220 0.0284 0.0762 0.0938 
Controls vs. 
lTLE 

0.4970 0.3700 0.2966 0.0450 0.1696 

256Ch-3T vs. 
64Ch-3T 

0.2598 0.4700 0.0242 0.4244 0.2220 

Controls & 
rTLE 

     

Age 0.1542 0.2026 0.2802 0.1226 0.2202 
Sex 0.0060 0.0246 0.1042 0.0530 0.1130 
Controls vs. 
rTLE 

0.0002 <0.0002 <0.0002 0.0016 0.0404 

256Ch-3T vs. 0.2930 0.3222 0.0782 0.2800 0.0062 
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64Ch-3T 
lTLE & 
rTLE 

     

Age 0.3616 0.0728 0.0298 0.4282 0.3222 
Sex 0.4834 0.2930 0.1266 0.4722 0.0534 
HS vs. Non-
HS 

0.2734 0.0118 0.0080 0.0064 0.0176 

Epilepsy 
Duration 

0.2304 0.3490 0.2738 0.3706 0.1794 

AED/Min 0.2268 0.1000 0.3008 0.0936 0.1282 
lTLE vs. rTLE 0.0002 0.0014 0.0052 0.0002 0.0272 
256Ch-3T vs. 
64Ch-3T 

0.3730 0.2926 0.1236 0.4280 0.0244 

SI Table 5: P-Values of permutation test with 5000 iterations of linear model coefficients when bootstrapping averages on 
contrast of interest controls vs. lTLE/rTLE (dark green Bold: Bonferroni threshold p<0.05/5=0.01, Light green: Uncorrected 
threshold p<0.05, contrast of interest marked in light gray) and  lTLE vs. rTLE (dark green Bold: Bonferroni threshold 
p<0.05/5=0.01, Light green: Uncorrected threshold p<0.05, only for contrast of interest marked in light gray). The Permutation 
test is carried out by switching labels of interest. Significant values are marked in BOLD italics. HS: hippocampal sclerosis 

 
lTLE<Controls delta theta alpha  beta gamma 
VIS 0.2484 0.5146 0.0272 0.002 0.006 
SM 0.7604 0.4824 0.5144 0.0508 0.3994 
DA 0.0064 0.095 0.4148 0.1502 0.032 
VA 0.0312 0.0338 0.0874 0.1326 0.411 
L 0.5576 0.2926 0.1432 0.2362 0.532 
FP 0.2922 0.574 0.8838 0.1072 0.8584 
DMN 0.0178 0.0054 0.126 0 0.0872 
rTLE>Controls      
VIS 0.0898 0.08 0.154 0.8664 0.5936 
SM 0.0058 0.1628 0.3078 0.5256 0.2498 
DA 0.9664 0.9072 0.6766 0.8864 0.5308 
VA 0.067 0.1486 0.32 0.0406 0.0624 
L 0.0794 0.1398 0.1974 0.2084 0.1926 
FP 0.8264 0.8844 0.6246 0.996 0.4244 
DMN 0.1966 0.2376 0.1072 0.7752 0.6732 
SI Table 6: Comparison between TLE patients and healthy controls for EEG-fMRI correlation restricted to the connections of 
inside each intrinsic connectivity networks (Yeo et al., 2011). Dark green: Bonferroni threshold p<0.05/(7*5)~0.0014, Light 
green: Uncorrected threshold p<0.05. 

lTLE<Controls delta theta alpha  beta gamma 
VIS 0.2292 0.3922 0.0288 0.1688 0.1402 
SM 0.3844 0.7714 0.9978 0.2588 0.1412 
DA 0.3224 0.5842 0.7258 0.2026 0.0968 
VA 0.5304 0.6254 0.9978 0.5534 0.0506 
L 0.9814 0.8436 0.6298 0.9852 1 
FP 0.9872 0.995 0.9302 0.7752 0.8668 
DMN 0.0062 0.0052 0.007 0.001 0.2062 
rTLE>Controls      
VIS 0.822 0.6796 0.8986 0.9562 0.7908 
SM 0.0846 0.0266 0.0314 0.4296 0.8552 
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DA 0.6682 0.54 0.6578 0.931 0.4088 
VA 0.0188 0.0096 0.0224 0.1516 0.849 
L 0.37 0.7082 0.7974 0.1312 0.0088 
FP 0.2856 0.0618 0.2184 0.7044 0.5238 
DMN 0.875 0.9488 0.8214 0.654 0.9562 
SI Table 7: Comparison between TLE patients and healthy controls for  the spatial contribution (Colclough et al., 2016) of 
intrinsic connectivity networks (Yeo et al., 2011) to the global EEG-fMRI correlation. Dark green: Bonferroni threshold 
p<0.05/(7*5)~0.0014, Light green: Uncorrected threshold p<0.05. 
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