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ABSTRACT

Sepsis is a life-threatening condition with high in-hospital mortality rate. The timing of antibiotic (ATB) administration poses
a critical problem for sepsis management. Existing work studying antibiotic timing either ignores the temporality of the
observational data or the heterogeneity of the treatment effects. In this paper, we propose a novel method to estimate
TreatmenT effects for Time-to-Treatment antibiotic stewardship in sepsis (T4). T4 estimates individual treatment effects (ITEs)
by recurrently encoding temporal and static variables as potential confounders, and then decoding the outcomes under different
treatment sequences. We propose a mini-batch balancing matching that mimics the randomized controlled trial process
to adjust the confounding. The model achieves interpretability through a global-level attention mechanism and a variable-
level importance examination. Meanwhile, we incorporate T4 with uncertainty quantification to help prevent overconfident
recommendations. We demonstrate that T4 can identify effective treatment timing with estimated ITEs for antibiotic stewardship
on two real-world datasets. Moreover, comprehensive experiments on a synthetic dataset exhibit the outstanding performance
of T4 compared to the state-of-the-art models on ITE estimation.

Introduction
Sepsis is the body’s overwhelming response to infection,
which can lead to tissue damage, organ failure, amputations,
and death. Sepsis contributes to 6% of hospitalizations and
35% of in-hospital deaths1, and costs more than $27 billion
annually in the USA2. Based on a recent study on Medicare
beneficiaries, approximately 30% of septic patients do not
survive for 6 months3. Broad-spectrum antibiotics are the
first-line medications for sepsis4,5 because bacterial infection
causes most cases6.

The current sepsis treatment guideline for antibiotic tim-
ing is a one-size-fits-all approach, and when patients with
suspected sepsis should receive antibiotics remains controver-
sial7,8. The Surviving Sepsis Campaign (SSC) recommends
initiating broad-spectrum antibiotics within 1 hour for any
patient with suspected sepsis or septic shock9,10. While the
recommendation is supported by several large observational
studies11,12,13, there is substantial concern that striving for
1-hour antibiotic delivery for all patients with suspected sepsis
may cause serious harm (e.g., antibiotic resistance, C. difficile
infection)8,14,15. Thus determining personalized antibiotic
timing at the bedside is urgently needed.

Computational algorithms16,12,13,17 have been leveraged
for examining the optimal antibiotic timing for septic patients
using electronic health records (EHRs). EHRs contain ir-
regularly sampled temporal data, including patient’s lab test
results, vital signs and demographics. The main idea is to esti-
mate the treatment effects of different timings of antibiotics on
septic outcomes (e.g., in-hospital mortality). However, most

studies have either ignored the temporality of EHRs12,13 or
the heterogeneity of treatment effects16,17. These two issues
are crucial for identifying effective and precise therapy for
septic patients.

Some other literature18,19,20,21,22 of treatment design for
sepsis treat the problem as an off-policy evaluation using ob-
servational data. For example, Komorowski et al.,21 propose
a model to learn treatment policy based on patient trajectories
(i.e., states, actions and observations) by optimizing a reward
determined by patient survival. However, our method derives
optimal treatment options by estimating individual potential
outcomes for future timestamps. Our problem setting is more
challenging that 1) we need to do counterfactual reasoning
based on only observed data and 2) we need to adjust time-
varying confounding and estimate unbiased individual causal
effects.

In this paper, we study the problem of identifying the most
effective timing for antibiotic administration in septic patients
using EHR data. As shown in Figure 1, the patient’s informa-
tion are extracted and compiled from EHRs and then used to
build the model for antibiotic administration timing recom-
mendation. To address the aforementioned challenges, we pro-
pose a novel framework to estimate Trustworthy Treatment
effects for Time-to-Treatment antibiotic stewardship in sep-
sis (T4). The proposed model T4 first estimates individual
treatment effects (ITEs) of receiving antibiotics by recurrently
encoding temporal and static information obtained before the
current timestamp (baseline period), and then decoding the
potential outcomes under different treatment sequences after
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the current timestamp (follow-up period). We apply balanc-
ing matching for each mini-batch via treatment propensity as
balancing scores to construct a pseudo balanced mini-batch,
thus adjust the influence of confounders. We also provide the
model interpretability of treatment recommendation by ana-
lyzing: 1) the contribution of each timestamp in the baseline
to treatment recommendation with attention mechanism and
2) the contribution of each variable to treatment recommenda-
tion via variable importance examination that excludes each
variable in evaluating the influence on model loss. Meanwhile,
we adopt MC Dropout23 to estimate uncertainty and quan-
tify the confidence behind the ITE estimation and treatment
recommendation.

We evaluate the effectiveness of treatment recommenda-
tion on two nonoverlapping real-world EHR datasets: Medical
Information Mart for Intensive Care version III (MIMIC-III)24

and AmsterdamUMCdb25. The results show that the mortal-
ity rate of patients who receive the antibiotics at the time we
recommend is notably lower than the patients who do not,
indicating that our model offers effective timings of antibi-
otic administration that help to reduce the mortality rate. We
demonstrate the application of our model on time-to-treatment
recommendation using a concrete patient example. We also
analyze model interpretability by visualizing the global and
variable-level contribution to treatment recommendation via
a concrete case study. Moreover, we conduct comparison
experiments on ITE estimation using a synthetic dataset, and
our model outperforms the state-of-the-art ITE estimation
methods.

The contributions of this paper include the following:

• We propose an end-to-end treatment timing recommen-
dation framework that seamlessly integrates the treat-
ment effect estimation model, uncertainty quantifica-
tion, and model interpretability for making transparent
treatment recommendation.

• We develop a new ITE estimation method that can
model time-varying information and adjust the influ-
ence of temporal confounding variables via balancing
matching that mimics the randomized controlled trial
process.

• We incorporate the ITE estimation with uncertainty
quantification and interpretable analysis to achieve reli-
able treatment recommendation.

• We illustrate the usage of the proposed model in two
real-world EHR datasets. The results show that our
model can successfully identify effective timing of treat-
ment and thus pave the way for personalized and pre-
cision medicine. We further conduct comprehensive
comparison experiments on a synthetic dataset for ITE
estimation.

Overall framework
T4 recurrently encodes the patient’s temporal covariates ex-
tracted from the baseline period, then decodes the potential
outcomes with different treatment sequences in the follow-up
period. Both encoder and decoder are built based on long
short-term memory (LSTM)26, a deep recurrent neural net-
work that is widely used for modeling time series data. T4
adjusts the influence of confounders via balancing matching
(Fig. 3) to generate balanced mini-batches. Each patient in the
mini-batch is matched with the corresponding counterfactual
outcomes using the observed outcomes of his or her similar
patients in different treatment groups. The similarity of pa-
tients are estimated using propensity scores27 of receiving the
current treatment. Figure 2 illustrates the framework of the
proposed method. The training procedure of T4 is shown in
Algorithm 1.

Algorithm 1: T4 Training Procedure
Input: Treatment assignments A, temporal covariates

X , outcomes Y , static covariates d
Output: Potential outcome Y ′(At+1,t+ζ ), treatment

recommendation π ′

1 Pre-train T4 as propensity estimator according to Eq.
(16);

2 for epoch = 1, . . . ,EPOCH do
3 Obtain the similar patients of each mini-batch for

balancing matching according to Eq. (14);
4 for t = 1, . . . ,current_timestamp do
5 Obtain the embedding of temporal and static

covariates as ex
t ∈ RKe

x and ed ∈ RKd×Ke
d ;

6 Encode ex
t ,e

d ,at with LST M and obtain ht ;
7 Obtain the attention weight α according to Eq.

(5);
8 end
9 Compute the potential outcome y′t according to

Eq. (6);
10 for t =

current_timestamp, . . . ,current_timestamp+ζ

do
11 Decode ed ,at ,y′t using LST M and obtain ht ;
12 Obtain the attention weight β according to Eq.

(8);
13 end
14 Compute the potential outcome y′t according to

Eq. (9);
15 Compute the treatment effect δ ′ according to Eq.

(10);
16 Compute the treatment strategy π ′ according to

Eq. (11);
17 Compute outcome prediction loss according to Eq.

(17);
18 end
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Figure 1. Overall data flow of T4 framework. The data from MIMIC-III is randomly split into training, validation and testing
datasets with percentages of 70%, 10% and 20%, respectively. The validation dataset is used to select the best model
parameters and the testing dataset is used as an internal evaluation dataset. T4 framework is used to estimate individual
treatment effects for ATB administration timing recommendation. An external dataset obtained from AmsterdamUMCdb is
used as an external test set.

Results
Datasets
MIMIC-III. MIMIC-III24 is a large, freely-available database
comprising de-identified health-related data associated with
over 40,000 patients who stayed in critical care units of the
Beth Israel Deaconess Medical Center between 2001 and
2012. It contains patients’ demographics, vital signs, lab tests
and treatment assignments.

AmsterdamUMCdb. AmsterdamUMCdb25 is the first freely
accessible European intensive care database. It is endorsed by
the European Society of Intensive Care Medicine (ESICM)
and its Data Science Section. It contains de-identified health
data related to tens of thousands of intensive care unit admis-
sions, including demographics, vital signs, laboratory tests
and medications.

In both datasets, we included adult septic patients fulfilling
the international consensus sepsis-3 criteria28. We extracted
10,840 patients and 3,136 patients from MIMIC-III and Ams-
terdamUMCdb after applying exclusion criteria respectively.
Here, the causal inference problem we studied is the treat-
ment effects of antibiotic therapy among sepsis patients given
the observed confounding variables. There are three essen-
tial components that should be identified from the patient
data: (1)Treatments: we consider multiple kinds of antibiotic
therapy during the ICU stays. At each timestamp, a binary
treatment indicator will denote whether the patient is assigned
with antibiotics or not; (2) Confounders: we obtain 22 tem-
poral covariates (i.e., vital signs: temperature, heart rate, etc.;
lab tests: potassium, sodium, etc.) and 4 static covariates (i.e.,
age, gender, etc.) as potential confounders; (3) Outcomes: we
compile the 24-hour Sepsis-related Organ Failure Assessment
(SOFA)29 score as the primary outcome, which is computed
based on the degree of dysfunction of six organ systems. The
definition of sepsis-3 patient cohort is in study design of Meth-
ods, the list of antibiotics is in Supplementary Table 1, the
list of patient’s covariates is in Supplementary Table 3 and

computation of SOFA scores is in Supplementary Table 2.

Model performance
Population level analysis

As we have no access to the counterfactual outcomes in the
real-world dataset, so that we are not able to directly evaluate
the model performance in terms of counterfactual prediction.
Thus, we evaluate the model performance by comparing the
treatment effects of recommended timing of administration
(determined by estimated ITE according to Eq. (11)) and the
observed timing of administration on patients’ mortality rate.
Specifically, we first obtain a target group of patients whose
observed timing of ATB administration is different from the
model recommendation. Then we derive a compared group to
the target group by involving the most similar patients whose
observed timing of ATB administration matches the model
recommendation. We use the variables obtained from the
baseline period (time window before the follow-up period)
to perform patient similarity. We use Euclidean distance as
the similarity measurement. Finally we compare the mortality
rate within these two groups and expect that the mortality rate
of patients whose observed treatments match our recommen-
dation would be much lower than the patients whose observed
treatments are different from recommendation.

As shown in Fig. 4, we compute and compare 30 days
mortality rate and 60 days mortality rate on two datasets, re-
spectively. The black dashed lines in the two plots denote the
average mortality rate among the population, which are the
baselines for the comparison. We find that the mortality rate
of patients who receive treatments at different timestamps as
our recommendation is higher than the average mortality rate
baseline, while the mortality rate of patients who receive the
treatments at the same timestamps as our recommendation is
lower than the baseline. We evaluate the model concerning dif-
ferent lengths of the follow-up period (i.e., ζ ∈ {3,4,5,6,7})
and the mortality rates for patients with the same treatments
are consistently lower than the mortality rates for patients
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Figure 2. The framework of T4. T4 consists of three main components: 1) the encoder network recurrently encodes the
patient’s baseline information, including temporal and static covariates, and treatment assignments via the LSTM network; 2)
the decoder network is initialized with encoder outputs and predicts the outcomes under different treatment sequences; 3) the
balancing matching constructs balanced mini-batches via propensity as balancing scores during the training process. The
details of balancing matching are shown in Fig. 3.

Xbatch Xmatched
Propensity score estimator 

(Pre-trained T4)

Obtain sample of similar
propensity score with treatment

option m from Xtrain 

Xcomb

Xtrain

Figure 3. Illustration of the balancing matching. During the
training process, each patient in the batch is matched with the
corresponding counterfactual outcomes using the observed
outcomes of his/her nearest neighbors in other treatment
groups in the training data. A pre-trained T4 is used to
estimate the propensity scores for computing the patient’s
distance. The matched batch and original batch are combined
together for the training.

with different treatments. Results show that our model rec-
ommends effective treatment strategies (reflecting on lower
mortality rate), and provides potential clinical insights for
doctors to decide the timing of antibiotic administration for
the septic patients. We also observe that model performs con-
sistently on the external testing set from AmsterdamUMCdb,
which demonstrates the robustness of our model when apply-
ing to a different dataset with different feature distribution.

Individual level analysis

To further demonstrate how our model recommends antibi-
otics based on the estimated ITEs with uncertainty quantifi-
cation, we utilize a real-world patient case. As shown in
Fig. 5(a), we use the predicted ITEs (red line) equipped with

uncertainty estimates (red shadowed area) as the criteria to
recommend the timing of antibiotic administration at each
timestamp. Specifically, at each timestamp, we recommend
the antibiotics if the upper bound of the predicted ITE is lower
than zero, and we will not recommend if the lower bound of
the predicted ITE is higher than zero. Here, zero serves as the
baseline, denoting no difference between having a treatment
and not. In this example, the upper bound of the predicted
ITE is lower than zero for all the timestamps in the follow-up
period. Thus, the optimal antibiotic recommendation provided
by our model is to continuously take antibiotics during the
follow-up period.

We also compare true outcomes under the actually re-
ceived antibiotics and predicted outcomes under the recom-
mended antibiotics. Here, we use the SOFA score as the
outcomes, where higher values are associated with worse sta-
tus and higher mortality rate30,31. From Fig. 5(a), we observe
that the patient receives antibiotics since the 4-th timestamp,
which results in large SOFA scores during the follow-up pe-
riod. Conversely, our model recommends the patient to take
antibiotics earlier (from the 1-th to the 6-th timestamp), and
the predicted SOFA scores under recommended timing of
antibiotics are much lower than the true SOFA scores. The re-
sults demonstrate that our model can identify effective timing
of antibiotic administration for septic patients to help improve
their disease condition and reduce the mortality rate.

A Case Study for Model Interpretability

We demonstrate the model interpretability of treatment rec-
ommendation using a concrete case study. We visualize both
global and variable level contribution in Fig. 5(b). We also
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Figure 4. Mortality rate comparison of two datasets. Within the bar-chart, the error bars denote 95% confidence interval with
n=30 bootstrap samples. Blue and red bars denote patients under actual treatments and patients under model-recommended
treatments, respectively. The total mortality rate of two groups of patients is plotted using the black dashed line, which serves
as the baseline. Fig. 4(a) and 4(b) are mortality comparison on MIMIC-III dataset. Fig. 4(c) and Fig. 4(d) are mortality
comparison on AmsterdamUMCdb dataset.

plot in this figure the dynamics of each important variable.
Here, the vital signs include temperature, and respiratory rate
(resprate); the lab tests include glucose, blood urea nitrogen
(BUN), anion gap, and platelet. We use the dashed black lines
to denote the timestamps with high contribution to the treat-
ment recommendation. We observe that the values of most
variables are within or close to the abnormal range at those
high contribution timestamps. Our model recommends the
patient to take antibiotics at the end of the baseline period with
regards to these warning signals. Taking the glucose as an
example, the normal range should be lower than 140 mg/dL,
and a reading of more than 200 mg/dL indicates diabetes 1.
We observe that the values of glucose are far from the nor-

1https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosis-
treatment/drc-20371451

mal range, which maintain above 200 mg/dL and even reach
300 mg/dL at early stage. This case study shows that our
model achieves the transparent treatment recommendation via
visualizing important timestamps and variables contributing
to the recommendation, paving the way for interpretable and
precise treatment recommendation.

Discussion
In this study we propose a novel framework to estimate treat-
ment effects for treatment recommendation. The proposed
model T4 first estimates ITEs by recurrently encoding histori-
cal temporal patient information and static information, and
then decoding the potential outcomes under different treat-
ment sequences. We apply balancing matching for each mini-
batch to construct a balanced mini-batch and adjust the influ-
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Figure 5. The case study of a patient for treatment recommendation and model interpretability. In Fig. 5(a), the predicted
values of ITEs (red line with shadowed area denoting the uncertainty estimates) for antibiotic (ATB) recommendation. An ATB
will be recommended to the patient if the upper bound of predicted ITE is lower than zero and will not be recommended if the
lower bound of predicted ITE is higher than zero, where zero is the threshold for determining whether to recommend ATBs. In
Fig. 5(b), the most important global baseline timestamps (orange area) and variables contributing to the treatment
recommendation are denoted at the top subplot. An ATB is recommended at the end of the baseline period.

ence of confounders. We also provide the model interpretabil-
ity of treatment recommendation to analyze both global-level
and variable-level contribution via attention mechanism and
variable importance analysis, respectively. Meanwhile, the
model uncertainty quantification helps to avoid overconfident
treatment recommendation. We illustrate the usage of the
proposed model in two real-world EHR datasets, showing that
our model can successfully identify effective treatment strate-
gies and thus pave the way for personalized and precision
medicine.

Individual treatment effect estimation
Comparison experiments

Several studies have proposed estimating individual treatment
effects (ITEs) using causal inference techniques on observa-
tional data, such as matching-based methods (e.g., propensity
score matching27), forest-based methods (e.g., causal for-
est32), or representation learning-based methods (e.g., coun-
terfactual regression33). These methods are mainly designed
for static data and are not satisfied for estimating ITEs on
EHRs, while the proposed T4 fully considers the time-varying
information and adjust the temporal confounding via balanc-
ing matching operation.

To illustrate the model performance on ITE estimation
and treatment recommendation, we design experiments on a
synthetic dataset. We simulate 5000 patients with 50 times-
tamps, 20 temporal covariates and 5 static covariates. We
use the first 40 timestamps as baseline period and the remain-
ing as follow-up period. We use Precision in Estimation of
Heterogeneous Effect (PEHE) and the error of Average Treat-

ment Effect (εATE) to evaluate the model performance. We
conduct comparison experiments against the state-of-the-art
methods of ITE estimation: (1) Classical methods: Linear
Regression (LR)34, Random Forest (RF)35 and support vector
machine (SVM)36; (2) Forest-based methods: Causal Forest
(CF)32 and Bayesian Additive Regression Trees (BART)37;
(3) Representation learning-based methods: Counterfac-
tual Regression (CFR)33, GANITE38 and Dragonnet39. (4)
Time-varying based methods: Recurrent Marginal structural
Network (RMSM)40 and Counterfactual Recurrent Network
(CRN)41.

Results in Supplementary Table 8 show that our model
outperforms the state-of-the-art ITE estimation methods.

Ablation study on balancing matching

We evaluate the influence of different percentages of balancing
matching samples on the model performance. We vary the
percentages from 0 to 100% and show the performance change
in Supplementary Fig. 8. We observe that the error of ITE
estimation in terms of both PEHE and εATE decreases as
including more matching samples in a mini-batch during the
training process. Specifically, performance highly increases
when only a small number of matching samples (around 20%)
are provided, and the curve tends to gently slope downward
as the percentage of matching samples exceeds 30%. The
results demonstrate that the balancing matching improves the
model performance on ITE estimation by largely decreasing
the estimation error.
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Controversies in antibiotics for septic patients
The timing of antibiotic treatment is controversial. While
many studies suggest early antibiotic regimens for any pa-
tients with suspected sepsis or septic shock, there is substantial
concern that early antibiotic assignments may cause serious
harm including higher mortality rates7. Several recent cohort
studies and RCTs8,15,42,43,44 suggest that the timing of antibi-
otic treatment should depend on the severity of illness (i.e,
sepsis, severe sepsis or septic shock) and the likelihood of true
infection. They point out that immediate antibiotic regimens
benefit patients with severe illness (e.g., septic shock) while
in less critically ill patients, immediate antibiotic regimens
may lead to overprescribing and potential harm. For example,
a recent study45 shows that an overdose of antibiotics is as-
sociated with a 20% increase in the odds of death in patients
who received adequate therapy. According to the study45,
the morbidity of overdose antibiotics may be more obvious
in less critically ill patients compared to the patients with
septic shock as the morbidity of other acute severe illness
surpasses the possible morbidity comes from an antibiotic
overdose. There are also some general explanations for the
association between antibiotic overdose and higher mortality.
Besides the antibiotic resistance, antibiotics themselves also
cause harm (e.g., organ injury, mitochondrial dysfunction,
the impact on the microbiome, and overgrowth by fungi and
Clostridium difficile)46. Specifically, the study45 shows that
unnecessarily broad empiric therapy was associated with a
26% increased risk of Clostridium difficile infection. Thus
determining personalized antibiotic timing at the bedside is
urgently needed.

Limitation of public clinical data
Unavailability of counterfactual outcomes

As the ground truth counterfactual outcomes are not available
in the real-world data, we evaluate the effectiveness of our
model in two ways: 1) mortality rate comparison as shown in
Fig. 4 and 2) factual prediction on SOFA scores as shown in
Supplementary Table 7.

Type of antibiotic treatment

The choice of the type of antibiotic treatment is based on sus-
pected infection sites according to empirical antibiotic studies
and guidelines47,48. However, the sites of suspected infection
are not available in our public clinical datasets (MIMIC-III
and AmsterdamUMCdb), especially during the first 48 hours
since ICU admission as the determination of true infection
sites is complicated and takes time to obtain the results. In the
future, we will incorporate suspected infection sites to provide
recommendations for a specific type of antibiotic, orthogonal
etc.

Blood cultures

Blood cultures are deemed as the gold standard for antibiotic
treatment regimens (e.g., initiation or de-escalation of antibi-
otics). However, in our public datasets, most blood cultures

are taken 12 hours within the ICU admission and usually the
results are available after 2-3 days. According to the proposed
framework as illustrated in 2, we only leverage the first 48
hours data since ICU admission and therefore the results of
blood cultures may not be available in this period.

In future work, we can develop a more practical and pre-
cise antibiotic recommendation system that combines the
model’s general recommendations with real patient condi-
tions (e.g., suspected infection sites, blood cultures and other
concomitant therapies) if available.

In summary, we propose a computational framework to es-
timate treatment effects for time-to-treatment antibiotic stew-
ardship in sepsis. Experiments on both real-world and syn-
thetic datasets have demonstrated the superiority of the model
performance compared to the state-of-the-art models, while
also providing interpretability of the treatment recommenda-
tion.

Methods
In this section, we first introduce the study design, then we
present the proposed model for estimating treatment effects.

Study design
We evaluate the proposed treatment recommendation frame-
work through a retrospective study on two large real-wrold
EHR datasets (MIMIC-III and AmsterdamUMCdb) with recorded
patients’ demographics, vital signs, lab tests, medications and
diagnosis.

Definition of Sepsis in two datasets

We obtain the septic patients according to the recent sepsis-3
criteria28 with respect to 1) tsusp: time of clinical suspicion
of infection (i.e., earlier timestamp of antibiotics and blood
cultures within a specified duration) and 2) tSOFA: two-point
deterioration in SOFA score29 within a 6-hour period. The
patient is diagnosed with sepsis when these two events happen
close to each other. Specifically, tSOFA happens 24 hours
earlier than tsusp or 12 hours later than tsusp. We exclude
patients whose age is under 18 years old at the time of ICU
admission. We also exclude patients whose ICU stay is less
than 9 hours or longer than 20 days.

We extract 22 temporal covariates (i.e., vital signs and lab
tests) and 4 static covariates (Supplementary Table 3). We
encode the patients’ time series data into discrete 3-hour time
steps. The covariates with multiple records within a single
time step are averaged. The missing data are imputed using
the values obtained from the last time step.

Preliminary
We extract patient information from longitudinal observational
data. For each patient, let AT = {a1,a2, ...,aT} ∈ N T be
the treatment assignments with at = 1 if the patient receive
the treatment at t-th timestamp and at = 0 otherwise. Let
XT = {x1,x2, ...,xT} ∈ RT×Kx be the temporal covariates and
Y T = {y1,y2, ...,yT} ∈ RT be the outcomes of T timestamps.
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The patient has static covariates d ∈ RKd , such as gender and
age. The observational data for the patient can be represented
as D = {AT ,XT ,d,Y T}.

Our goal is to estimate the treatment effects with temporal
and static covariates via predicting the potential outcomes un-
der different treatment sequences. We adopt the potential out-
comes framework49,50 to examine the causal effects under the
treatments. The potential outcome is the outcome that would
have been observed if the patient had received treatment. We
extend the potential outcome framework in our application sce-
nario. Given the observational data up to t-th timestamp and
treatment assignments At+1,t+ζ , the patient has potential out-

comes E[Y(At+1,t+ζ )] = {E[Y (A j|X t ,At ,d)]} j=t+ζ

j=t+1 in the fol-
lowing ζ time period. Specifically, At+1,t+ζ = {at+1,at+2, ...,at+ζ}
denotes any treatment assignments from t +1 to t +ζ times-
tamp. For each timestamp j, there are two potential outcomes
E[Y (Aa=1

j |X t ,At ,d)], E[Y (Aa=0
j |X t ,At ,d)], which are corre-

sponding to different treatment assignments.
To estimate the treatment effect of a given treatment as-

signment during the following ζ time period, we define the
individual treatment effect (ITE), δ j on (t + j)-th timestamp
as follows,

δ j = E[Y (Aa=1
j |X t ,At , Â(t+1,t+ j−1),d)]

−E[Y (Aa=0
j |X t ,At , Â(t+1,t+ j−1),d)]

(1)

where Â(t+1,t+ j−1) is the learned optimal treatments between
timestamp t +1 and t + j−1. The treatment effects of ζ time
period is ∆ = [δt+1, ...,δt+ζ ]. In this paper, we use the Sepsis-
related Organ Failure Assessment (SOFA) scores29 (i.e., range
from 0 to 24, larger values associated with severe disease
status and higher mortality) as outcomes. The computation
of SOFA scores can be found in Supplementary Table 2. The
recommended treatment assignments are as follows,

π
∗ = [1(δt+1 < 0), ...,1(δt+ζ < 0)] (2)

where 1(·) equals to 1 if the inside expression is true otherwise
0.

Assumptions
Our ITE estimation is based on the standard causal assump-
tions51,52 as follow,

Assumption 1 (Consistency) The potential outcome under
treatment history At equals to the observed outcome if the
actual treatments history is At .

Assumption 2 (Positivity) Given the observational data of
the history, if the the probability P(At = 1|X t ,At−1,d) ̸= 0,
then the probability of receiving treatment 0 or 1 is positive,
i.e., 0 < P(At = 1|X t ,At−1,d)< 1, for all At .

Assumption 3 (Sequential Strong Ignorability) Given the
observational data of the history, the treatment assigned for
time t is independent of the potential outcome of time t, i.e.,
Y(At)⊥⊥ At |X t ,At−1,d, for all treatment sequences At .

Treatment effect estimation with T4
T4 recurrently encodes the patient’s temporal covariates via
Long short-term memory (LSTM)26, then decodes the poten-
tial outcomes with different treatment sequences. T4 adjusts
the influence of confounders via balancing matching to gener-
ate balanced mini-batches. Figure 2 illustrates the framework
of the proposed method.

Encoder for baseline period

We convert the initial high-dimensional covariates xt ∈ RKx

into a lower dimensional and continuous data embedding
ex

t ∈ RKe
x as,

ex
t =Wext +be (3)

where We ∈RKe
x×Kx is the weight matrix, be ∈RKe

x is the bias
vector and Ke

x is the dimension of the embedded temporal
vectors. That is, we have embedding of temporal covariates
Ex = {ex

1,e
x
2, ...,e

x
t } ∈ Rt×Ke

x . Similarly, we convert the static
covariates (demographics) into embedding as Ed ∈ RKd×Ke

d ,
where Kd is the number of static covariates and Ke

d is the
dimension of embedded static vectors.

Given the embedding of temporal and static covariates,
and the treatment assignments at each timestamp, the encoder
builds upon the LSTM as follows,

h1,h2, ...,ht = LST M([ex1 ,ed ], [ex2 ,ed ,a1], ..., , [ext ,ed ,at−1])

(4)

where ht ∈ RKh is the hidden state at t-th timestamp and Kh
is the dimension of hidden vectors. The last hidden state ht is
used to initialize the decoder. We aggregated all the hidden
states via attention mechanism for automatically focusing on
important historical timestamps. We calculate the attention
weight αt,s using a method that concatenates each previous
hidden state hs with the current state ht , and the product of
two states. That is,

αt,s = score(ht ,hs) = Φ(W⊤
α [ht ,hs,ht ⊙hs])

αt = softmax(αt,1,αt,2, . . . ,αt,t−1)
(5)

where Φ is hyperbolic tangent function, Wα ∈ R3Kh is learn-
able parameter matrix. Using the generated attention energies,
we calculate the context vector ho for each patient up to t time
stamp as ho = ∑

t−1
s=1 αt,shs.

We predict the potential outcome yt using the attentively
aggregated vector ho, current hidden state ht and the treatment
at . The prediction serves as the input to the initial state of the
decoder,

y′t =Wp([ho,ht ,at ])+bp (6)

where Wp ∈ RKy×(2Kh+1) and bp ∈ RKy are parameters to
learn.
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Decoder for follow-up period

Initializing with the last hidden state of the encoder and
true/predicted outcomes, the decoder recurrently predicts the
potential outcome at each timestamp with different treatment
sequences. We obtain the hidden states of decoder as,

ht+1, ...,hh+ζ = LST M([at ,ed ,yt ], ..., [at+ζ−1,e
d ,yt+ζ−1])

(7)

We integrate the encoder outputs and current hidden state of
decoder via an attention layer. We generate the aggregated
context vector ct+ j at each timestamp as,

βt+ j,u = Φ(W⊤
β
[ht+ j,hu])

βt+ j,u = softmax(βt+ j,1,βt+ j,2, ...,βt+ j,t)

ct+ j =
t

∑
u=1

βt+ j,uhu

(8)

where Φ is hyperbolic tangent function, {hu}t
u=1 are the en-

coder outputs and Wβ ∈ R2Kh is the parameter to learn.
We predict the outcomes y′t+ j by combining the learned

context vector with current treatment as

y′t+ j =Wq[ht+ j,ct+ j,at+ j]+bq for j = 1,2, ...,ζ (9)

where Wq ∈ RKy×(2Kh+1) and bq ∈ RKy are parameters to
learn. During the training, we use teach forcing technique
with ratio equals to 0.5 to train the model with ground truth
treatments and outcomes. In the inference/testing, we feed the
decoder’s predictions (both outcomes and treatments) back to
itself for each step. The current predictions are based on the
previous predictions during the inference, which is consistent
to the practical application scenario.

We identify the optimal treatment sequence via a greedy-
style strategy instead of checking every possible treatment
trajectory. We select the best treatment option according to the
predicted outcomes at each step and use it for next prediction.
Compared to permutation of all possible combination (up to
2ζ ) of treatments, our strategy is more time efficient with the
increasing of ζ .

Then we can compute the treatment effect for (t + j)-th
timestamp using Eq.(1) as,

δ
′
j = y′a=1

t+ j − y′a=0
t+ j for j = 1,2, ...,ζ (10)

where y′a=1
t+ j is the predicted outcome when receiving the treat-

ment at (t + j)-th timestamp, and y′a=0
t+ j is the predicted out-

come when not receiving the treatment. Thus we determine
the optimal treatment assignments among all ζ time period
using Eq.(2) as,

π
′ = [1(δ ′

t+1 < 0), ...,1(δ ′
t+ζ

< 0)] (11)

Balancing matching

To adjust the inherent treatment selection bias in the data, we
adopt the idea of balancing scores53 to construct pseudo mini-
batches that mimic the corresponding randomized controlled

trial (RCT) process (i.e., the treatment groups are randomly
split and the patient distribution in each group is balanced.)
We illustrate the process of balancing matching in Fig. 3.
Specifically, we match, for each patient in the original mini-
batch, the unobserved counterfactual outcomes (i.e., the poten-
tial outcomes under other possible treatment options except
the observed one), with the observed outcomes of nearest
neighbors in the training data. There are several methods to
obtain the nearest neighbor by computing the distance among
individuals. Here, we estimate the distance via the propensity
score27, which is defined as the conditional probability receiv-
ing the treatments m∗ given historical information up to the
current timestamp:

PSm∗ = P(Aa=m∗
t+1,t+ζ

|X t ,At ,d) (12)

Here, m∗ denote a possible treatment sequence during ζ . We
use a pre-trained T4 as a propensity score estimator to cal-
culate the propensity scores for each patient in the training
set.

The distance between patient i with treatments m∗, and the
patient j with treatments n∗ is defined using absolute distance
as,

∆n(i, j) = |PSm∗
i −PSn∗

j | (13)

where PSm∗
i and PSn∗

j denote the estimated propensity scores
for two respective patients. We then obtain the nearest neigh-
bours of patient i in treatment group n∗ as,

κn(i) = argmin
j

∆n(i, j) (14)

Finally the matched mini-batch is combined with the original
mini-batch as a whole for the following training process.

Objective function

We first pre-train our model T4 to estimate the propensity
scores for balancing matching. We obtain the treatment pre-
diction using a linear layer and sigmoid function as,

a′t+ j = sigmoid(W⊤
a [ht+ j,ct+ j]+ba) (15)

where Wa ∈R2Kh and ba ∈R are parameters to learn. We use
cross-entropy loss for the treatment prediction as,

La =− 1
N

1
ζ

N

∑
i=1

ζ

∑
j=1

(ai
t+ j loga′it+ j+(1−ai

t+ j) log(1−a′it+ j))

(16)

The training objective function for the outcome prediction
is the mean squared error between the predicted potential
outcomes and factual outcomes as,

Ly =
1
N

N

∑
i=1

1
ζ

ζ

∑
j=1

(y′it+ j − yi
t+ j)

2 (17)

The overall training procedure of T4 is demonstrated in 1.
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Model interpretability
Interpretability is a very desiring property in treatment effect
estimation and treatment timing recommendation problems.
In this paper, we realize the interpretability of treatment rec-
ommendation by analyzing both global-level contribution and
variable-level contribution.

Global-level contribution

The global-level contribution is the contribution of each times-
tamp in the baseline period to the treatment recommendation
given in the follow-up period. The outputs of the encoder
are sent to the decoder and integrated together with the hid-
den states of decoder through the attention layer. We obtain
the learned attention weights βt+ j,u as the contribution of u-th
timestamp to the treatment recommendation given at (t+ j)-th
timestamp according to Eq. 9.

Variable-level contribution

Each timestamp contains a number of temporal variables (e.g.,
lab tests, vital signs, etc.), and based solely on the contribution
at the global level, we are unable to identify the impact of each
individual variable. We then examine the contribution of each
variable via a variable importance analysis. Specifically, given
the temporal covariates xu, we first predict outcomes y′

x−i
u

when
excluding all the information from the i-th dimension of xt .
Here, we mask the corresponding information by replacing
them with the mean value of i-th variable across in the dataset.
We compute the prediction loss Ly(y′x−i

u
,y) using Eq. (17)

except that the predicted outcomes are replaced with y′
x−i

u
.

Finally, the contribution of each variable i at u-th timestamp
is computed as,

ωu,i = Ly(y′x−i
u
,y)−Ly(y′,y)

ωu,i = softmax(ωu,1,ωu,2, ...,ωu,Kx)
(18)

where Ly(y′,y) is the prediction loss when all features of
xt are included in the loss computation. We multiply the
global-level contribution and the variable-level contribution
(βt+ j,uωu,i) to obtain the contribution of each variable at each
timestamp.

Uncertainty quantification
The uncertainty quantification of the estimated treatment ef-
fects is also important for treatment recommendation. In this
paper, we adopt MC Dropout23,54 to quantify the model un-
certainty by applying dropout during both training and testing
process. Specifically, with the dropout enabled during the
testing, the model generates a different output every forward
pass for the same input. Suppose we have K iterations, and
for iteration k, we obtain the estimated effect δ ′

j,k. Then the
model uncertainty η(δ ′

j) is computed as,

η(δ ′
j) =

1
K

K

∑
k=1

(δ ′
j,k)

2 − (
1
K

K

∑
k=1

(δ ′
j,k))

2 (19)

In this way, each ITE δ ′
j is equipped with according uncer-

tainty estimates η(δ ′
j). We use the estimated uncertainty for 1)

quantifying the confidence associated with the estimated ITEs
and provided recommendation. If the estimated uncertainty
exceeds a certain threshold (i.e., η(δ ′

j)> η0), our model will
alert the doctors that the provided recommendation are not
reliable; 2) determining whether to assign a treatment at each
timestamp. We derive the standard deviation from the vari-
ance and then calculate the 95% confidence intervals of ITE
estimator. Our treatment recommendation strategy is that, at
each timestamp in follow-up period, the treatment will be
assigned to the patient if the upper bound of δ ′

j is less than
zero, and the treatment will not be assigned if the lower bound
of δ ′

j is larger than or equal to zero. The estimated uncertainty
here is to enhance the robustness of prediction and guarantee
the effectiveness of treatment recommendation.

Implementation Details
The proposed model is implemented using Python 3.6 and
PyTorch 1.42 and trained on Ubuntu 20.04 with NVIDIA
GeForce RTX 2080 Ti. We train our model using the adap-
tive moment estimation (Adam) algorithm. Dropout23 is en-
able during the training and testing for uncertainty estimation.
The data is randomly split into training, validation and test
sets with percentages of 70%, 10%, 20%, and the validation
set is used to improve the models and select the best model
hyper-parameters (Supplementary Table 4). We report the
performance on the test sets for all methods. The final results
are averaged on five random realizations. The values of both
temporal and static covariates are normalized as follows,

xt,i =
xt,i −mean(xt,i)

std(xt,i)
(20)

where mean(xt,i) and std(xt,i) are the mean and standard de-
viation of i-th variable in xt over the entire dataset.

Data availability
MIMIC-III dataset is publicly available from PhysioNet3. Am-
sterdamUMCdb is publicly available from Amsterdam Medi-
cal Data Science website4.

Code availability
The source code for this paper can be downloaded from the
Github repository at https://github.com/ruoqi-liu/
T4 or the Zenodo repository at https://doi.org/10.
5281/zenodo.7003982.
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