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ABSTRACT 

 

Objective: To optimize the parameters of a sepsis prediction model within distinct patient groups to minimize 

the excess cost of sepsis care and analyze the potential effect of factors contributing to end-user response to 

sepsis alerts on overall model utility. 

Materials and Methods: We calculated the excess costs of sepsis by comparing patients with and without a 

secondary sepsis diagnosis but with the same primary diagnosis and baseline comorbidities. We optimized the 

parameters of a sepsis prediction algorithm across different diagnostic categories to minimize these excess 

costs. At the optima, we evaluated diagnostic odds ratios and analyzed the impact of compliance factors—like 

non-compliance, treatment efficacy, and tolerance for false alarms—on the net benefit of triggering sepsis 

alerts.  

Results: Compliance factors significantly contributed to the net benefit of triggering a sepsis alert. However, a 

customized deployment policy can achieve a significantly higher diagnostic odds ratio and reduced costs of 

sepsis care. Implementing our optimization routine with powerful predictive models could result in $4.6 billion 

in excess cost savings for the Medicare program. 

Discussion: Sepsis costs and incidence vary dramatically across diagnostic categories, warranting a customized 

approach for implementing predictive models. We designed a framework for customizing sepsis alert protocols 

within different diagnostic categories to minimize excess costs and analyzed model performance as a function 

of false alarm tolerance and compliance with model recommendations. 

Conclusion: Customizing the implementation of clinical predictive models by accounting for various 

behavioral and economic factors may improve the practical benefit of predictive models. 
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INTRODUCTION  

Recent advancements in machine learning (ML) and the proliferation of healthcare data have led to 

widespread excitement about using these technologies to improve care1,2. Predictive analytic models in 

domains such as sepsis3–5, acute kidney injury6, respiratory failure7, and general deterioration8 have been 

proposed to improve the timely administration of life-saving treatments and mitigate expensive downstream 

complications. It has been argued that a more tailored approach that accounts for implementation constraints 

that may differ across care settings can further enhance the adoption of such systems9.  

 

Despite its importance, the process of implementing predictive analytics solutions has received little 

attention relative to the development of the underlying ML models10. Algorithms are becoming more 

sophisticated, and the infrastructure that allows real-time, interoperable deployment of predictive analytics 

solutions is expanding11,12. This increase in potential and complexity underscores the practical importance 

of understanding the implementation policy layer, which captures the clinical workflow, response protocols, 

and operational constraints. Notably, the dominant evaluation methods within the ML community, such as 

the area under the receiver-operator curve (AUROC), often do not consider the effect of this policy layer on 

model performance13. Moreover, such performance metrics do not consider the user response to prediction 

and the effectiveness of the treatment protocols14. However, the operational constraints can often go beyond 

behavioral factors and may encompass quality improvement (QI) mandates and cost-saving objectives15.  

 

This work focuses on the management of sepsis, a common and lethal condition caused by a dysregulated 

host response to infection16, though our framework can be applied to other hospital-acquired conditions17. 

Sepsis afflicts over 49 million people worldwide and accounts for over 11 million deaths per year18. In 2018, 

the U.S. Medicare program (including fee-for-service and Medicare Advantage) incurred $41.5 billion 

dollars in sepsis-related inpatient hospital admissions and skilled nursing facility care costs19.  

 

We propose a framework for improving the implementation of ML-based EHR alerts. Our framework aims 

to minimize the costs of sepsis that are avoidable through early detection, timely administration of 

antibiotics, and prevention of overtreatment (i.e., “excess costs”) 5,20,21. Importantly, these costs can differ 

by diagnostic category due to differences in incidence rates, patient susceptibility, and physician adherence. 

Little is known, however, of the magnitude of these excess costs in inpatient settings. Thus, an additional 

contribution of this work is our estimation of the excess costs of sepsis at the diagnostic-category and national 

level (i.e., costs paid by the Medicare program). Our optimization framework uses these cost estimates and 

selects specific decision thresholds for each diagnostic category, differing from other cost-benefit 

frameworks that set decision thresholds uniformly22,23. This tailored approach results in higher cost savings 

and diagnostic accuracy. 
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MATERIALS AND METHODS 

We conducted a retrospective observational study with the following three broad steps: data collection, 

excess cost estimation, and cost minimization (Figure 1). This was done in accordance with STROBE 

guidelines24.  

 

Datasets and Definitions 

The Institutional Review Board (IRB) of UC San Diego approved this study (#800257) with a waiver of 

informed consent. We collected insurance claims data from adult patients at UC San Diego Health, an 

academic health system, between October 2016 and July 2020. These data included the following necessary 

components: (i) the Medicare Severity Diagnosis Related Groups (MS-DRGs) diagnosis code for each 

patient and their corresponding DRG weights, (ii) the total amount paid by Medicare for the patient, and (iii) 

the Charlson Comorbidity Index (CCI) of the patient upon admission. We included patients with 

International Classification of Disease 10 (ICD 10) codes for severe sepsis (ICD9: 99592 and ICD10: R6520) 

and septic shock (ICD9: 78552 and ICD10: R6521). We selected these because of their inclusion in the 

Centers for Medicare and Medicaid Service (CMS) Quality Measure for Severe Sepsis and Septic Shock 

(SEP1), which has impacted sepsis care across the United States and provides a standardized approach to 

management25. Throughout the manuscript, the term “sepsis” refers to these definitions of severe sepsis and 

septic shock.  

 

Figure 1. Overall framework for assessment of attributable cost to sepsis and optimization of predictive 
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model parameters.  

 

Excess Cost of Sepsis 

 

Our efforts to quantify the costs of missed diagnoses (i.e., false negatives) provide a new estimate of the 

avoidable costs of severe sepsis and septic shock across broad diagnostic categories. To quantify, we used 

granular insurance claims data under the Medicare prospective payment system (PPS). We focused on 

hospitalized Medicare patients as payments are specific to Diagnosis Related Groups (DRGs), a payment 

classification system that is determined primarily by the diagnosis that caused a patient to become 

hospitalized26. This system groups clinically similar conditions that require similar levels of inpatient 

resources. This categorization also allows us to show the public value of our optimization routine. We 

excluded patients from sepsis related DRGs (870, 871, 872) from our analysis since our objective is to assess 

the excess inpatient cost of sepsis for other DRGs. As such, we gathered all severe sepsis and septic shock 

patients in non-sepsis DRGs and a group of control patients in those same DRGs. This strategy allowed a 

cost comparison between individuals with similar primary diagnoses (i.e., underlying conditions) but 

different secondary sepsis diagnoses. These data included 670 patients diagnosed with severe sepsis and 

septic shock across 131 DRGs and 19,565 control group patients. 

 

We adjusted for other underlying factors that drive cost differences between septic and non-septic patients 

by matching a comparison individual to each septic patient27. For each septic patient, this matching procedure 

selected from all comparison individuals within the same DRG code/weight the patient with the most similar 

CCI to the given septic patient1. Further, limiting the selection to patients within the same DRG weight 

accounts for changes in DRG payments over time. With sets of septic patients matched to control patients, 

we differenced the Medicare payments for the septic patients and the matched patients. This difference 

represents the excess costs that Medicare paid for sepsis above the underlying costs attributable to the 

primary patient diagnosis.  

 

We repeat this procedure for all septic patients to form a distribution of excess costs across DRGs. We then 

average these DRG-specific excess cost estimates by Major Diagnostic Categories (MDC), which are 

comprised of 16 mutually exclusive diagnosis areas within our dataset28. We show that the added costs from 

sepsis diagnoses vary dramatically by these diagnostic categories and, by extension, different hospital 

departments.  

 

In effort to calculate the national excess cost of sepsis, we then scale our excess cost estimates to the national 

level to show the public impact of early detection and treatment (see Supplementary Material for more 

details). To scale, we first multiply UC San Diego Health (UCSDH) payments by the ratio of UCSDH 

payments to average U.S. payments by DRG. Then we scale the total patients treated at UCSDH to the 

 
1 Note that matching estimators do not guarantee conditional independence (or causality). However, data and institutional 

factors limit the applicability of causal methods in health care settings, leading us to use a matching estimator to approximate 

excess costs for the sake of simulation. 
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national number of septic patients using the share of Medicare patients treated at UCSDH. Lastly, we 

aggregate the payments across all patients. We validate this scaling approach in the Supplementary Materials 

section and find that we closely estimate the total national inpatient sepsis costs documented in Medicare 

cost data29 (among sepsis DRGs 870-872) by scaling UCSDH total sepsis costs to the national level.  

 

Modeling and Optimization  

We use the sepsis prediction model by Shashikumar at al.5 to develop an optimization framework that 

chooses the model’s classification thresholds to minimize the additional costs from sepsis by the MDCs. In 

the context of sepsis prediction, classification thresholds determine above which probability the model tags 

a patient as septic. Although we optimize across diagnostic categories, our routine could also be implemented 

across hospital departments or, alternatively, across more granular patient subpopulations. The intuition 

behind the value of our implementation rests on the idea that septic patients may be more (less) costly across 

diagnostic categories, which could potentially merit a lower (higher) classification threshold. Additionally, 

departments could have different rates of sepsis which may require different thresholds to avoid a large 

number of missed detections. By allowing algorithmic sensitivity to adjust to these idiosyncrasies, ML 

algorithms may further reduce costs. Our optimizer is constrained by the predictive model’s AUC: as the 

optimizer chooses a higher sensitivity to sepsis to reduce the costs of sepsis, the specificity of the model 

decreases, increasing the false alarm rate. As noted above, false alarms can also be costly: treating patients 

with broad-spectrum antibiotics can cause adverse effects and is expensive. Thus, the algorithm must balance 

the trade-off between the cost of under-treatment and over-treatment.  

Let FNi represent the number of false negatives (i.e., the missed cases of sepsis) within a given MDC 

category, and Cost_FNi represent the cost of missing sepsis within this category. The miss rate (i.e., 1 – sensi) 

is a quantity that depends on the selection of risk score threshold within the given MDC category i. 

Furthermore, let the estimated functional form f( ) provide a mapping from the chosen sensitivity to the false 

positive rate (FPR; or false alarm rate). Note that this function is constrained by the model AUC and reflects 

the balance of model sensitivity and false alarms (see Supplementary Material, section 5). 

The optimization routine is given by: 

 

 

Notice that the algorithm chooses sensitivity values (i.e., sensi) across 16 broad diagnostic categories (i.e., i) 

to minimize costs. The left-hand side of the objective function captures the excess costs, or the cost of false 

negatives: the MDC’s average cost of false negatives, multiplied by the number of septic patients in the 

diagnostic category (i.e., N_septici), multiplied by the miss rate. The right-hand side of the objective function 

captures the costs of false positives: the false alarm rate, multiplied by the number of patients who are not 

septic in the MDC (i.e., N_controlsi), multiplied by the average costs of false negatives divided by the 
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conversion factor α. This conversion factor is a variable that maps the cost of false positives to the cost of 

false negatives as there may be costs of overtreatment (e.g., administering antibiotics if patients do not have 

sepsis). Our simulations, as detailed below, consider various levels of α, allowing for comparisons across 

different parameter assumptions. We also include parameters in the model that characterize physician 

adherence to sepsis alarms and tolerances to false alarms (i.e., over-treatment). 

 

For simplicity, our model implicitly assumes that most sepsis cost is associated with the downstream 

consequences of sepsis, such as organ failure, need for intensive care, and prolonged hospitalization15. As 

such, we assume the costs of broad-spectrum antibiotics and other early sepsis treatments are negligible and 

thus excluded from our analysis30. 

 

Simulations 

We simulate a series of outcomes by implementing sepsis prediction algorithms with flexible classification 

thresholds. Simulation parameters and definitions are provided in Table 1. 

 

Table 1. Simulation parameters 

Parameter Desc Range 

 

Cost of False Alarms 

(𝛼 ) 

The costs associated with overtreating sepsis (e.g., costs 

of antibiotics and patient side effects etc.) 

17-27 

Physician Adherence 

(𝛾 ) 

The rate at which physicians comply with the algorithm 

recommendations to treat.  

0.5-1.0 

 

Area Under the Curve 

(AUC) 

The area under the receiver operating characteristic  

curve, which is a commonly used measure of predictive 

accuracy. 

0.82, 0.87, 0.9 

Diagnostic Odds Ratio 

(DOR) 

Rate of successful ACP by outpatient pathway 10-120 

 

 

Model performance and false alarm tolerance: The first simulation illustrates the cost savings generated 

when choosing classification thresholds across diagnostic categories. The simulation presents cost savings 

achieved when using three different AI models5 with various levels of predictive performance (i.e., AUC) 

and a range of different tolerances to false alarms (e.g., higher tolerances mean that the costs of overtreatment 

are lower). This exercise illustrates the returns of allowing flexible classification thresholds across diagnostic 

categories for various ML algorithms and cost assumptions. We then calculate and present the diagnostic 

odds ratios (DOR) at each accuracy level and cost assumption given the optimized classification thresholds.  

Physician adherence: We then reformulate the optimizer to account for physician adherence. For a given 

classification threshold, low adherence leads to a lower detection rate as alarms are ignored. To illustrate the 

effects of physician adherence on costs, we run a similar simulation to the above, but rather than considering 
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three models of differing accuracy, we vary the adherence rate. Hence, the simulation calculates excess costs 

at the set of optima for different adherence parameters and costs of false alarms. Lower levels of 𝛾 indicate a 

lower level of physician adherence (see equation A2 in Supplementary Materials).  

Comparison to Uniform Classification Threshold Chosen by Optimizer: We underscore the gains from 

optimizing classification thresholds by department. To this end, we do the same set of simulations when 

allowing only one classification threshold across departments. We then calculate the excess costs for 

different false alarm costs and accuracy levels at the optimal threshold. We also calculate the DORs at these 

optima. 

Comparison to Uniform Classification Threshold: We calculate the excess costs if the algorithm 

implementers use a uniform 80% sensitivity, representing a clinically useful target detection rate5. We 

calculate excess costs at different false alarm costs, physician adherence, and accuracy levels, and we 

calculate the DORs at the optima. 

 

RESULTS  

Calculation of Excess Costs of Sepsis: 

Figure 2 shows the distribution of mean excess inpatient sepsis payments by DRG. The distribution’s mean 

is $23,929, and its median is $8,124. Importantly, this implies that, on average, sepsis patients generate 

$24,000 more charges than non-septic patients within the same DRG (matched on baseline severity). 

Differences between payments for patients within the same DRG weight exist because Medicare reimburses 

extra for costlier hospital encounters. Patients with high cost-to-charge ratios receive additional payments to 

compensate for hospital losses, called outlier payments.31 Thus, if the costs of sepsis treatment, or other non-

sepsis treatments, exceed a certain threshold, Medicare compensates the hospital a certain percentage of the 

costs above the standard Medicare payment. Hence, outlier payments drive the difference in Medicare 

payments within the same DRG weight. Notice that outlier payments also explain why some sepsis patients 

are less costly than non-septic patients: outlier payments for these non-septic patients happen to be higher 

for other care unrelated to sepsis. The aggregated excess costs by MDC category are presented in Table A1 

in the Supplementary Materials section. This table shows that sepsis can additionally cost Medicare up to 

$85,000 per patient.  
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Figure 2. Distribution of mean excess sepsis payments over all Diagnosis-Related Groups (DRGs). This is 

the distribution of excess costs, as presented in Figure 3, but limited to the UCSDH cohort. 

 

The second set of results describe the outcomes of a simulation of excess cost savings and diagnostic odds 

ratios achieved by ML algorithms with fine-tuned classification thresholds. We estimate that the excess cost 

for inpatient sepsis cases in the U.S. is $5.2 billion per year before predictive analytics implementation (see 

Supplementary Material section for details). Note that this estimate does not consider those patients whose 

primary diagnostic category is sepsis, but those who belong to non-septic DRGs who additionally have a 

sepsis diagnosis. The latter group incurs a total cost of roughly the same amount as the excess costs associated 

with our study’s patient cohort (see Figure 3). Additionally, our excess cost estimate ignores excess utilization 

of inpatient providers, skilled nursing facilities, and costs incurred due to the high 30-day sepsis readmission 

rates which is estimated to be 20% 32,33. Thus, our estimate likely provides a lower-bound on excess costs. 
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Figure 3. Venn diagram of Medicare Population by DRG Group and Severe Sepsis Diagnosis 

 

Our simulation results show the savings achieved with our implementation across various assumptions. Our 

first set of results describes three simulation routines that differ by the degrees of freedom with which 

classification thresholds are chosen: (A) corresponding to 80% sensitivity, (B) a uniform across all diagnostic 

categories, (C) distinct and optimized for each diagnostic category. We present cost savings for each degree 

of freedom across various assumptions on ML accuracy and false-positive costs. Our second set of results 

provides the Diagnostic Odds Ratios (DOR) for degrees of freedom (A)-(C) at the optima chosen to minimize 

costs across the same ML accuracy and false-positive cost assumptions. 

 

Cost Savings 

(A) Uniform Classification Threshold. The first results detail cost savings when using a uniform 

recommendation of 80% sensitivity and applying it throughout the hospital at different false-positive 

costs and various levels of ML accuracy. Note, this implementation differs from the two others as the 

threshold is not optimized. Panel A, Figure 4 shows that as the cost of false positives decreases (i.e., 

higher α values), classification thresholds are chosen more aggressively, which leads to higher cost 

savings as more septic patients are diagnosed and treated. Similarly, as the predictive power of the 

model increases (i.e., higher AUC), savings increase. The most influential factor in cost savings is the 

model’s predictive power, with excess cost savings ranging from $2.3-$3.9 billion.  

(B) Uniform Classification Threshold Chosen by Optimizer. Instead of relying on a uniform 

recommended threshold, implementers may choose one to minimize costs throughout the hospital. 
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The simulation of this implementation shows to what extent cost savings would differ. Panel B, Figure 

4 shows that, for every AUC- α pair, cost savings are higher when the threshold is chosen. Where 

savings are highest, an optimized uniform threshold can save over $400 million relative to the uniform 

recommended level ($3.9 billion cost savings with 80% uniform and $4.3 billion cost savings with 

uniform chosen). Cost savings exhibit similar patterns across α and AUC values as the above model. 

(C) Heterogenous Classification Thresholds Chosen by Optimizer. Further, implementers could optimize 

thresholds across broad diagnostic categories (or hospital departments). Panel C, Figure 4 shows that 

the gains from choosing heterogenous thresholds by MDCs are highest for lower-accuracy models. 

This discrepancy is illustrated by the difference between cost savings in the uniform model versus the 

heterogeneous model, with cost savings at AUC of 0.82 as high as $3.7 billion when using 

heterogeneous thresholds compared to $3 billion with the uniform model. At the pair where the 

highest savings are achieved, heterogeneous thresholds can save over $300 million relative to uniform 

thresholds ($4.3 billion cost savings with uniform and $4.6 billion with heterogeneous) and almost 

$700 million compared to the 80% standard. Cost savings exhibit similar patterns across α and AUC 

values as the above models. 

(D) Comparison of Cost Savings Across Degrees of Freedom. Panel D of Figure 4 shows that 

heterogenous thresholds would increase cost savings by almost $700 million each year, relative to 

80% uniform thresholds and by as much as $300 million each year, relative to a uniform chosen 

threshold. These calculations assume an AUC of 0.9 and an α of 20 across the three models. An α of 

20 aligns with the maximum penalty for false alarms in the Physionet challenge4, and the AUC of 0.9 

is close to the predictive accuracy of the latest advancement in sepsis predictive analytics by 

Shashikumar at al. 5 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

 

Figure 4. Note: The cost savings estimates in the bottom-right subfigure are for AUC = 0.9 and α = 20 across 

the three models. We choose α = 20 to align with the maximum penalty for false alarms in the Physionet 

challenge.4 

 

Diagnostic Odds Ratio 

(A) Uniform Classification Threshold. We present an objective measure of accuracy, called the 

Diagnostic Odds Ratio (DOR), attained at each AUC- α pair given the optimal thresholds. Panel A, 

Figure 5 illustrates that the highest levels of diagnostic accuracy are achieved when costs are lowest, 

suggesting that cost minimization can simultaneously maximize algorithmic performance. Naturally, 

more predictive models also lead to higher DOR values. 

(B) Uniform Classification Threshold Chosen by Optimizer. Optimizing the uniform threshold leads to 

higher DORs at each AUC- α pair. This improvement is prominent in most accurate models, where 

DOR can differ by as much as 30 between different degrees of freedom (see Panel B, Figure 5). 

(C) Heterogenous Classification Thresholds Chosen by Optimizer. Heterogenous thresholds further 

increase the DOR at every point relative to the previous two alternatives. In Panel C, Figure 5, we see 
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that DOR reaches up to 116 at the highest point. 

(D) Comparison of Cost Savings Across Degrees of Freedom. Panel D of Figure 5 shows the DOR can 

increase by as much as 50 when switching from a uniform recommended threshold to heterogeneous 

thresholds, even though DOR is not directly maximized. Interestingly, minimizing excess sepsis costs 

also leads to higher DOR.  

 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

  

Figure 5. Note: The cost savings estimates in the bottom-right subfigure are for AUC = 0.9 and α = 20 across 

the three models. We choose α = 20 to align with the maximum penalty for false alarms in the Physionet 

challenge.4 

 

Savings when Accounting for Provider Adherence  

We present results from a set of simulations that fix AUC at 0.87, but which vary the costs of false positives 

and physician adherence to alarm triggers. Not surprisingly, savings are highest when adherence is high (see 

figure A1). This result highlights the value of adequate training and quality controls to ensure that physicians 
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and front-line workers who interact with these technologies use them appropriately. Measures to improve 

physician adherence to alarm triggers could increase cost savings by as much as $1 billion dollars ($3 billion 

at 𝛾 = .5, α = 17; $4 billion at 𝛾 = 1.0, α = 17). 

 

 

DISCUSSION 

 

This work estimates the national excess costs of sepsis and provides a framework for implementing 

predictive models in clinical settings to account for these needs. Our framework chooses classification 

thresholds, or the points above which a patient is deemed septic, across broad diagnostic categories to 

minimize the costs of under- and over-treatment. We illustrate that implementing such algorithms 

nationwide could potentially save the Center for Medicare and Medicaid Services (CMS) over $4.6 billion 

each year from inpatient hospital-related costs alone. As much as 12.3% of these savings are attributable to 

our framework for implementation alone, relative to adhering to uniform classification thresholds. We find 

that diagnostic accuracy would also improve by as much as 68%. 

 

Our work expands the frontier of research on clinical predictive models in several directions. First, we 

provide a methodology for calculating the excess costs of a given condition and apply that method to sepsis 

care. Second, to our knowledge, we are the first to provide a framework for optimizing the parameters of 

predictive models according to patient subpopulation. Third, our framework is the first to explicitly balance 

the costs of under-treatment (i.e., false negatives) and over-treatment (i.e., false positives) using a 

constrained optimization routine. Fourth, we allow for a flexible set of hospital-specific parameters that can 

be rationalized and set by the implementer. Among these, we include the possibility of imperfect adherence 

to triggered alarms (i.e., behavioral failures), or other factors that might influence the effectiveness of the 

sepsis treatments, given the alarm is followed (imperfect treatment). We also include a flexible parameter 

identifying the costs of false positives (i.e., over-treatment). Since this cost is a difficult value to ascertain 

and specific to a given hospital and/or condition, we allow the user to set this parameter at a level which 

they deem reasonable. We show that across various assumptions on physician adherence and over-treatment 

costs, our framework can dramatically increase excess cost savings.  

By contrast, recent work in predictive analytics considers the cost of prediction in terms of the number 

of laboratory tests and their associated costs.32 However, these approaches overlook the more significant 

costs incurred from avoidable hospital expenses and insurance payouts that could be prevented by more 

timely and appropriate health care. Our implementation directly minimizes these costs to optimize 

predictive analytics.  

Our approach also allows hospitals and practitioners to reap savings under current DRG-based payment 

models and value-based care systems.33 For example, under the increasingly used model of capitation 

payments, hospitals are allotted a payment for a fixed number of patient lives. Our implementation allows 

hospitals to optimize their predictive analytics within patient subgroups and provide targeted treatment 

depending on the needs of those subgroups. Excess cost savings from this targeted approach would be 

directly reaped by hospitals, incentivizing adoption of new prediction technologies.  

 

A comparison of results across different model parameter values and inclusion criteria offers several 
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broader insights. First, improving provider compliance to algorithmic recommendations can yield 

substantial cost savings. These savings are as large as those reaped when setting classification thresholds 

by broad diagnostic categories, highlighting the importance of dedicating time and resources to the 

Behavioral Layer (see Figure 5) of the clinical decision support process. By improving compliance to 

algorithmic recommendations and optimizing model parameters by patient subpopulation, costs can be 

further reduced by as much as 40%. Thus, the value proposition of new predictive models depends on how 

well algorithms are implemented.  

 

Relatedly, our model could be extended to allow provider compliance rates that vary by department. 

These heterogenous compliance rates could, in turn, affect cost-savings outcomes. Further, one could 

simulate the potential savings of educational interventions that improve compliance rates within low-

compliance departments. 

 

Third, broadening the inclusion criteria of these technologies may lead to much higher excess cost 

savings. Our strategy, for example, only includes patients with ICD codes corresponding to severe sepsis 

and septic shock. By contrast, if the inclusion criteria were expanded to cover patients with any sepsis ICD 

code34 that map to the sepsis DRG codes (i.e., 870-872), the excess cost savings could double (see 

Supplementary Materials). Moreover, if predictive technologies were deployed beyond inpatient settings, 

such as in outpatient clinics, skilled nursing facilities, or via at-home wearable devices, cost savings could 

further increase. 

 

Lastly, the cost of false alarms can greatly affect the potential for cost savings. If the costs of sepsis 

overtreatment are high relative to the costs of undertreatment (e.g., worst-case antimicrobial resistance 

scenarios) cost savings are limited. Identifying these costs, thus, is critical to identifying optimal 

classification thresholds. However, these costs could vary by hospital or department and may merit more 

specific calculations. 
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Figure 6. Clinical decision support (CDS) implementation layers. These layers (and the corresponding 

key attributes) include: 1) the Platform layer (interoperability, scalability and fault-tolerant), 2) the Artificial 

Intelligence layer (accuracy, generalizability, and interoperability), 3) the Policy layer (specific and 

applicable to local hospital workflows, optimality w.r.t. enterprise’s objectives), and 3) the Behavioral 

layer (usability, compliance). 

 

Our analysis, of course, has limitations. First, it is difficult to estimate the true excess costs of sepsis. Our 

estimates, which compare patients within the same DRG and with similar baseline comorbidity indices, 

attempt to isolate the effect of sepsis on excess costs. Our estimates, however, are an imperfect attempt at 

identifying the causal effect of sepsis on costs and could include other factors that increase costs apart from 

sepsis. Second, our analysis uses data from only one hospital. Obtaining fine-grained costs from hospitals 

is an arduous process, thus, we are limited by our sample size. Third, we assume that provider costs are a 

small fraction of procedure costs, ignoring differences in provider costs between septic and non-septic 

patients within MDC categories. However, septic patients often require more physician time; therefore, our 

excess cost estimates could be interpreted as a lower bound. Further, we do not account for the value of 

lives saved from improved treatment and any costs incurred after discharge, despite readmissions from 

sepsis being extremely common and expensive35. Thus, we analyzed excess costs of septic patients for 

whom sepsis is a non-primary diagnosis while accounting for other primary reasons for hospital admission. 

This allowed us to analyze avoidable costs that could be prevented by early sepsis detection during hospital 

care. Despite these limitations, we believe that our analysis serves a useful framework for the deployment 

of predictive analytics in clinical settings and underscores the potential savings when these models are 

deployed in a manner that directly considers costs. 

 

CONCLUSION 

 

We show that fine-tuning prediction technologies to perform well under behavioral and cost constraints can 

improve patient outcomes while reducing health care spending. We estimate that Medicare could save over 

$4.6 billion each year from inpatient hospital-related costs alone, and that diagnostic accuracy would 

improve by as much as 68% through use of a ML-algorithm to predict sepsis. Our results suggest that the 

value proposition of new prediction technologies can be improved through fine-tuning within a clinical 

setting. Prospective studies are needed to validate these findings.  
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SUPPLEMENTARY MATERIAL 

 

1. Cost Minimization Routine Across Diagnostic Categories 

 

We choose the sensitivity of the algorithm in each MDC code i to minimize sepsis payments subject to boundary 

constraints. The primary constraint is the tradeoff between sensitivity and specificity: higher sensitivity leads to 

lower specificity. The sharpness of that tradeoff is determined by the ROC curve. The formulation of the 

optimization routine is as follows: 

 

 

Equation A1. Main minimization routine 

 

Here, sensi is sensitivity and speci is specificity. Cost_FNi is given by the cost of false negatives in the given 

MDC code i. This was gathered earlier by calculating the difference between CMS payments for patients with 

sepsis within a given DRG weight (DRG and quarter) and patients without sepsis within that same DRG weight 

that were matched on baseline CCI (severity). N_septici is the number of septic patients in the given MDC code 

and (1 – sensi) is the miss rate. Thus, the left-hand side of the objective function can be thought of as the total 

additional payments made by CMS for septic patients. f(sensi) is the false positive rate, which is calculated using 

a fitted function f( ) to the predictive model’s ROC curve. The estimated functional form f( ) thus provides a 

mapping from the chosen sensitivity to specificity. N_controlsi represents the total number of patients in the 

MDC code/department that do not have sepsis. The parameter Cost_FN bar is the average cost of false negatives 

across all MDC codes. The parameter α is a variable that maps the cost of false positives to the cost of false 

negatives as there may be a cost of giving someone antibiotics if they do not have sepsis (e.g., adverse side 

effects). Thus, the right-hand side of the objective function can be thought of as the additional cost from false 

positives. 

 

2. Cost Minimization Routine with Imperfect Adherence 

 

To model the cost effects of imperfect physician adherence to alarm triggers, we reformulate our model to allow 

a portion of true positives to be ignored (behavioral failure). Alternatively, our model extension could account 

for a treatment failing to prevent sepsis even if the alarm is followed (treatment failure). To this end, we add a γ 

exponent to the miss rate to scale up the miss rate for a given choice of sensitivity: 
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Equation A2. Minimization Routine with Imperfect Adherence to Alarm Triggers 

 

For this model, we use the model that has an AUC of 0.87. Note that the 𝛾 exponent is between 0 and 1 and the 

miss rate is between 0 and 1. Thus, as 𝛾 decreases, the miss rate increases. 

 

 

Figure A1. Cost Savings Across α Values and Physician Adherence Levels. 

 

3. Cost Minimization Routine with Uniform Sensitivity Across All MDCs 

 

Now we compare having the flexibility to determine sensitivity/specificity of the algorithm across departments 

(MDC codes) to simply choosing one uniform sensitivity/specificity pair across all MDCs.  

 

The formulation for this optimization routine is as follows:  

Notice that, instead of choosing a set of sensitivity values across diagnostic categories, we choose only one 

sensitivity value across the entire hospital.  

 

4. Cost Minimization Routine With 80% Uniform Sensitivity Across all MDCs 
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For this simulation we simply impose a uniform 80% sensitivity across all diagnostic categories consistent with 

uniform, recommended levels. In this context, no algorithmic optimization for a sensitivity value is used. Costs 

are calculated by summing up the costs across diagnostic categories with the uniform 80% sensitivity value and 

the corresponding specificity value determined by the ROC curve. 

 

 

5. ROC Curve Smoothing for AUC Constraint 

 

To fit a function to the ROC curve, to bound the accuracy of the model, we first invert the ROC curve data points 

to get a mapping between y = f(sens), where y is the false-positive rate, which we insert directly in the objective 

function. We then transform sensitivity and specificity pairs from the actual ROC curve into logit space using 

the following transformation 

 

 

While in logit space we then fitted a model that mapped sensitivity (true-positive rate) to the false positive rate 

using the following regression model: 

 

 

Once we obtain the fitted coefficients, we mapped each value of sensitivity to the false-positive rate by first 

transforming sensitivity into logit space, generating the logit false positive rate, then returning the logit false-

positive rate back into the normal false-positive rate through the inverse logit function. 

 

Using interpolation methods to estimate the ROC curve generated functions that were not smooth and that often 

lead the optimizer to settle on unstable solutions. With our method, we guarantee a smooth, monotonic function 

for every value of sensitivity. 

 

Below we plot the original data for the ROC curve vs. the fitted data: 
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6. Scaling Excess Costs at UCSDH To National Level 

 

 

(1) To adjust for payment differences between the average U.S. hospital and UCSDH, we calculate the ratio of UCSDH average payments to US average 

payments by DRG and scale costs by this ratio 

(2) To scale excess costs to a national level, we calculate the share of US patients treated at UCSDH by DRG and divide by this share 

(3) Aggregate costs across DRGs  

 

 

Scholars have valued the total U.S. annual costs of sepsis among Medicare Beneficiaries at $41.8B19. This 

number is derived estimating the costs from patients within the sepsis DRGs 870-872. There are two potential 

shortcomings of this estimate. First, it does not include sepsis diagnoses that occur in other DRG codes. By only 

analyzing these patients, some costs could be missed. Second, these costs are not net of the counterfactual level 

of care these patients would have received without sepsis. It is plausible that even if these patients did not have 

sepsis as a primary reason for admission, that these patients would have still been admitted to the hospital for 

other reasons in the near term (I.e., since these patients have more underlying conditions). Measuring the 

counterfactual level of costs, a patient would have incurred is essential for determining the actual cost of sepsis. 

That is, if we could prevent sepsis from occurring, what savings could society reap? 

By analyzing patients outside the sepsis DRGs, we can do comparisons between individuals with similar 

underlying conditions and primary reasons for admission, but where sepsis is the key differentiator. Thus, our 
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estimates provide a reasonable estimate of the excess costs of sepsis and can be used to scale the sepsis estimate 

costs in sepsis DRGs. 

To scale our hospital-level estimates of excess costs to the national level, we aggregate all the excess costs of 

sepsis at the DRG level. Then, we calculate the ratio of UCSDH average payments to US average payments by 

DRG. This number measures the differences in payments for each DRG that UCSDH receives (e.g., teaching 

hospital add-on payments). We scale the excess cost totals in each DRG by these ratios to achieve a more 

nationally representative excess cost measure at the hospital level. Next, to scale these costs up nationally, we 

calculate the share of national patients that UCSDH treats in each DRG. We then divide the payment-adjusted 

DRG-level excess costs by these shares to achieve a national DRG excess cost. These costs, however, could be 

biased by UCSDH’s case mix. Thus, we scale these costs by Medicare’s case-mix index to normalize these costs 

to represent the national case mix.  

The results of this estimation suggest that the excess costs of sepsis in non-sepsis DRGs is $5.2 billion annually. 

Note that, in our data, there is a similar number of patients within non-sepsis DRGs than within sepsis DRGs. 

Thus, total sepsis cost estimates may be overestimated by a factor of 10. There are, however, other costs of sepsis 

not measured in our data. Patients, for example, may receive antibiotic prescriptions from pharmacies, which we 

do not measure. Assuming we only capture half the costs of sepsis using only inpatient data, this still would 

amount to a 4-fold overestimation of sepsis costs. However, by including non-sepsis DRGs, the total excess 

costs may be somewhere close to $10 billion annually ($5 billion in non-sepsis DRGs, scaled by 2 from 

mismeasurement of non-inpatient costs, and $5 billion in sepsis DRGs). 

Further the total number of patients in non-sepsis DRGs with sepsis ICD codes is over three times as large as 

the number of severe septic patients, which could double the excess cost estimates.  

 

7. Validation of Scaling Exercise 

 

To validate our scaling exercise, we focus on total costs incurred in the sepsis DRGs. As a benchmark, we use 

the Medicare Provider Utilization and Payment Data (Inpatient) the U.S.29 (“External Dataset”) and internal 

costs and Medicare reimbursement data from UCSDH (“Internal Dataset”). Focusing on the latter dataset, we 

scale the estimates of total costs for sepsis DRGs to the national level (“scaled estimates”), using the same 

methodology described in the section above. We then compare the total costs of sepsis from the external dataset 

(i.e., “the true reported values”) to the scaled estimates. We find that these costs are virtually identical. We also 

find that, among all sepsis patients with DRGs 870-872 (as opposed to severe septic and septic shock group 

included in our analysis), our scaled sepsis cost estimate using UCSDH healthcare data is the same as the scaled 

estimate using Medicare cost data for UCSDH. Together, these comparisons reinforce the credibility of our 

scaling exercise and the accuracy of our UCSDH healthcare data extract. 

MDC Table 

MDC Description Share Septic N 

Septic 
Excess  

Sepsis Costs 

Optimal  

Sens./Spec. 

Pre-MDC 0.07 88 $85739.5 0.98/0.75 

Diseases & Disorders of the Nervous System 0.04 23 $2451.91 0.67/0.97 

Diseases & Disorders of the Ear, Nose, Mouth & Throat 0.13 <5 $64266.0 0.98/0.69 

Diseases & Disorders of the Respiratory System 0.04 38 $4883.84 0.75/0.96 

Diseases & Disorders of the Circulatory System 0.02 104 $29151.76 0.89/0.91 

Diseases & Disorders of the Digestive System 0.04 47 $32531.72 0.93/0.87 

Diseases & Disorders of the Hepatobiliary System & Pancreas 0.04 28 $18242.07 0.9/0.9 
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Diseases & Disorders of the Musculoskeletal System & Connective 

Tissue 
0.1 23 $7827.39 0.91/0.89 

Diseases & Disorders of the Skin, Subcutaneous Tissue & Breast 0.2 <5 $7265.0 0.94/0.85 

Endocrine, Nutritional & Metabolic Diseases & Disorders 0.04 <5 $25850.5 0.92/0.88 

Diseases & Disorders of the Kidney & Urinary Tract 0.02 70 $-23270.1 N/A 

Diseases & Disorders of the Male Reproductive System 0.25 <5 $765.5 0.8/0.94 

Diseases & Disorders of Blood, Blood Forming Organs, Immunologic 

Disorders 
0.1 6 $2519.5 0.81/0.94 

Myeloproliferative Diseases & Disorders, Poorly Differentiated 

Neoplasms 
0.03 157 $-12859.09 N/A 

Infectious & Parasitic Diseases, Systemic or Unspecified Sites 0.08 12 $-48800.17 N/A 

Mental Diseases & Disorders 0.33 <5 $1570.0 0.9/0.9 

Injuries, Poisonings & Toxic Effects of Drugs 0.05 16 $13975.75 0.9/0.9 

Factors Influencing Health Status & Other Contacts with Health 

Services 
0.1 <5 $103.0 0.0/1.0 

Multiple Significant Trauma 0.5 <5 $46164.33 1.0/0.43 

Human Immunodeficiency Virus Infections 0.06 44 $-36037.73 N/A 

Table A1. The optimal sensitivity/specificity pairs presented are evaluated at AUC = 0.90 and α = 20 for the 

heterogeneous chosen model. N/A pairs signify MDC categories for which there were negative excess costs 

associated with sepsis. This negative excess cost may reflect early death or transfers, or other factors that may 

correspond to lower CMS payments. We omit these categories from our analysis. 
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