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Abstract 

Alzheimer's disease (AD) is the most common form of dementia, with cerebrospinal fluid (CSF) 

β-amyloid (Aβ), total Tau, and phosphorylated Tau providing the most sensitive and specific 

biomarkers for diagnosis.  However, these diagnostic biomarkers do not reflect the complex 

changes in AD brain beyond plaque and tangle pathologies. Here we report a sensitive, 

quantitative, and scalable targeted proteomics assay of AD biomarkers representing mainly 

neuronal, glial, vasculature and metabolic pathways. As quality controls (QCs), we pooled CSF 

from individuals having normal Aβ and Tau levels (AT-), and individuals having low Aβ and high 

Tau levels (AT+) to determine the coefficient of variation (CV) and fold-change of protein 

measurements. Additionally, we analyzed 390 CSF samples using selective reaction monitoring-

based mass spectrometry (SRM-MS). Following trypsin digestion, 133 controls (cognitively 

normal and AT-), 127 asymptomatic (cognitively normal and AT+) and 130 symptomatic AD 

(cognitively impaired and AT+), and 30 pooled CSF samples were analyzed by SRM-MS using a 

15-minute targeted liquid chromatography-mass spectrometry method. Isotopically labeled 

peptide standards were added for relative quantification by reporting the area ratios for each 

targeted peptide. We reproducibly detected 62 peptides from 51 proteins in all clinical samples 

with an average CV of approximately 13% across pools. Proteins that could best distinguish 

AsymAD and AD cases from controls included SMOC1, GDA, 14-3-3 proteins, and proteins 

involved in glucose metabolism. In contrast, proteins that could best distinguish AD from AsymAD 

were mainly neuronal/synaptic proteins including VGF, NPTX2, NPTXR, and SCG2.  Collectively, 

this highlights the utility of high-throughput SRM-MS to quantify peptide biomarkers in CSF that 

can potentially monitor disease progression.  
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Background and Summary 

Alzheimer’s disease (AD) affects more than 45 million people worldwide, making it the 

most common neurodegenerative disease 1-3. AD biomarker research has predominately focused 

on β-amyloid (Aβ) and Tau, as these proteins reflect pathological Aβ plaques and tau 

neurofibrillary tangles (NFT), respectively, in AD 4, 5. Although Aβ and Tau are the most sensitive 

and specific CSF biomarkers for diagnosis 6, 7 these two proteins do not reflect the heterogenous 

and complex changes in AD brain 8, 9. Furthermore, failed clinical trials of Aβ-based therapeutic 

approaches highlight the complexity of AD and the need for additional biomarkers to fully illustrate 

pathophysiology for advancements in diagnostic profiling, disease monitoring, and treatments 1-3, 

9. 

Considering the diagnostic challenges related to the overlapping pathologies of 

neurodegenerative diseases, AD biomarkers that represent diverse pathophysiological changes 

could facilitate an early diagnosis, predict disease progression, and enhance the understanding 

of neuropathological changes in AD 3.  AD has a characteristic pre-clinical or asymptomatic period 

(AsymAD) where individuals have AD neuropathology in the absence of clinical cognitive decline 

5, 10, 11.  Thus, biomarkers for the prodromal phase of AD that can begin changing years or decades 

before signs of cognitive impairment, would be valuable for disease intervention, clinical trial 

stratification, and monitoring drug efficacy.  

Proteins are the proximate mediators of disease, integrating the effects of genetic, 

epigenetic, and environmental factors 9, 12. Network proteomic analysis has emerged as a valuable 

tool for organizing complex unbiased proteomic data into groups or “modules” of co-expressed 

proteins that reflect various biological functions 13-16. The direct proximity of CSF to the brain 

presents a strong rationale to integrate the brain and CSF proteomes to increase the 

pathophysiological diversity among biofluid biomarkers of AD 7, 17. We recently integrated a human 

AD brain proteomic network with a CSF proteome differential expression analysis to reveal 

approximately 70% of the CSF proteome overlapped with the brain proteome 18. Nearly 300 CSF 

proteins were identified as significantly altered between control and AD samples, representing 

predominately neuronal, glial, vasculature and metabolic pathways, creating an excellent list of 

candidates for further quantification and validation.  

Here, we developed a high-throughput targeted selective reaction monitoring-based mass 

spectrometry (SRM-MS) assay 19 to quantify and validate reliably detected CSF proteins in 

healthy individuals and individuals with asymptomatic or symptomatic AD for staging AD 
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progression. We evaluated 200+ tryptic peptides that were selected using a data-driven approach 

from the integrated brain-CSF proteome network analysis. We selected peptides with differential 

abundance in AD CSF observed >50 percent of case samples by discovery proteomics 18 for 

synthesis as crude heavy standards. We used two pooled CSF reference standards to determine 

which peptides were reliably detected in CSF matrix. We reproducibly detected 62 tryptic peptides 

from 51 proteins in 390 clinical samples and 30 pooled reference standards. Furthermore, using 

a combination of differential expression and receiver operating curve (ROC) analyses we found 

CSF proteins that can best discriminate stages of AD progression. Collectively these data 

highlight the utility of a high throughput SRM-MS approach to quantify biomarkers associated with 

AD that ultimately hold promise for monitoring disease progression, stratifying patients for clinical 

trials, and measuring therapeutic response. 
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Methods 

Reagents and Materials 

Heavy labeled PEPotec Grade 2 crude peptides, trypsin, mass spectrometry grade, trifluoroacetic 

acid (TFA), foil heat seals (AB-0757), and low-profile square storage plates (AB-1127) were 

purchased from ThermoFisher Scientific (Waltham, MA). Lysyl endopeptidase (Lys-C), mass 

spectrometry grade was bought from Wako (Japan); sodium deoxycholate, CAA 

(chloroacetamide), TCEP (tris-2(-carboxyethyl)-phosphine), and triethylammonium hydrogen 

carbonate buffer (TEAB) (1 M, pH 8.5) were obtained from Sigma (St. Louis, MO). Formic acid 

(FA), 0.1% FA in acetonitrile, 0.1% FA in water, methanol, and sample preparation V-bottom 

plates (Greiner Bio-One 96-well Polypropylene Microplates; 651261) are from Fisher Scientific 

(Pittsburgh, PA). Oasis PRiME HLB 96-well, 30mg sorbent per well, solid phase extraction (SPE) 

cleanup plates were from Waters Corporation (Milford, MA). 

Pooled CSF as Quality Controls  

Two pools of CSF were generated based on Aβ(1-42), total Tau, and pTau181 levels to create 

AD-positive (AT+) and AD-negative (AT-) quality control standards.  Each pool consisted of 

approximately 50 mL of CSF by combining equal volumes of CSF selected from well 

characterized samples (~45 unique individuals per pool) from the Emory Goizueta Alzheimer’s 

Disease Research Center (ADRC) and Emory Healthy Brain Study (EHBS). All research 

participants provided informed consent under protocols approved by the Institutional Review 

Board (IRB) at Emory University. CSF was collected by lumbar puncture and banked according 

to 2014 ADC/NIA best practices guidelines (https://www.alz.washington.edu/Biospecimen 

TaskForce.html). AD biomarker status for individual cases was determined on the Roche 

Elecsys® immunoassay platform 20-22; the average CSF biomarker value is reported in 

parentheses.  The control CSF pool (AT-) was comprised of cases with relatively high levels of 

Aβ(1-42) (1457.3 pg/mL) and low total Tau (172.0 pg/mL) and pTau181 (15.1 pg/mL). In contrast, 

the AD pool (AT+) was comprised of cases with low levels of Aβ(1-42) (482.6 pg/mL) and high 

total Tau (341.3 pg/mL) and pTau181 (33.1 pg/mL).  The quality control (QC) pools were 

processed and analyzed identically to the CSF clinical samples reported. 

Clinical Characteristics of the Cohort  

Human cerebrospinal fluid (CSF) samples from 390 individuals including 133 healthy controls, 

130 patients with symptomatic AD, and 127 patients asymptomatic AD (cognitively normal but AD 
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biomarker positive) were obtained from Emory’s Goizueta ADRC and EHBS (Figure 1 and Table 

1). All symptomatic individuals were diagnosed by expert clinicians in the ADRC and Emory 

Cognitive Neurology Program, who are subspecialty trained in Cognitive and Behavioral 

Neurology, following extensive clinical evaluations including detailed cognitive testing, 

neuroimaging, and laboratory studies. CSF samples were selected to balance for age and sex 

(Table 1). For biomarker measurements, CSF samples from all individuals were assayed for 

Aβ(1-42), total Tau, and pTau using the Roche Diagnostics Elecsys® immunoassay platform 20-

22. The cohort characteristics are summarized in Figure 1 and Table 1. Samples were stratified 

into controls, AsymAD and AD based on Tau and Amyloid biomarkers status and cognitive score 

(MoCA). All case metadata (syn34612929) including disease state, age, sex, race, apolipoprotein 

(ApoE) genotype, MoCA scores, and biomarkers measurements were deposited on Synapse 

(syn34054965) [Data citation 1]. 

Single Reaction Monitoring Assay 

We selected 200+ peptides with differential abundance in AD CSF by discovery proteomics 18, 23 

for synthesis as crude heavy standards. The heavy crude peptides contained isotopically labeled 

C-terminal lysine or arginine residues (13C, 15N) for each tryptic peptide.  Based on the crude 

heavy peptide signal, the peptides were pooled to achieve total area signals ≥ 1x105 in CSF 

matrix. The transition lists were created in Skyline-daily software (version 21.2.1.455) 24, 25. An in-

house spectral library was created in Skyline based on tandem mass spectra from CSF samples. 

Skyline parameters were specified as: trypsin enzyme, Swiss-Prot background proteome, and 

carbamidomethylation of cysteine residues (+57.02146 Da) as fixed modifications. Isotope 

modifications included: 13C(6)15N(4) (C-term R) and 13C(6)15N(2) (C-term K). The top ten 

fragment ions that matched the criteria (precursor charges: 2; ion charges 1, 2; ion types: y, b; 

product ion selection from m/z >precursor to last ion-2) were selected for scrutiny. The top 5-7 

transitions per heavy precursor were selected by manual inspection of the data in Skyline and 

scheduled transition lists were created for collision energy optimization. Collision energies were 

optimized for each transition; the collision energy was ramped around the predicted value in 3 

steps on both sides, in 2V increments 26. The selected transitions were tested in real matrix spiked 

with the heavy peptide mixtures. The three best transitions per precursor were selected by manual 

inspection of the data in Skyline and one scheduled transition list was created for the final assays. 

A list of transitions (syn34615929) used in this study is deposited on Synapse (syn34054965) 

[Data citation 2]. 
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Preparation of CSF for mass spectrometric analysis  

All CSF samples were blinded and randomized. Each CSF sample was thawed and aliquoted into 

sample preparation V-bottom plates that also included quality controls. Each sample and quality 

control were processed independently in parallel. Crude CSF (50 µL) was reduced, alkylated, and 

denatured with tris-2(-carboxyethyl)-phosphine (5 mM), chloroacetamide (40 mM), and sodium 

deoxycholate (1%) in triethylammonium bicarbonate buffer (100 mM) in a final volume of 150 µL. 

Sample plates were heated at 95°C for 10 min, followed by a 10-min cool down at room 

temperature while shaking on an orbital shaker (300 rpm) 27. CSF proteins were digested with 

Lys-C (Wako; 0.5 µg; 1:100 enzyme to CSF volume) and trypsin (Pierce; 5 µg; 1:10 enzyme to 

CSF volume) overnight in a 37°C oven. After digestion, heavy labeled standards for relative 

quantification (15 µL per 50 µL CSF) were added to the peptide solutions followed by acidification 

to a final concentration of 0.1% TFA and 1% FA (pH ≤ 2). Sample plates were placed on an orbital 

shaker (300 rpm) for at least 10 minutes to ensure proper mixing. Plates were centrifuged (4680 

rpm) for 30 minutes to pellet the precipitated surfactant. Peptides were desalted with Oasis PRiME 

HLB 96-well, 30mg sorbent per well, solid phase extraction (SPE) cleanup plates from Waters 

Corporation (Milford, MA) using a positive pressure system. Each SPE well was conditioned (500 

µL methanol) and equilibrated twice (500 µL 0.1% TFA) before 500 µL 0.1% TFA and supernatant 

were added. Each well was washed twice (500 µL 0.1% TFA) and eluted twice (100 µL 50% 

acetonitrile/0.1% formic acid). All eluates were dried under centrifugal vacuum and reconstituted 

in 50 µL mobile phase A (0.1% FA in water) containing Promega 6 × 5 LC-MS/MS Peptide 

Reference Mix (50 fmol/µL; Promega V7491). 

 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

Peptides were analyzed using a TSQ Altis Triple Quadrupole mass spectrometer (Thermo Fisher 

Scientific). Each sample was injected (20 μL) using a 1290 Infinity II system (Agilent) and 

separated on an AdvanceBio Peptide Map Guard column (2.1x5mm, 2.7 μm, Agilent) connected 

to AdvanceBio Peptide Mapping analytical column (2.1x150mm, 2.7 μm, Agilent). Sample elution 

was performed over a 14-min gradient using mobile phase A (MPA; 0.1% FA in water) and mobile 

phase B (MPB; 0.1% FA in acetonitrile) with flow rate at 0.4 mL/min. The gradient was from 2% 

to 24% MPB over 12.1 minutes, then from 24% to 80% over 0.2 min and held at 80% B for 0.7 

min. The mass spectrometer was set to acquire data in positive-ion mode using single reaction 
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monitoring (SRM) acquisition. Positive ion spray voltage was set to 3500 V for the Heated ESI 

source. The ion transfer tube and vaporizer temperatures were set to 325°C and 375°C, 

respectively.  SRM transitions were acquired at Q1 resolution 0.7 FWHM, Q2 resolution 1.2 

FWHM, CID gas 1.5 mTorr, 0.8 s cycle time. 

Data analysis  

Raw files from Altis TSQ were uploaded to Skyline-daily software (version 21.2.1.455), which was 

used for peak integration and quantification by peptide ratios. SRM data were manually evaluated. 

All samples were analyzed in a blinded fashion. Total area ratios for each peptide were calculated 

in Skyline by summing the area for each light (3) and heavy (3) transition and dividing the light 

total area by the heavy total area. We used the total area ratios (peptide ratios) for each targeted 

peptide in each sample and QC analysis. The raw data files (syn34054983) and Skyline file 

(syn34055004) were deposited on Synapse (syn34054965) [Data citation 3]. 

Statistical analyses  

We used Skyline-daily software (version 21.2.1.455) and GraphPad Prism (version 9.4.1) 

software to calculate means, medians, standard deviations, and coefficients of variations 25. 

Peptide abundance ratios were log2-transformed, and zero values were imputed as one-half the 

minimum nonzero abundance measurement. Then, one-way ANOVA with Tukey post hoc tests 

for significance of the paired groupwise differences across diagnosis groups was performed in R 

using a custom calculation and volcano plotting framework implemented and available as an 

open-source set of R functions documented further on 

https://www.github.com/edammer/parANOVA. T test p values and Benjamini-Hochberg FDR for 

these are reported for two total group comparisons, as was the case for AT+ versus AT- peptide 

mean difference significance calculations. Receiver-operating characteristic (ROC) analysis was 

performed in R version 4.0.2 with a generalized linear model binomial fit of each set of peptide 

ratio measurements to the binary case diagnosis subsets AD/Control, AsymAD/Control, and 

AD/AsymAD using the pROC package implementing ROC curve plots, and calculations of AUC 

and AUC DeLong 95% confidence interval. Additional ROC curve characteristics including 

sensitivity, specificity, and accuracy were calculated with the reportROC R package. Venn 

diagrams were generated using the R vennEuler package, and the heatmap was produced using 

the R pheatmap package/function. R boxplot function output was overlaid with beeswarm-

positioned individual measurement points using the R beeswarm package. Pearson correlations 

of SRM peptide measurements to immunoassay measurements of Aβ(1-42), total Tau, phosphor-
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T181 Tau, and the ratio of total Tau/ Aβ were performed using the corAndPvalue WGCNA function 

in R. Correlation scatterplots were generated using the verboseScatterplot WGCNA function. 

 

Data Records  

All files have been deposited on Synapse (syn34054965). These include sample traits 

(syn34612929, Data Citation 1), transition details (syn34615929, Data Citation 2), all mass 

spectrometry raw files (N=423) from both quality control replicates and clinical samples 

(syn34054983, Data Citation 3), Skyline quantification file (syn34055004, Data Citation 4), the 

peptide ratio data matrix (syn34615930, Data Citation 5), protein details (syn34615931, Data 

Citation 6), and QC statistics (syn34615928, Data Citation 7), and the ANOVA analysis results 

(syn34635281, Data Citation 8).  

 

Technical Validation  

Assessing peptide precision using pooled CSF quality control (QC) standards  

We generated two pools of CSF reference standards as QCs based on biomarker status 

(AT- and AT+). These QCs were processed and analyzed (at the beginning, end, and after every 

20 samples per plate) identically to the individual clinical samples for testing assay reproducibility. 

We analyzed 30 QCs (15 AT- and 15 AT+) over approximately 5 days during the run of clinical 

samples. We identified 62 peptides from 51 proteins as reliably measured in the pooled reference 

standards. We included 58 peptides from 51 proteins in our biomarker analysis, plus peptides 

specific for the four APOE alleles for proteogenomic confirmation of APOE genotypes 28, 29. The 

technical coefficient of variation (CV) of each peptide was calculated based on the peptide area 

ratio for the biomarker negative (AT-) and positive (AT+) QCs. We defined CSF peptide 

biomarkers with CVs ≤ 20% as quantified with high precision in these technical replicates which 

were un-depleted and unfractionated CSF sample pools. Technical and process reproducibility 

for all reported peptides was below 20% (CV < 20%) in at least one pooled reference standard 

(Supplemental Figure 1). Supplemental Table 1 contains the QC statistics for the biomarker 

and APOE allele specific peptides. Levels of HBA and HBB peptides can be used to assess the 

levels of potential blood contamination 30 in each of the CSF samples across individual plates 

(Supplemental Figure 2). Correction for blood contamination could improve the statistics; 

however, no correction was performed for the statistical analyses presented. We used the protein 
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directions of change to assess accuracy in the QC pools. The volcano plot between peptides 

measured in the pools highlights peptide/protein levels that are consistent with previously reported 

AD biomarkers (Supplemental Figure 3) 18, 23. 

 

Monitoring LC-MS/MS Instrument Performance  

The sample reconstitution solution contained Promega 6×5 LC-MS/MS Peptide Reference 

Mix (50 fmol/µL) 31. The Promega Peptide Reference Mix provides a convenient way to assess 

LC column performance and MS instrument parameters, including sensitivity and dynamic range. 

The mix consists of 30 peptides; 6 sets of 5 isotopologues of the same peptide sequence, differing 

only in the number of stable, heavy-labeled amino acids incorporated into the sequence using 

uniform 13C and 15N atoms making them chromatographically indistinguishable. The 

isotopologues were specifically synthesized to cover a wide range of hydrophobicities so that 

dynamic range could be assess across the gradient profile (Figure 2A). Each isotopologue 

represents a series of 10-fold dilutions, estimated to be 1 pmole, 100 fmole, 10 fmole, 1 fmole, 

and 100 amole for each peptide sequence in a 20 µL injection, a range that would challenge the 

lowest limits of detection of the method (Figure 2B). We assessed the raw peak areas in 423 

injections over 5 days to determine the label-free CV for each peptide isotopologue (Figure 2B). 

The 100 amole level (0.0001x) was not detected (ND) for any of the peptide sequences. Based 

on the label-free CV, we determined the lowest limit of detection for each peptide to be between 

1-10 fmole across the gradient profile with a dynamic range spanning 4 orders of magnitude for 

all peptides except the latest eluting peptide at 13.3 minutes (Figure 2C). 

Technical Replicate Variance 

 Three individual samples were analyzed in duplicate scattered throughout the sample run 

sequence to assess technical replicate variance. We graphed the log2(ratio) for each of 58 

biomarker peptides in replicate 1 versus replicate 2 for each sample and determined the Pearson 

correlation coefficient with associated P value (Figure 3). The analysis showed a near-identical 

correlation (ρ=0.996-0.998) between each of the technical replicate pairs for the three individual 

CSF samples, supporting the same high level of method reproducibility we found using the QC 

pools.  
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Usage Notes  

Ultimately, this targeted mass spectrometry dataset serves as a valuable resource for a 

variety of research endeavors including, but not limited to, the following applications: 

Use case 1: Peptide abundance in CSF 

This dataset provides a reference for peptide detectability in CSF under relatively high-

throughput conditions, especially if an investigator wants to determine whether their protein of 

interest has abundance above the lower limit of detection in CSF under these analytical 

conditions. Raw data contains transitions for over 200 peptides that were robustly detected in 

CSF discovery proteomics 18, 23. [Data Citation 3]. 

Use case 2: Using APOE allele specific peptides for genotyping 

 Apolipoprotein E (ApoE) has three major genetic variants (E2, E3, and E4, encoded by 

the ε2, ε3 and ε4 alleles, respectively) that differ by single amino acid substitutions 32. APOE 

genotype is closely related to AD risk 33 with ApoE4 having the highest risk, ApoE2 the lowest 

risk, and ApoE3 with intermediate risk 34, 35. Due to the amino acid substitutions in each variant, 

there are allele specific peptides that can be targeted by mass spectrometry 28, 36. We monitored 

CLAVYQAGAR (APOE2), LGADMEDVR (APOE4), LGADMEDVCGR (APOE2 or APOE3), and 

LAVYQAGAR (APOE3 or APOE4) to determine the APOE genotype of each CSF sample in a 

concurrent SRM-MS method [Data citation 1].  The CV for each APOE peptide in each QC is 

listed in Supplemental Table 1. Previous studies report the association of APOE genotype with 

various clinical, neuroimaging, and biomarker measures 37-40. Exploring the relationship between 

APOE status and the CSF biomarker peptides presented requires further analysis reserved for 

future studies.   

Use case 3: Stage-specific differences in peptide and protein levels 

The described cohort includes control, AsymAD and AD groups across the 

Amyloid/Tau/Neurodegeneration (AT/N) framework 41, which allows for the comparison of peptide 

and protein differential abundance across stages of disease. Investigators can focus on 

comparisons that are specific to symptomatic AD or those with potential for staging AD by using 

the AsymAD group compared to the control group. By comparing candidate biomarkers using 
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ANOVA (excluding APOE allele specific peptides), we found 41 differentially expressed peptides 

(36 proteins) in AsymAD vs controls (Figure 4A), 35 differentially expressed peptides (30 

proteins) in AD versus controls (Figure 4B), and 21 differentially expressed peptides (18 proteins) 

in AD vs AsymAD (Figure 4C). The Venn diagram summarizes the differentially expressed 

peptides across groups in Figure 4D.  

Use case 4: Stratifying early from progressive biomarkers of AD 

Using a differential abundance analysis, we were able to stratify the changing proteins as 

early or progressive biomarkers of AD (Figures 4 and 5). The log2-fold change (Log2 FC) from 

the volcano plots in Figure 4 are represented as a heatmap in Figure 5A to illustrate how each 

peptide is changing across each group comparison. Twenty-two peptides (21 proteins) were early 

biomarkers of AD because they were significantly different in AsymAD versus controls, but not 

significantly different in AD versus AsymAD (Figure 5A). A plurality of these proteins mapped to 

metabolic enzymes linked to glucose metabolism (PKM, MDH1, ENO1, ALDOA, ENO2, LDHB, 

and TPI1, also in Supplemental Table 2) 15, 16. SMOC1 and SPP1, markers linked to glial biology 

and inflammation 16, 18, were also increased in AsymAD samples compared to controls (Figure 

5B, top row). GAPDH, YWHAB and YWHAZ proteins were found to be progressive biomarkers 

of AD because the proteins were differentially expressed from Control to AsymAD and from 

AsymAD to AD with a consistent trend in direction of change (Figure 5B, middle row). Proteins 

associated with neuronal/synaptic markers including VGF, NPTX2, NPTXR, and L1CAM were 

increased in AsymAD compared to controls but decreased in AD vs controls (Figure 5B, lower 

row). Interestingly, we found 14 peptides (13 proteins) that were up in AsymAD as compared to 

Control but down in AD when compared to AsymAD.  A majority of these proteins map to 

neuronal/synaptic markers including VGF, NPTX2, NPTXR, which are some of the most 

correlated proteins in post-mortem brain to an individual’s slope of cognitive trajectory in life 

(Figure 5A and 5B, lower row) 42.  

 

Use case 5: Correlation of peptide biomarker abundance to Aβ(1-42), Tau, pTau and 

cognitive measures  

 The comparison of existing biomarkers to the SRM peptide measurements can be 

accomplished by correlation, where the degree of correlation indicates how similar a peptide 

measurement is to the established immunoassay-measured biomarkers of Aβ(1-42), total Tau, 

and pTau as well as cognition (MoCA score).  In Figure 6A, we demonstrate that 57 of the 58 
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biomarker peptides have significant correlation to at least one of the above biomarkers, or the 

ratio of total Tau/Aβ.  Individual correlation scatterplots and linear fit lines for three of the peptides 

(SMOC1: AQALEQAK, YWHAZ: VVSSIEQK, and VGF: EPVAGDAVPGPK) are provided in 

Figure 6B. Significant correlations of these peptides to the established biomarker and cognitive 

measures indicate the potential of these measurements to classify or stage disease progression.  

The targeted SRM measurement correlations largely agree with those observed from unbiased 

discovery proteomics 43 and parallel reaction monitoring 23 experiments. 

Use case 6: Receiver-operating characteristic (ROC) analysis for evaluating biomarker 

diagnostic capability  

The capacity for peptide measurements to serve as a diagnostic biomarker distinguishing 

individuals with AD and even asymptomatic disease from individuals not on a trajectory to develop 

AD is well-established, with secreted amyloid and tau peptide measurements in CSF being the 

current gold standard for interrogation of patients’ AD stage from their CSF 44 where CSF Aβ(1-

42) concentration inversely correlates to plaque deposition in the living brain 45. The 

measurements of additional peptides collected here are appropriate for comparison to 

immunoassay measurements of CSF amyloid and Tau biomarker positivity, or a dichotomized 

cognition rating, or other ancillary traits such as diagnosis for the 390 individuals can be 

performed. To demonstrate this utility, we performed receiver-operating characteristic (ROC) 

curve analysis and calculated the area under the curve (AUC) for all 62 peptide measures as 

fitting a logistic regression to 3 subsets of samples divided to represent known pairs of disease 

stages, namely AD versus control, AsymAD versus control, and AD vs AsymAD (Figure 7 and 

Supplemental Table 4). The top performing peptide for the YWHAZ gene product 14-3-3 ζ protein 

demonstrated an AUC of 90% discrimination of AD from control cases consistent with previous 

studies 23, 46, 47. SMOC1 AUC of 81.8% was the best performing peptide for discrimination of 

AsymAD from control groups. Given the enrichment of APOE4 carriers in the AsymAD group, the 

APOE4 allele specific peptide LGADMEDVR was also an excellent classifier (AUC 78.4%) of 

AsymAD versus control groups.  In contrast, the synaptic peptides to NPTX2 (AUC of 74.0%), 

NPTXR (AUC of 71.1%), VGF (AUC of 70.1%) and SCG2 (AUC of 69.8%) best discriminated AD 

from AsymAD groups suggesting that neurodegeneration due to AD pathology is occurring in the 

symptomatic phase of disease 48. Figure 7 shows the top five peptides by AUC for each of the 

three comparisons, highlighting the potential of this data set to aid in the design or validation of 

stage-specific biomarkers. Additional future analysis using these peptides alone or in combination 

could be used to subtype, predict disease onset, and gauge treatment efficacy. 
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Use case 7: Absolute quantification of AD peptide/protein biomarkers  

Typically, relative quantification is a precursor to nominating biomarkers for absolute 

quantification using purified synthetic standards. The peptide-specific characteristics, such as 

intensity, charge state, and modification state, may serve as a resource to reference for future 

studies to determine the molar amount of AD biomarker peptides in CSF. Absolute quantification 

is an important step to defining cutoffs that could be used in a diagnostic or cohort classification.  

 

Data Citations 
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Figure Legends 

Figure 1. Cohort Characteristics. A total of 390 samples (133 controls, 127 AsymAD, 130 AD 

unless otherwise noted) were analyzed using the following characteristics for grouping. (A) Age 

range across each group of the cohort was carefully selected to balance for age and sex 

(Supplemental Table 1). (B) Cognition was assessed using the Montreal Cognitive Assessment 

(MoCA) score; there is no significant difference in scores between the Control and AsymAD 

groups serving as the two cognitively normal diagnostic groups (133 controls, 127 AsymAD, 124 

AD). The Roche Diagnostics Elecsys® platform was used for CSF biomarker measurements for 

Aβ(1-42) (C), Total Tau (133 controls, 127 AsymAD, 129 AD) (D), and pTau (E) (pg/mL) showing 

the significance between groups for each measurement. (F) Tau/Aβ ratio data across control, 

AsymAD and AD groups. There was no significant difference between AsymAD and AD groups 

to serve as our biomarker positive groups (133 controls, 127 AsymAD, 129 AD). The significance 

of the pairwise comparisons is indicated by overlain annotation of ‘ns’ (not significant; p>0.05) or 

asterisks; ****p≤0.0001.  

Figure 2. Isotopologue peptide internal reference standards to determine consistency of 

LC-MS/MS platform. Each of the CSF samples were spiked with a six-peptide, 5 isotopologue 

concentration LC-MS/MS Peptide Reference Mix from Promega (50 fmol/µL). (A) Extracted ion 

chromatogram for the 6 peptide (1pmol) mixture illustrating the wide range of retention times due 

to their hydrophobicity. (B) The raw peak areas in 423 injections over 5 days were used to 

determine the label-free CV for each peptide isotopologue estimating the lowest limits of detection 

to be between 1-10 fmole for each peptide. (C) The 5 unique isotopologues are used to assess 

the dynamic range across the gradient profile and each peptide demonstrates linearity across 3-

4 orders of magnitude in the batch of 423 injections. Error bars represent the standard deviation 

across 423 injections. 

Figure 3. Technical reproducibility of peptide measurements in replicate CSF samples. 

Pearson correlation and p-value of replicate measures of 58 peptides in the 3 replicated CSF 

samples that were analyzed randomly within the series of 423 injections by SRM-MS.  

Figure 4. Differential expression analysis across stages of AD. ANOVA analysis with Tukey 

post hoc FDR was performed for pairwise comparison of mean log2(ratio) differences between 

the 3 stages of AD (i.e., Control, AsymAD and AD) of N=390 total case samples and plotted as a 

volcano. Significance threshold for counting of peptides was (p < 0.05; dashed horizontal line). 
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Differentially expressed peptides for (A) AsymAD (N=127) versus control (N=133), (B) AD 

(N=130) versus control, and (C) AD versus AsymAD are labeled by their gene symbols. (D) 

Counts of peptides with significant difference in any of the 3 dichotomous comparisons are 

presented as a Venn diagram. Full statistics from the ANOVA and Tukey post-hoc analysis is 

presented in Supplemental Table 2. 

Figure 5.  Stratifying early from progressive biomarkers of AD. (A) The magnitude of positive 

(red) and negative (blue) changes are shown on a gradient color scale heatmap representing 

mean log2-fold change (Log2FC) for each of 49 peptides significant in any of the 3 group 

comparisons. Tukey significance of the pairwise comparisons is indicated by overlain asterisks; 

*p<0.05, **p<0.01, ***p<0.001. (B) Peptide abundance levels of selected panel markers that are 

differentially expressed between groups. The upper row highlights biomarkers that are 

significantly different in AsymAD versus controls, but not significantly different in AsymAD versus 

AD. The middle row of 3 peptides highlights progressive biomarkers of AD, which show a stepwise 

increase in abundance from control to AsymAD to AD cases. The bottom row highlights a set of 

proteins that are increased in AsymAD compared to controls but decreased in AD versus control 

or AsymAD samples. 

Figure 6. Correlating CSF peptide biomarker abundances to amyloid, Tau, and cognitive 

measures. (A) Positive (red) and negative (blue) Pearson correlations between biomarker 

peptide abundance and immunoassay measures of Aβ(1-42), total Tau, phospho-T181 Tau 

(pTau), ratio of total Tau/Aβ and cognition (MoCA score). Student’s significance is indicated by 

overlain asterisks; *p<0.05, **p<0.01, ***p<0.001. (B) Individual correlation scatterplots are shown 

for SMOC1 (upper row), YWHAZ (middle row), and VGF (lower row). Individual cases are colored 

by their diagnosis; blue for controls, red for AsymAD cases, and green for AD cases. Amyloid 

immunoassay measures of 1,700 (maximum, saturated value in the assay) were not considered 

for correlation. 

Figure 7. Receiver-operating characteristic (ROC) curve analysis of peptide diagnostic 

potential. ROC curves for each of three pairs of diagnosed case groups were generated to 

determine the top-ranked diagnostic biomarker peptides among the 58-peptide panel plus 4 

APOE specific peptides. (A) A total of 263 AD (N=130) and control (N=133) CSF case samples 

were classified according to the logistic fit for each peptide’s log2(ratio) measurements across 

these samples, and the top 5 ranked by AUC are shown. (B) Top five performing peptides for 

discerning AsymAD (N=127) from control (N=133) case diagnosis groups are provided with 

AUCs, nominating these peptides as potential markers of pre-symptomatic disease, and as 
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cognates for AT+ biomarker positivity. (C) Symptomatic AD (N=130) and AsymAD (N=127) 

discerning peptides were ranked by AUC and the top five ROC curves are shown and nominated 

as cognate CSF measures for compromised patient cognition. 
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Supplemental Data 

Supplemental Figure 1. Coefficients of variation (CV) plotted for 58 biomarker peptides in 

AT- and AT+ QC pools. The QC pools were measured (N=30) during the analysis of clinical 

samples. The CV (%) for 58 biomarker peptides measured in AT- (black, N=15) and AT+ (gray, 

N=15) was plotted to illustrate all biomarker peptides had a CV<20% in at least one QC pool. 

CV=20% is shown with a solid green line. 

Supplemental Figure 2. Monitoring background peptide levels in CSF. Three proteins were 

monitored for levels of potential blood contamination in each of the CSF samples. The peptide 

ratio for hemoglobin subunit alpha (A), hemoglobin subunit beta (B), and albumin (C and D) 

peptides are plotted for each of the CSF samples (N=423) in acquisition order.  

Supplemental Figure 3. Differentially abundant peptides representing changed proteins in 

AT- vs AT+ QC CSF pools. The differentially abundant proteins in the QC pools were used to 

check the accuracy of the fold change consistent with our other studies 18. We found 21 

upregulated and 10 downregulated peptides. This result validated the direction of change of six 

proteins nominally significantly downregulated in previously published discovery proteomics 

(PON1, APOC1, NPTX2, VGF, NPTXR, and SCG2), and of sixteen proteins previously reported 

as upregulated (YWHAZ, GDA, CHI3L1, PKM, CALM2, SMOC1, YWHAB, MDH1, ALDOA, 

ENO1, GOT1, PPIA, DDAH1, PEBP1, PARK7, and SPP1) 18, 23. 

Supplemental Table 1. Coefficient of variation (CV) values for 58 biomarker peptides and 

APOE allele specific peptides in AT- and AT+ QC pools. 

Supplemental Table 2. ANOVA of differential abundance analysis for 58 biomarker peptides 

across Control, AsymAD and AD sample pairwise group comparisons. 

Supplemental Table 3. Pearson correlations (rho), Student p values of correlation significance, 

and numbers of paired observations for correlation of biomarker peptide abundances to 

immunoassay measures of Aβ(1-42), total Tau, phospho-T181 Tau, and the ratio of total Tau/ 

Aβ. 

Supplemental Table 4. ROC curve statistics including AUC, p, 95% DeLong confidence 

interval, accuracy, specificity, and sensitivity for dichotomous diagnosis case sample groups. 
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