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 33 
Abstract: 34 

 35 
The serial interval distribution is used to approximate the generation time distribution, an 36 

essential parameter to predict the effective reproductive number “𝑅!”, a measure of 37 

transmissibility. However, serial interval distributions may change as an epidemic progresses 38 

rather than remaining constant. Here we show that serial intervals in Hong Kong varied over 39 

time, closely associated with the temporal variation in COVID-19 case profiles and public 40 

health and social measures that were implemented in response to surges in community 41 

transmission. Quantification of the variation over time in serial intervals led to improved 42 

estimation of 𝑅!, and provided additional insights into the impact of public health measures on 43 

transmission of infections. 44 

 45 
 46 

One-Sentence Summary: 47 
 48 
Real-time estimates of serial interval distributions can improve assessment of COVID-19 49 

transmission dynamics and control.  50 
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Main Text: 51 

Monitoring the intensity of coronavirus disease 2019 (COVID-19) transmission is an essential 52 

component of public health surveillance for situational awareness and real-time impact 53 

assessment of interventions (1, 2). Transmissibility has typically been measured by the 54 

effective reproductive number “𝑅!” based on analysis of epidemic curves along with an 55 

estimate of the generation time distribution (3-5). The generation time for an infectious disease 56 

describes the average time between consecutive infections in a transmission chain (4, 6), and 57 

is often approximated by the serial interval distribution which describes the average time 58 

between illness onsets of consecutive cases in a transmission chain (3, 7, 8). However, we and 59 

others have shown that the serial interval distribution may change as an epidemic progresses 60 

rather than remaining constant (9-11).  61 

 62 

In Hong Kong, a subtropical city located on the southern coast of China, the public health 63 

responses to COVID-19 following a “dynamic zero covid” strategy aiming to eliminate local 64 

infections included a number of key components. First, travel restrictions and on-arrival 65 

quarantines on all in-bound travellers have been implemented throughout the pandemic to 66 

reduce the importation risk. Second, a series of targeted and community-wide public health and 67 

social measures have been used to minimize local transmission of COVID-19, including 68 

hospital isolation of all confirmed cases, quarantine of close contacts in designated facilities, 69 

mask mandate, restriction on gatherings, closures of facilities, schools, and some workplaces, 70 

and compulsory testing orders for persons at a higher risk of exposure. This strategy was 71 

successful in limiting cumulative incidence to 12,600 confirmed cases by 31 December 2021, 72 

corresponding to 0.16% of the total population in Hong Kong. All community epidemics were 73 

associated with ancestral-like viruses and not variants. Here, our objective is to take advantage 74 

of detailed contact tracing data in Hong Kong to characterise temporal changes within and 75 
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 4 

between waves in the serial interval distribution of COVID-19 through a series of community 76 

epidemics, and identify possible factors associated with those temporal changes. 77 

 78 

 79 

COVID-19 transmission and PHSMs in Hong Kong 80 

We obtained detailed information on each laboratory-confirmed case of COVID-19 from the 81 

Department of Health of the Hong Kong SAR government (section 1, supplementary 82 

materials). The database included information on the confirmation date, illness onset date, 83 

isolation date, hospital admission date, outcome (critical/serious/stable), infection origin 84 

(locally infected vs infected outside Hong Kong) and arrival date (if applicable), home and 85 

workplace location, detailed travel/movement history, cluster information from contact tracing 86 

(if applicable) of each confirmed case (12). In Hong Kong from 22 January 2020 through 31 87 

July 2022, COVID-19 has caused five local epidemic waves. The “first wave”, defined as the 88 

period from late January to mid-February 2020 with a small number of community cases linked 89 

to importations from mainland China (13). Given the very small number of imported infections 90 

(n=45) we excluded the first wave from our study. We analysed data from throughout the 91 

second wave (1 March 2020 – 10 April 2020), third wave (25 June 2020 – 8 September 2020) 92 

and fourth wave (1 Nov 2020 – 23 March 2021) (Fig. 1A). In the fifth wave which started in 93 

early January 2022 (14), contact tracing capacity was challenged due to the fast exponential 94 

rise in cases, and we were only able to include detailed data on confirmed transmission pairs 95 

from the very early stage of this wave in these analyses. Our study received ethical approval 96 

from the Institutional Review Board of the University of Hong Kong (ref: UW 20-341). 97 

 98 

We collected information from official reports on the public health and social measures 99 

(PHSMs) implemented in Hong Kong to control the spread of COVID-19 (15). We further 100 
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classified these interventions into case-based, community-wide (including travel-based) 101 

control measures (16). The case-based measures including strict isolation of cases and 102 

quarantine of close contacts were maintained throughout each wave while the community-wide 103 

measures were generally only implemented when needed to bring each epidemic wave under 104 

control. The summary of these PHSMs including their timing and duration is provided in 105 

Supplementary table S1. 106 

 107 

Construction of transmission pairs 108 

Following our earlier work (17), we first reconstructed the initial transmission pairs with 109 

reference to the detailed individual data on all confirmed cases retrieved from the Centre for 110 

Health Protection. We further rechecked the initially constructed pairs by their cluster 111 

information and epidemiological linkage with other cases and determined the infector and 112 

infectee within a pair according to a pre-defined algorithm (section 1, supplementary 113 

materials). The larger clusters with complex epidemiological linkages between the cases were 114 

individually assessed to determine the infector and the infectee in each transmission pair. If 115 

there were two or more likely infectors in one cluster, we defined the infector as the case with 116 

the earliest onset date. If cases shared the same onset date, the one with an earlier report date 117 

or case number would be classified as an infector (section 1, supplementary materials) (9, 18). 118 

We also performed a possible cross-check on unclear pairs with phylogenetic data to examine 119 

potential infector-infectee relationships with the Phybreak package in R (19). We resolved the 120 

multiple infector issue by identifying a case to be the infector of all subsequent cases with an 121 

immediate link in a cluster when the onset intervals between the infector and the infectees fell 122 

within a pre-defined time period, 8 days for the main analysis and 5-14 days for the sensitivity 123 

analyses (section 6, supplementary materials). Among more than 12,600 COVID-19 cases in 124 

Hong Kong in the period 1 March 2020 through to 23 March 2021, most were identified in the 125 
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third and fourth waves (Fig. 1A), in total we were able to construct 2433 transmission pairs, 126 

including 87, 965 and 1381 in the second, third and fourth waves, respectively. Among these, 127 

we considered 47, 357 and 355 transmission pairs as “confirmed pairs” in these three waves, 128 

respectively, and the remainder were “likely pairs” (section 1, supplementary materials). There 129 

were an additional 64 pairs identified in small outbreaks occurred between our pre-defined 130 

waves, and 229 pairs (30 for BA1, 174 for BA2 and 25 for delta) identified in the very early 131 

stage of the fifth wave (fig. S1). 132 

 133 

Time-varying serial intervals and PHSMs 134 

We estimated the serial interval distributions over time in a Bayesian framework based on 135 

Markov Chain Monte Carlo, implemented with the RStan package in R (section 2, 136 

supplementary materials). We estimated serial interval distributions for three periods within 137 

each wave i.e. pre-peak, during peak, and post-peak, and then estimated the time-varying daily 138 

effective serial interval distributions with a sliding window of 10 days (7-14 days for sensitivity 139 

analysis) (9). We used the same framework to estimate the distributions of onset-to-isolation 140 

intervals (indicating case isolation delay) for the infectors and then performed multivariable 141 

regression analysis on mean serial intervals where the mean onset-to-isolation interval and 142 

various PHSMs were included as explanatory variables (section 3, supplementary materials). 143 

The variation in population mobility and mixing, potentially reflecting the effect of these 144 

PHSMs, might also impact the transmission dynamics of COVID-19 (20-22). Therefore, we 145 

also performed a multivariable regression analysis on the estimated mean serial intervals with 146 

the daily digital transactions through Octopus cards, a widely-used contactless electronic 147 

payment system in Hong Kong, as the proxy of relative mobility of the population (20), and 148 

daily per capita testing volume (number of PCR tests conducted per 10,000 population per day) 149 

in Hong Kong (section 3, supplementary materials). 150 
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 151 

Among the 2497 transmission pairs identified in during the first two years of the COVID-19 152 

pandemic in Hong Kong including the second, third and fourth waves with the ancestral strain 153 

of SARS-CoV-2, the mean serial interval (𝜇) was estimated to be 3.6 (95% CrI: 3.5, 3.7) days 154 

with standard deviation (𝜎)  3.4 (95% CrI: 3.3, 3.5) days.  155 

 156 

We identified the peak of the second wave from 16 to 24 March 2020, from 18 to 27 July 2020 157 

for the third wave, and the fourth wave had two peaks, the first from 30 November 2020 to 15 158 

December 2020 and the second during 11 - 25 January 2021 (section 1, supplementary 159 

materials). There were clear temporal changes in mean serial interval estimates within each 160 

epidemic wave studied and across waves, with mean serial intervals shortening from 5.5 days 161 

(95% CrI: 4.4, 6.6) for pre-peak to 3.2 days (95% CrI: 1.9, 4.4) for post-peak in the second 162 

wave, and from 4.6 (95% CrI: 4.1, 5.0) days to 2.7 (95% CrI: 2.2, 3.2) days in the third wave 163 

(Fig. 1A and table S2). However, less clear changes were identified in the fourth wave where 164 

two peaks in incidence were noted (Fig. 1A). The standard deviations of serial interval 165 

distributions within individual epidemic waves were more comparable but inter-wave 166 

differences were noticeable ranging from 2.4 days to 4.3 days (table S2). The mean onset-to-167 

isolation intervals had a similar decreasing temporal pattern along with mean serial intervals 168 

during the second wave shortening from 5.8 days to 3.5 days, while the estimates were largely 169 

constant during the third wave between 5.2 days and 5.4 days and fluctuated throughout the 170 

fourth wave (3.4 days to 5.0 days) (Fig. 1A and table S2). In the early part of the fifth wave, 171 

the mean serial interval was estimated to be 3.6 (95% CrI: 3.5, 3.7) days with standard deviation 172 

3.4 (95% CrI: 3.3, 3.5) days with comparable estimates for the Delta variant (𝜇: 4.0 days, 𝜎: 173 

2.4 days), the Omicron BA.1 (𝜇: 3.3 days, 𝜎: 2.0 days) and the Omicron BA.2 (𝜇: 3.6 days, 𝜎: 174 

1.8 days) subvariants. 175 
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 176 

The time-varying mean effective serial intervals and onset-to-isolation intervals across the 177 

second, third and fourth epidemic waves in Hong Kong showed similar temporal patterns in 178 

the two epidemiological parameters based on the daily changes in the estimates (Fig. 1, B to 179 

D). The daily variations (shortening and lengthening) in the estimates of two parameters either 180 

occurred towards the same direction (most of the second wave, some phases of the third and 181 

the fourth waves) or opposite directions (some of the phases in the third wave and the fourth 182 

wave) over the epidemics. Similar results were also indicated in the sensitivity analysis on all 183 

transmission pairs (fig. S2).  184 

 185 

The implemented PHSMs could explain up to 70%, 42% and 49% of the variance in the mean 186 

effective serial intervals estimated for the second, third and fourth waves, respectively (table 187 

S3). The onset-to-isolation interval, reflecting the impact of the targeted measure of case 188 

identification and isolation, was found to have statistically significant positive associations 189 

with the effective serial intervals for the second and third waves with up to 60% and 13% of 190 

the variations explained in the estimated effective serial intervals for the two waves 191 

respectively, but there was not a statistically significant association in the fourth wave. The 192 

interrupted regression further suggested similar associations between onset-to-isolation 193 

intervals and effective serial intervals during different phases of the epidemics (table S4). A 194 

maximum of 10%, 29% and 48% of the variances in the estimated serial intervals were 195 

explained in the three waves respectively by both types of PHSMs (community-wide and case-196 

based measures) when adjusting for the possible delays in the impact of onset-to-isolation. The 197 

relative population mobility and daily tests per capita showed a positive and a negative 198 

association, respectively, with the mean effective serial interval across the waves (figs. S7 to 199 

S9 and table S5). 200 
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 201 

Factor-specific effective serial intervals 202 

We also explored the association between the estimated serial intervals and characteristics of 203 

the infector in the identified transmission pairs in the second, third and fourth wave, including 204 

age, sex, source of infection, transmission setting, severity outcomes and onset-to-isolation 205 

delay (section 4, supplementary materials). The mean serial interval estimates ranged from 2.4 206 

days to 5.6 days across the strata of these characteristic factors for infectors (tables S6 and S7, 207 

and fig. S3). We found that an older age (≥ 65 years) of the infectors was associated with a 208 

higher estimate of the mean serial interval (p-value <0.023) across the waves (fig. S3A and 209 

tables S7). The age-specific transmission matrices indicated that a higher proportion of the 210 

secondary infections transmitted to younger (<35 years) infectees from the infectors of all age-211 

groups (Fig. 2, A to C) and initially (during pre-peak) infections started with older (>65 years) 212 

infector-infectee transmissions, then involved more younger population during peak and post-213 

peak periods of the third and fourth waves (fig. S4). The age specific mean serial intervals were 214 

longer for older infectors (e.g., ≥ 65 years) (Fig 2, D to F and fig. S5). 215 

 216 

In the second wave, transmission setting was identified as a statistically significant explanatory 217 

factor (p-value = 0.037) with a higher estimated mean serial interval for household transmission 218 

(tables S6 and S7). In general, the estimates of mean serial intervals were longer for the 219 

transmission pairs with critical/severe infectors across the waves, and was statistically 220 

significant for the third wave (p-value = 0.037) and fourth wave (p-value = 0.022). The onset-221 

to-isolation intervals of the infectors were associated with estimated serial intervals (p-value < 222 

0.005) across the waves, with shorter mean onset-to-isolation intervals correlating with shorter 223 

mean serial interval estimates. Similar results were found in the sensitivity analysis for pre-224 

defined thresholds from (5-14) days (table S6). 225 
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 226 

Correction in estimation of transmissibility accounting for time-varying effective serial 227 

interval distributions 228 

We estimated time-varying 𝑅! to infer changes in the transmissibility of COVID-19 in Hong 229 

Kong using the Wallinga-Teunis method (4) (section 5, supplementary materials) which 230 

constructed the relative likelihood for a given case being a potential infector of other cases 231 

based on the case-based reproduction number (23). We extended the method by incorporating 232 

the effective serial interval distribution into the estimation of 𝑅! via the EpiEstim package in 233 

R. The estimated 𝑅! from time-varying effective serial intervals was compared with that based 234 

on a constant serial interval distribution over the epidemic waves.  235 

 236 

A simulation based modelling framework was also applied to quantify the bias from using a 237 

constant over time-varying serial interval in estimating 𝑅! through a comparison of the attack 238 

rates (or cumulative number of infections) under both approaches (section 7, supplementary 239 

materials). The time series of transmission rate 𝛽! derived first from the 𝑅!, estimated based on 240 

time-varying effective serial interval distributions and possible choices of constant serial 241 

interval distributions. Then these 𝛽! were used to reconstruct the respective epidemic curves 242 

by simulating Susceptible-Infected-Recovered models to assess the related bias as the 243 

difference in attack rates from the reported data.  244 

 245 

The differences between 𝑅! estimated from real-time effective serial intervals and a constant 246 

serial interval distribution indicated that the latter might have introduced biases in inferring the 247 

transmissibility of COVID-19 over these 3 waves under analysis (Fig. 3).  Smaller biases in 𝑅! 248 

were identified during the fourth wave (except initial days) (Fig. 3C), during which effective 249 

serial interval distributions were relatively more stable (i.e., less varying) (Fig. 1D). 250 
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Furthermore, with possible choices of single constant mean (𝜇) and standard deviation (𝜎) of 251 

serial interval distributions as estimated from our data, we predicted the bias in 𝑅! by evaluating 252 

the mean absolute deviation from the respective 𝑅!, calculated by using effective serial 253 

intervals. The magnitude and direction (over- or under-estimate) of these biases depends on the 254 

mean as well as the standard deviation of the fixed serial interval distributions (Fig. 3, A to C 255 

and fig. S6). We found biases in simulated attack rates, were smaller when generated by 256 

considering the effective serial interval distributions over the respective choices of constant 257 

serial interval distributions (Fig. 3, D to F and table S8). 258 

 259 

Discussion  260 

The transmission dynamics and epidemiological characteristics of COVID-19 varied 261 

significantly over time during the earlier epidemic waves studied in Hong Kong (Fig. 1 and 262 

Fig. 3, A to C), accounting for changes in case profiles and the impact of various control 263 

measures implemented at that time (table S1) (16, 17, 24) . Our results for Hong Kong align 264 

with earlier findings for mainland China, in identifying a shortening in mean serial intervals 265 

over time as an epidemic is controlled with non-pharmaceutical interventions (9, 11). The first 266 

two waves in Hong Kong were notably driven by imported cases and potential super-spreading 267 

events (17), and the proportion of asymptomatic cases was found to be significantly higher 268 

during later waves (15% - 23%). The proportion of pre-symptomatic transmissions was up to 269 

10%, and was significantly higher during the third wave, and comparable with the reported 270 

estimates elsewhere (18, 25). These inter- and intra-wave variations in case profiles along with 271 

varied PHSMs could shape the epidemiological parameters and hence the transmission 272 

dynamics of COVID-19 waves in Hong Kong.  273 

 274 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 30, 2022. ; https://doi.org/10.1101/2022.08.29.22279351doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.29.22279351
http://creativecommons.org/licenses/by/4.0/


 12 

In early 2020, we reported substantial reductions in mean effective serial intervals over time in 275 

mainland China following the implementation of various PHSMs including timely case 276 

isolation (9). Here we observed similar results in the second wave in Hong Kong (Fig. 1B), 277 

during which the mean onset-to-isolation delay had a positive association with mean serial 278 

interval and could explain a high proportion (59%) of variance in effective serial intervals. 279 

Other studies illustrated the effectiveness of the isolation of symptomatic cases and their 280 

potential  contacts in achieving sustained control of COVID-19 transmission (26, 27). Strict 281 

isolation of cases will reduce transmission later in the infectious period (9-11). The measure of 282 

case isolation improved (i.e., early isolation) over time in Hong Kong (28) and appeared to be 283 

comparatively stable in third and fourth waves and have a lesser impact on the temporal 284 

changes in mean serial intervals (tables S3 and S4), which might have been associated with the 285 

broader application of PHSMs or demographic factors.  286 

 287 

The community-wide PHSMs had negative association with serial interval across the waves, 288 

while case-based PHSMs, including case isolation had positive association with serial interval 289 

in the second and third wave (p-value = 0.33) (table S3). The association of these PHSMs with 290 

effective serial intervals could be positive or negative based on the impact of these 291 

interventions which could affect the infectors’ infectiousness profile (as truncated or modified 292 

by case-based measures including case isolation) and effective contact pattern of infectees with 293 

potential infectors (as reduced by community-wide measures and mass testing) respectively (9-294 

11) . This finding could suggest the lengthening of mean serial intervals during post-peak of 295 

third wave (during August 2020), when the per capita testing volume (as proxy of case-based 296 

measures) started to decline (fig. S7 and table S5), which might be attributable to missing of 297 

effective contact tracing and delays in isolation of cases (29, 30). The negative association 298 

between serial interval and community-wide PHSMs (table S3), could delay in finding 299 
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infectees for an infector by reducing the probability of effective contacts and resulted in reverse 300 

with the strengthening of community-wide PHSMs (30, 31).  301 

 302 

Along with the PHSMs, we found that certain demographic characteristics of the infectors and 303 

infectees were associated with variations in serial intervals (fig. S3A and tables S7). The older 304 

cases might be more severe and had faster and higher viral load (32-39), which might have 305 

been associated with shorter latent periods and incubation periods (36, 40-46). Therefore, the 306 

serial intervals for the transmissions from older infectors to younger infectees could be the 307 

longest or vice-versa as illustrated in fig. S10. For example, we noticed from early August 308 

2021, during post-peak of third wave, the mean serial interval estimates started to be longer 309 

although the onset-to-isolation intervals were more or less stable (Fig. 1C). Although we 310 

noticed on an average the infectors were older than the infectees in the transmission pairs 311 

throughout the third wave and fourth waves (except during the end of fourth wave) (fig. S11). 312 

Temporal variation in the age distributions of infector and infectee for a transmission chain 313 

could reshape the serial interval (fig. S4). The mean infectors’ age substantially increased after 314 

the peak of third wave (from late June and early August 2020) and during the end of the fourth 315 

wave (during February, 2021) (fig. S11), might lead longer mean serial intervals during these 316 

periods (Fig. 1). 317 

 318 

The infectors in household settings had significantly longer serial intervals for the third wave 319 

in Hong Kong (fig. S3 and table S7), accounting the proportion of older infectors in household 320 

was higher during that wave, though mean serial intervals under such settings reported not 321 

statistically significant for the first wave in mainland China (9, 18). For example, the household 322 

transmission was increased over time as noticed during third wave (fig. S12) and having older-323 

to-younger transmission across the course of each wave (fig. S4) might lengthen the serial 324 
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intervals during post-peak of third wave, during which mean onset-to-isolation were much 325 

stable (Fig. 1C).  326 

 327 

Furthermore, the methods of estimation may affect the estimates of the serial interval 328 

distribution (10). Estimating temporal serial intervals via forward-looking, backward-looking 329 

or intrinsic approach by using a cohort-based framework have respective biases to be corrected 330 

(10, 11, 47, 48). Therefore, the estimation of reproduction number with single constant serial 331 

interval distribution can lead to bias (9) which can be minimised by using effective serial 332 

interval distributions instead (Fig. 3, fig. S6 and table S8). This bias was noticeably lower in 333 

fourth wave (Fig. 3) as by then the serial interval distribution had less variation across that 334 

period (Fig. 1).  335 

 336 

This study provides a unique opportunity for a temporal investigation of how mean serial 337 

intervals can change over time, both shortening as well as lengthening depending on the 338 

intensity of transmission and the various case-based and community-wide PHSMs applied in 339 

Hong Kong, as well as variation in case profile (or characteristics), including demography, 340 

clinical severity, and transmission settings between and across waves. This is the first study to 341 

identify the potential factors, which could not only shorten the mean serial intervals over time, 342 

but also could lengthen the measure, therefore the resulting temporal changes in the estimates 343 

were accounted the direction and their strength of impacts. However, there are some limitations 344 

to our work. First, the change of the forward-looking serial intervals could be explained by 345 

both the PHSMs and internal mechanism (backward incubation period of infectors) (11), but 346 

detailed exposure information was not always available. Second, information on serial intervals 347 

collected through contact tracing could suffer various biases such as recall biases, which could 348 

reduce the chance of identifying longer serial intervals for example. However, our intense 349 
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algorithmic check and cross check with additional phylogenetic data should minimise the 350 

impact of this biases on the main outcomes. Finally, while we identified the potential for bias 351 

in 𝑅! estimates if using constant serial interval distributions, there are other potential biases in 352 

𝑅! estimation that we did not discuss here. 353 

 354 

In conclusion, our results indicated that the changes in serial interval distributions might not be 355 

always monotonic as reported earlier for mainland China in 2020 (9). The real-time variations 356 

in serial interval distributions were also driven by the changes in transmission pattern (who 357 

infects whom), characterised by temporal variation in demographical and clinical profiles of 358 

the cases along with PHSMs during the first two years of the COVID-19 pandemic in Hong 359 

Kong. This time varying matric of effective serial interval distributions could improve the 360 

estimation of  transmissibility, the time varying reproduction number (𝑅!) accounting for 361 

intermediate factors of transmission and allow us to assess the timely impact of public health 362 

measures.  363 

 364 

 365 

  366 
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 560 

Fig. 1. Transmission dynamics and temporal estimates of serial interval distribution and 561 
isolation delay for COVID-19 in Hong Kong. (A) The grey bars indicate the epi-curve of the 562 
reported COVID-19 cases, and white bars are onset epi-curves for infectors of those reported 563 
cases during four waves in Hong Kong. Mean serial interval estimates (red dots) with 95% CrI 564 
(red vertical line segments) and mean onset-to-isolation interval (teal dots) with 95% CrI (teal 565 
vertical line segments), evaluated from all confirmed and likely transmission pairs during pre-566 
peak, peak-timing, and post-peaks for three pre-defined waves (light blue shades) with vertical 567 
dark grey dashed lines referring to the peak-timing for each wave, with two peaks for fourth 568 
wave. (B)-(D) Time varying estimates of effective serial intervals and onset-to-isolation 569 
interval for second wave (A), third wave (B) and fourth wave (C) with the indicator to timings 570 
of major public health and social measures (PHSMs) implemented in Hong Kong. The area 571 
between two grey dashed lines in each wave indicates the peak timing of the epidemic wave. 572 
The estimates of serial interval and onset-to-isolation interval are evaluated by using MCMC 573 
on fitting normal and gamma distributions to empirical data on confirmed and likely 574 
transmission pairs (considering predefined threshold of 8 days) respectively. The effective 575 
serial intervals and onset-to-isolation intervals are estimated based on the empirical data in 10-576 
day sliding windows (presented with respect to the 5th day of each sliding window). 577 
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 582 

Fig. 2. Age-specific transmission and serial interval estimated between infectors and 583 

infectees for COVID-19 in Hong Kong. The heat maps for age-specific transmission densities 584 

(the relative frequency matrices of the age distribution of infector-infectee transmission pairs 585 

for the age-groups of below 35, 35-45, 45-55, 55-65, above 65 years) with the marginal 586 

densities were for third wave (A), 1st peak of fourth wave (B) and 2nd peak of fourth wave (C) 587 

of COVID-19 in Hong Kong. Age-specific empirical mean serial intervals with the respective 588 

marginal estimates, evaluated for these age-groups stratifications for infector and infectee 589 

across the third wave (D), 1st peak of fourth waves (E) and 2nd peak of fourth wave (F). Note 590 

that no infector found of age 65 years and over during second wave, hence excluded for age-591 

specific analysis. 592 
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604 
Fig. 3. Correction in transmissibility for the bias from using constant serial interval over 605 
effective serial interval distributions. Comparison of daily estimates of effective 606 
reproduction numbers (𝑅!) by using real-time effective serial interval distributions versus using 607 
a single fixed serial interval distributions for second wave (A), third wave (B) and fourth wave 608 
(C) in Hong Kong. The black solid lines are mean 𝑅! (with 95% CI in dashed black lines), 609 
evaluated using effective serial interval distributions and other solid colours lines represent the 610 
mean 𝑅! (with 95% CI in respective colours shades), evaluated using single fixed serial interval 611 
distributions. The fixed serial interval distributions with means (standard deviations) were 612 
considered for pre-, during and post-peak respectively in each wave as mean 5.5 (2.4) days, 4.5 613 
(3.2) days and 3.2 (2.5) days for second wave; 4.6 (3.9) days, 3.1 (3.2) days and  2.7 (4.3) days 614 
for third wave; 4.0 (2.8) days, 3.5 (3.1) days and 4.0 (2.4) days for 1st peak of fourth wave; and 615 
4.0 (3.0) days, 3.1 (2.7) days and 3.2 (3.3) days for 2nd peak of fourth wave. The differences 616 
between the black solid lines and the coloured solid lines indicate the respective biases on using 617 
single constant serial interval distribution to estimate 𝑅!. (D)-(E) The biases in terms of attack 618 
rates, estimated by reconstructing the epi-curves via. using the transmissibility (𝑅!) derived by 619 
effective and constants serial interval distributions and Susceptible-Infected-Recovered (SIR) 620 
models for second wave (A), third wave (B) and fourth wave (C) in Hong Kong. The observed 621 
epi-curves (in grey bars) of the COVID-19 cases, the reconstructed epi-curves in dashed lines 622 
by using effective serial interval distributions (in black dashed lines) and different 623 
counterfactual constant serial interval distributions (in dashed coloured lines). The differences 624 
between the black dashed lines and the coloured dashed lines indicate the respective biases in 625 
attack rates on using constant serial interval distributions. 626 
 627 
 628 
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