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2

23 Abstract

24 Co-infection of COVID-19 and other respiratory pathogens, including influenza virus family, has 

25 been of importance since the beginning of the recent pandemic. As the upcoming flu season arrives 

26 in countries with ongoing COVID-19 epidemic, the need for preventive policy actions becomes 

27 more critical. We present a joint compartmental SEIRS-SIRS model for the co-circulation of 

28 SARS-CoV-2 and influenza and discuss the characteristics of the model, such as the basic 

29 reproduction number (R0) and cases of death and recovery. We implemented the model using 2020 

30 to early 2021 data derived from global healthcare organizations and studied the impact of 

31 interventions and policy actions such as vaccination, quarantine, and public education. The 

32 VENSIM simulation of the model resulted in R0 = 7.5, which is higher than what was reported for 

33 the COVID-19 pandemic. Vaccination against COVID-19 dramatically slowed its spread and the 

34 co-infection of both diseases significantly, while other types of interventions had a limited impact 

35 on the co-dynamics of the diseases given our assumptions. These findings can help provide 

36 guidance as to which preventive policies would be most effective at the time of concurrent 

37 epidemics, and contributes to the literature as a novel model to simulate and analyze the co-

38 circulation of respiratory pathogens in a compartmental setting that can further be used to study 

39 the co-infection of COVID-19 or similar respiratory infections with other diseases.

40 Keywords 

41 SARS-CoV-2, Influenza, Co-infection, Compartmental Modeling, Vaccination, Quarantining.

42

43

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2022. ; https://doi.org/10.1101/2022.08.26.22279281doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.26.22279281
http://creativecommons.org/licenses/by/4.0/


3

44 1. Introduction

45 The recent pandemic pathogen, Severe Acute Respiratory Syndrome Coronavirus‐2 

46 (SARS‐CoV‐2), which started in December 2019, has caused a wide range of illness varying from 

47 mild symptoms to complicated and severe respiratory response, and in 3% of cases even death1–3. 

48 Although at the time of writing this paper available data was limited, recent case reports of 

49 concurrent infection of influenza virus in adults and children with SARS‐CoV‐2 infection have 

50 suggested that co-infection may heavily influence morbidity and mortality4. Previous literature has 

51 shown that co-infections were frequent in patient populations and is of importance for both flu 

52 season and deadly variants of SARS-CoV-2 5–8. The Centers for Disease Control and Prevention 

53 (CDC) has reported that influenza and COVID-19 have overlapping signs and symptoms, and co-

54 infection has been documented in both case reports and case series9. 

55 The reported impact of existing infection with SARS‐CoV‐2 and co-infection with other pathogens 

56 varies, from negative10 to not significant11 to positive12,13. For example, Kim et al. 11 reports more 

57 than 20% of 116 SARS‐CoV‐2 positive individuals tested over a 20 day period contained one or 

58 more additional respiratory pathogens, most often rhinovirus/enterovirus and different types of 

59 influenza virus family, although the prevalence of co-infection among COVID-19 positive and 

60 negative population was not statistically significant. In another study, Yue et al.12 showed that the 

61 prevalence of co-infection with influenza among a group of COVID-19 positive patients in Wuhan, 

62 China was more than 50%, while the prevalence of infection with influenza virus pre-pandemic 

63 was less than 1%. In a recent study, Bai et. al13 found that influenza A virus (IAV) pre-infection 

64 significantly promoted the infectivity of SARS-CoV-2 in a broad range of cell types through an 

65 experimental co-infection with IAV and SARS-CoV-2 virus.
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66 In terms of preventive policy actions during the recent pandemic, policy makers across the globe 

67 designed different strategies to try to control the pandemic 14. In the early stages of the pandemic, 

68 while pharmaceutical interventions such as vaccination and medical treatment were not accessible, 

69 non-pharmaceutical interventions were widely implemented15. These interventions, such as mask 

70 mandates, social distancing, quarantining, surveillance testing, and contact tracing were 

71 substantially effective in slowing down the progression of COVID-1916–18 and some of them are 

72 still in place to date. These non-pharmaceutical interventions were found to reduce the burden of 

73 flu as well19, intuitively due the similarities in respiratory propagation of both viruses and how the 

74 parallel spread of diseases were slowed down by general hygiene enforcement and social contact 

75 reduction. Vaccination programs for COVID-19, becoming accessible worldwide midway through 

76 the pandemic, played a significant role in reducing the spread of COVID-19, and associated 

77 hospitalization and mortality20. With the emergence of new variants of COVID-19, vaccination 

78 proved to be as impactful although booster doses were required and remain ongoing globally21. 

79 However, with the rise of new variants, achieving herd immunity still remains out of reach 22. 

80 Nevertheless, flu shots are promoted by public health officials and are found to be effective in 

81 controlling simultaneous outbreak of influenza and COVID-1923. However, it is unclear how 

82 impactful pharmaceutical interventions are in reducing co-infection cases of COVID-19 and 

83 influenza.

84 Understanding the co-existence and co-infection of two or more diseases at the same time has been 

85 an important and controversial topic in the field of epidemiology. To name a few, in 2016, Naji 

86 and Hussein24 proposed a compartmental model describing the dynamics of the spread of  two 

87 different types of pathogens based on two underlying models of disease spread, an SIS-type disease 

88 and an SIRS-type disease. In another study, Tilahun et. al25 studied the co-dynamics of Pneumonia 
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89 as an airborne disease and Typhoid fever as a vector-based disease using a joint SIRS-SIRS 

90 simulation for cost-effective disease control purposes. More recently, Rehman et. al26 developed a 

91 mathematical transmission model for the co-infection of dengue fever and COVID-19, and 

92 described the co-dynamics of the propagation using qualitative and numerical analysis. However, 

93 there is limited literature on modeling the co-existence and co-circulation of SARS-CoV-2 and 

94 influenza viruses as two airborne diseases.

95 In this paper, we describe a model of disease progression consisting of two joint compartmental 

96 models for COVID-19 and influenza. We further simulate the behavior and transmission dynamics 

97 of diseases based on the most recent data including US COVID-19 updates and CDC and WHO 

98 guidelines. Moreover, we discuss how our results compare and contrast with observed data and 

99 published literature since the COVID-19 pandemic started. Finally, we study the impact of 

100 vaccination against COVID-19, and non-pharmaceutical interventions such as education and 

101 social distancing on the behavior of COVID-19 – influenza co-circulation. The results of this study 

102 could provide useful information for researchers and policy makers as to which policy action could 

103 mitigate the negative impacts of concurrent epidemics on mortality rate and total cases of infection. 

104 With the possibility of emergence of other respiratory epidemics and pandemics in the future27, 

105 mathematical and predictive models of co-infection with multiple diseases could further be used 

106 in cost-effectiveness and cost-utility analyses and help develop adaptive and effective policy 

107 actions.

108 2. Materials and Methods

109 We proposed a SEIRS-SIRS compartmental model to study the co-existence of COVID-19 and 

110 influenza and further implemented the Next Generation Method (NGM) to find the basic 
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111 reproduction rate (R0).  We also performed sensitivity analysis and solved the model for various 

112 parameter values in order to understand the effect of interventions and policy actions on the spread 

113 of diseases 28. We created a simulation model for validation and additional investigations.

114 2-1.  Model Parameters and Relationships 

115 To capture the co-dynamics of COVID-19 and influenza, we developed a joint SEIRS-SIRS 

116 compartmental model (Figure 1). This model considers a population (N) that is divided into nine 

117 compartments, susceptible (S), COVID-19 exposed (Ec), COVID-19 infectious (Ic), influenza 

118 infectious (If), COVID-19 and influenza co-infectious (Ifc), COVID-19 and influenza co-exposed 

119 (Efc), COVID-19 recovered (Rc), influenza recovered (Rf) and COVID-19–influenza co-infectious 

120 recovered (Rfc). We assumed a closed environment with birth rate and natural death rates both 

121 equal to 0, while the number of susceptible population increases by those individuals that lose their 

122 temporary immunity29 from the recovered compartment of COVID-19 (Rc), influenza (Rf) and 

123 COVID-19–influenza co-infected compartment (Rfc) with rates of δ1 , δ2 and δ3, respectively.

124 Figure 1 – Schematic flow of the model, parameters and compartments are outlined in section 4.1 and dynamics are 

125 described in section 4.2. Different colors are utilized to indicated similar components.

126 Susceptible individuals become infected either with COVID-19 at the rate 𝛾𝑐 and join the COVID-

127 19 exposed compartment (Ec), or with influenza at infection rate 𝛾𝑓 and joining influenza infectious 

128 compartment (If). Patients that are exposed to COVID-19 will become infectious after the latent 

129 period (Lc). Since the latent period for influenza is relatively low (roughly from 0.6430 days to 1.6 

130 days31), we ignored the latency period for influenza. Similarly, patients already infected with 

131 influenza might get infected with COVID-19 with the co-infection rate 𝛾𝑓𝑐 and become COVID-

132 19 exposed, and after the latent period become co-infected. 
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133 The infectious compartment of COVID-19 can receive treatment or recover naturally at the rate βc 

134 and move to COVID-19 recovered compartment (Rc) or die with a death rate of αc. Similarly, the 

135 infected compartment of influenza can receive treatment or recover with a rate of βf and join the 

136 influenza recovered compartment (Rf) or die at a rate of αf. Moreover, the COVID-19- influenza 

137 co-infected compartment transitions from the co-infected compartment to the recovered 

138 compartment with a rate of βfc and obtain temporary immunity and therefore join the co-infected 

139 recovered compartment (Rfc). We assumed that all recovered compartments tend to become 

140 susceptible once again, after a specific amount of time (𝛿f, 𝛿c and 𝛿fc for flu recovered, COVID-19 

141 recovered and co-infection recovered, respectively).

142 An important assumption we made is considering adjustment parameters, k1, k2 and k3 as 

143 additional coefficients in the model. Since this model is essentially the combination of two disjoint 

144 SEIRS and SIRS compartmental models, overlaps are inevitable. Patients might technically belong 

145 to more than one compartment in reality, but these models are unable to easily capture this 

146 complexity. For the model to produce valid results, we assumed that only a proportion of COVID-

147 19 or influenza infected individuals are at risk for co-infected with the other pathogen, and 

148 therefore assigned adjustment probabilities25,26. These additional parameters control the flow 

149 between compartments and adjust the daily per capita co-infection rate and recovery rates so that 

150 the resulting trends mimic real world observations. Adjustment parameters received values 

151 between 0 and 1 with the sum of 1. 

152 5-1. Mathematical Model and adjustments

153
𝑑𝑆
𝑑𝑡 =  𝛿𝑐𝑅𝑐 +  𝛿𝑓𝑅𝑓 +  𝛿𝑓𝑐𝑅𝑓𝑐 ― 𝛾𝑐𝐼𝑐𝑆

𝑁 ― 𝛾𝑓𝐼𝑓𝑆
𝑁  eq – 1 

154
𝑑𝐸𝑐

𝑑𝑡 =  𝛾𝑐𝐼𝑐𝑆
𝑁  ―  

𝐸𝑐

𝐿𝑐
eq – 2
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155
𝑑𝐼𝑐

𝑑𝑡 =
𝐸𝑐

𝐿𝑐
 ―  

𝑘1𝛾𝑓𝑐𝐼𝑓𝐼𝑐

𝑁
 ― (𝑘2𝛽𝑐 + 𝛼𝑐)𝐼𝑐q eq – 3

156
𝑑𝐼𝑓

𝑑𝑡 =  𝛾𝑓𝐼𝑓𝑆
𝑁  ―  

𝑘1𝛾𝑓𝑐𝐼𝑓𝐼𝑐

𝑁
 ―  (𝑘2𝛽𝑓 + 𝛼𝑓)𝐼𝑓 eq – 4

157
𝑑𝐸𝑓𝑐

𝑑𝑡 =  
𝑘1𝛾𝑓𝑐𝐼𝑓𝐼𝑐

𝑁
 ―  

𝐸𝑓𝑐

𝐿𝑐
eq – 5

158
𝑑𝐼𝑓𝑐

𝑑𝑡 =  
𝐸𝑓𝑐

𝐿𝑐
 +  

𝑘1𝛾𝑓𝑐𝐼𝑓𝐼𝑐

𝑁
 ―  (𝑘3𝛽𝑓𝑐 + 𝛼𝑓𝑐)𝐼𝑓𝑐 eq – 6

159
𝑑𝑅𝑐

𝑑𝑡 =  𝑘2𝛽𝑐𝐼𝑐 ― 𝛿𝑐𝑅𝑐 eq – 7

160
𝑑𝑅𝑓

𝑑𝑡 =  𝑘2𝛽𝑓𝐼𝑓 ― 𝛿𝑓𝑅𝑓 eq – 8

161
𝑑𝑅𝑓𝑐

𝑑𝑡 =  𝑘3𝛽𝑓𝑐𝐼𝑓𝑐 ―  𝛿𝑓𝑐𝑅𝑓𝑐 eq – 9

162 𝑁 = 𝑆 + 𝐸𝑐 + 𝐸𝑓𝑐 +  𝐼𝑓 + 𝐼𝑐 + 𝐼𝑓𝑐 + 𝑅𝑓 + 𝑅𝑐 + 𝑅𝑓𝑐 eq – 10

163 2-2. Basic Reproduction Number (R0)

164 The Basic Reproduction Number (R0) is used to measure the transmission potential of a disease 

165 and is equal to the average number of secondary infections produced by a typical case of an 

166 infection in a population where everyone is susceptible32,33. The next generation method is used to 

167 calculate the R0 associated with the model of co-infection of SARS-CoV-2 and influenza virus34. 

168 This system has five infected states: Ec, Efc, Ic, If and Ifc; and four uninfected states: S, Rc, Rf and 

169 Rfc. Although there are nine states in the model, it is eight-dimensional as the total population size 

170 is constant. At the infection-free steady state, Ec = Efc = Ic = If = Ifc = Rc= Rf = Rfc = 0, hence S = 

171 N. Therefore, for small (Ec, Efc, Ic, If, Ifc) we have the following non-linear system

172
𝑑𝐸𝑐

𝑑𝑡 =  𝛾𝑐𝐼𝑐𝑆
𝑁 ― 

𝐸𝑐

𝐿𝑐
eq – 11
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173
𝑑𝐸𝑓𝑐

𝑑𝑡 =  
𝑘1𝛾𝑓𝑐𝐼𝑓𝐼𝑐

𝑁
 ―  

𝐸𝑓𝑐

𝐿𝑐
eq – 12

174
𝑑𝐼𝑐

𝑑𝑡 =
𝐸𝑐

𝐿𝑐
 ―  

𝑘1𝛾𝑓𝑐𝐼𝑓𝐼𝑐

𝑁
 ― (𝑘2𝛽𝑐 + 𝛼𝑐)𝐼𝑐 eq – 13

175
𝑑𝐼𝑓

𝑑𝑡 =  𝛾𝑓𝐼𝑓𝑆
𝑁 ― 

𝑘1𝛾𝑓𝑐𝐼𝑓𝐼𝑐

𝑁
 ― (𝑘2𝛽𝑓 + 𝛼𝑓)𝐼𝑓 eq – 14

176
𝑑𝐼𝑓𝑐

𝑑𝑡 =  
𝐸𝑓𝑐

𝐿𝑐
 +  

𝑘1𝛾𝑓𝑐𝐼𝑓𝐼𝑐

𝑁
 ― (𝑘3𝛽𝑓𝑐 + 𝛼𝑓𝑐) 𝐼𝑓𝑐 eq – 15

177 The transition (F) and transmission (V) matrices are as follows:

178   

179 𝐹 =  (0 0 𝛾𝑐 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 𝛾𝑓 0
0 0 0 0 0

) eq – 16

180 and  𝑉 =  (
1
𝐿𝑐

0 0 0 0

0 1
𝐿𝑐

0 0 0

― 1
𝐿𝑐

0  𝑘2𝛽𝑐 +  𝛼𝑐 0 0
0 0 0 𝑘2𝛽𝑓 +  𝛼𝑓 0
0 ― 1

𝐿𝑐
0 0 𝑘3𝛽𝑓𝑐 + 𝛼𝑓𝑐

) eq – 17

181 The eigenvalues of 𝐹𝑉―1 are obtained as: 

182 𝜆∗
1 =  0 eq – 18

183 𝜆∗
2 =  0 eq – 19

184 𝜆∗
3 =  0 eq – 20
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185 𝜆∗
4 =  

𝛾𝑐

 𝑘2𝛽𝑐 +  𝛼𝑐
 eq – 21

186 𝜆∗
5 =

𝛾𝑓

𝑘2𝛽𝑓 +  𝛼𝑓

187 eq – 22

188 The basic reproduction number is computed as the spectral radius of 𝐹𝑉―1

189 𝑅0 = max {𝜆∗
1, 𝜆∗

2, 𝜆∗
3, 𝜆∗

4,𝜆∗
5} = max {𝜆∗

4, 𝜆∗
5} eq – 23

190 which after simplification is independent from the co-infection rate (𝛾𝑓𝑐) and co-infection 

191 recovery rate (𝛽𝑓𝑐), and depending on the evaluating parameters, the dominant R0 is merely 

192 determined by either COVID-19 or influenza branch. We discuss the implications of R0 in 

193 Section 2-2.

194 2-3. Simulation

195 In order to study the co-spread of COVID-19 and influenza based on the proposed model, we 

196 developed a system dynamics simulation model in VENSIM software V 8.0.935.  The full model 

197 is provided in Appendix 1 and more details will be provided on request. Table 1 summarizes the 

198 parameter values and available references implemented in the simulation. We modeled the co-

199 infection of SARS-CoV-2 for the state of Indiana with the population of 6,732,000 according to 

200 2019 US census36. The parameter values are derived form 2020 available COVID-19 dashboards 

201 and databases. We made necessary assumptions in cases where convenient or proper data was not 

202 accessible, the most important of which is the estimation of co-infection rate. As discussed 

203 previously in the Introduction, it is still unclear whether infection with COVID-19 or other 

204 respiratory pathogens affects the co-infection rate. By roughly estimating the average of values 
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205 reported in the literature, we assumed that the daily per person co-infection rate is 20% more than 

206 the maximum of infection rate with either COVID-19 or influenza. The rest of the parameters, 

207 references and assumptions are provided in Table 1.

208 Table 1 – Model parameters summary

Param
eter Value Description Reference

N ~ 6,732,000 Population (Indiana) 36

S 195,732 Susceptible population N - Ic - If - Ifc

Ec 0 COVID-19 exposed SEIRS model assumption

Efc 0 influenza infected and COVID-19 
exposed SEIRS model assumption

Ic 1 COVID-19 infectious SEIRS model assumption

If 1 influenza infectious SIRS model assumption

Ifc 1 COVID-19 an influenza co-infectious SEIRS model assumption
Rc 0 Recovered compartment of COVID-19 SEIRS model assumption

Rf 0 Recovered compartment of influenza SIRS model assumption

C
om

pa
rtm

en
ts

Rfc 0 Recovered compartment of both 
diseases SEIRS model assumption

𝛿c 1/365 (day-1) Rate of moving from recovered state to 
susceptible state – COVID-19

48

𝛿f 1/180 (day-1) Rate of moving from recovered state to 
susceptible state – influenza

48

𝛿fc 1/365 (day-1) Rate of moving from recovered state to 
susceptible state – both diseases Assumption (max of 𝛿c and 𝛿f)

𝛾c 0.60756 (person-1 day-1) Transmission rate – COVID-19 49

𝛾f ~ 0.44605 (person-1 day-1) Transmission rate – influenza
50 – assumption (At least 20% less 

contagious than COVID-19)

𝛾fc
Max{1.2 * 𝛾} = 0.72 (person-

1 day-1)
Transmission rate – co-infection Assumption (~1.2 times more 

than healthy people)

𝛽c 0.10013 (person-1 day-1) Recovery rate – COVID-19 50

𝛽f 0.2 (person-1 day-1) Recovery rate – influenza 51

𝛽fc 0.1 (person-1 day-1) Recovery rate – Both diseases Assumption

Lc 2.5 (days, on average) Latent period associated with COVID-
19

15

𝛼c 0.0007 (person-1 day-1) Death rate due to COVID-19 52

𝛼f 0.0002 (person-1 day-1) Death rate due to influenza 53 – Assumption

𝛼fc 0.0007 * 2.27 (person-1 day-1) Death rate due to Co-infection 54

Pa
ra

m
et

er
s

v 0.01 to 0.1 (person-1 day-1) Vaccination rate against COVID-19 44
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𝑘1 0.2 Adjustment coefficient 11, Assumption

𝑘2 0.8 Adjustment coefficient 1 - 𝑘1

𝑘3 1-0.431 Adjustment coefficient 11, Assumption

209

210 2-4. Interventions

211 The simulation was analyzed for three modified versions of the model to capture the impact of 

212 different intervention settings. The primary model (i.e. the baseline model) assumes COVID-19 

213 and influenza propagation began simultaneously at T=0. The second model includes vaccination 

214 against COVID-19 as a pharmaceutical intervention, and the third model considers the impact of 

215 non-pharmaceutical interventions, such as quarantining, public education and social distancing. 

216 Although the flu occurs mostly as a seasonal disease, for the sake of simplicity we assumed 

217 simultaneous propagation of both COVID-19 and influenza. We simulated the co-circulation of 

218 COVID-19 and influenza for 365 days, for an initial population of S0 = 6,732,000. The initial value 

219 for all other compartments was assumed to be 0 at time T=0, except for the infected compartment 

220 which initially contains 1 patient (local patient zero).

221 In terms of the mathematical structure of the model, the impact of vaccination and 

222 quarantining/public education is described as follows. Vaccination against COVID-19 increases 

223 the rate of exit from the susceptible subgroup:

224
𝑑𝑆
𝑑𝑡 =  𝛿𝑐𝑅𝑐 +  𝛿𝑓𝑅𝑓 +  𝛿𝑓𝑐𝑅𝑓𝑐 ― 𝛾𝑐𝐼𝑐𝑆

𝑁 ― 𝛾𝑓𝐼𝑓𝑆
𝑁  ― 𝑽.𝑆    eq – 24

225
𝑑𝑅𝑐

𝑑𝑡 = 𝑽.𝑆 + 𝑘2𝛽𝑐𝐼𝑐 ― 𝛿𝑐𝑅𝑐                                                                          eq – 25

226 where V indicates the vaccination rate (person-1 day-1)
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227 Quarantining/public education on the other hand affects the rate of infection with COVID-19, 

228 influenza as well as the rate of co-infection, through decreasing the contact rate between 

229 individuals:

230 𝛾𝑁𝑒𝑤
𝑐 = 𝑫.𝛾𝑐                                 eq – 26

231 𝛾𝑁𝑒𝑤
𝑓 = 𝑫.𝛾𝑓                              eq – 27

232 𝛾𝑁𝑒𝑤
𝑓𝑐 = 𝑫.𝛾𝑓𝑐                             eq – 28

233 where D indicates the decrease in contact rate. The rest of the mathematical model remains 

234 unchanged.

235

236 3. Results

237 3-1. Baseline Model Simulation Results

238 Figure 2 shows an overview of all the compartments present in the model over the course of the 

239 simulation, as well as a detailed comparison between compartments. The parameter values were 

240 derived from 2020 and early 2021 national and global databases. As demonstrated in Figure 2 and 

241 the corresponding subfigures, in the base model with no interventions, the peak for infection of 

242 COVID-19 was significantly higher than for influenza and co-infection of both. The three peaks 

243 almost occurred at the same period, with a lower peak for the influenza in comparison to COVID-

244 19 and a dramatically lower peak for co-infection in comparison to the other types of infection. 

245 Despite similarities between SARS-CoV-2 and influenza virus family, the transmission rate 

246 associated with COVID-19 was at least 20 percent (to up to 3 times) higher than influenza. This is 

247 why we see a clearly smaller peak of infection associated with influenza.
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248 Figure 2 – An overview of the compartments in the model. The smaller figures illustrate a closer comparison 

249 between similar compartments, for a 365-day simulation of the Co-infection of COVID-19 and Influenza.

250 A second and smaller peak in the COVID-19 infected population occurred after around 150 days 

251 of the first peak, which is in accordance with previously published data for the US from February 

252 20, 2020 to December 21, 202037. No such behavior was found in association with influenza, which 

253 also agrees with the expected behavior of annual influenza epidemy in Indiana population38 prior 

254 to any COVID-19 related interventions. 

255 On the other hand, the recovered compartment of COVID-19, influenza, and co-infection of both 

256 behave differently over time. Three existing recovered compartments (recovered from COVID-

257 19, influenza, or the co-infection of both), experienced a peak at around the same time (COVID-

258 19 is behind due to the incubation period), similar to the infected compartment with the COVID-

259 19 recovered population with a significantly higher peak (due to more cases of infection). We can 

260 see that based on this model for a 365-day simulation, after around 9 months almost exclusively 

261 COVID-19 remains active and contagious, particularly after the second wave.

262 The susceptible and deceased compartments also showed interesting underlying behaviors over 

263 the course of the simulation. Over the first year of pandemic, over 96% of the susceptible 

264 population suffered from at least one of the infections which is relatively high. The smaller rise in 

265 the susceptible population occurred exactly before the second wave of the COVID-19 pandemic 

266 (T = 229 days). This indicates that before the second wave, the number of individuals in the 

267 susceptible compartment increased due to recruitment of susceptible individuals by recovery. 

268 Consequently, the second wave appeared, and an additional number of infected individuals led to 

269 another less steep fall in the number of susceptible individuals. The same behavior was observed 

270 for the number of deceased populations, more COVID-19 infected individuals in the second wave 
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271 led to more deaths due to COVID-19, while the number of deaths caused by influenza remained 

272 the same (~3481), with a very slight increase for individuals infected with both diseases (~100 

273 additional deaths).

274 The simulated death rates and observed trends also mimic recent observations both in the US in 

275 general and Indiana37, as the first and second wave in the total COVID-19 deaths during 2020 

276 indicates how well this model compares with the published literature. 

277 3-2. Calculation of R0

278 Given the information and parameter values provided in Table 1, the basic reproduction number 

279 (R0) can be estimated for the model based on Eq. 23. In this case, we have

280 𝑅0 ≈ max{0,0,0,2.8, 7.5} = 7.5 

281 which in comparison to the median R0 associated with COVID-19 in the US (5.8 - 95% CI 3.8–

282 8.9)39,40 in 2020 and early 2021, as well as R0 associated with seasonal flu (1.2 – 1.3)41 indicates 

283 higher contagiousness of COVID-19 and influenzas co-circulation.

284 3-3. Interventions and Policy Actions 

285 To model vaccination against COVID-19, we assumed a transition between the susceptible 

286 compartment and the COVID-19 recovered compartment. Individuals in the susceptible group can 

287 either get infected by COVID-19 or influenza, or directly go to COVID-19 recovered compartment 

288 based on a vaccination rate. Therefore, by running sensitivity analysis on the model with various 

289 vaccination rates we estimated the impact of vaccination on co-circulation of infections. On the 

290 other hand, quarantine and education of people both were assumed to reduce the number of 

291 contacts, mostly among the susceptible population, resulting in a reduction in the rates of infection 
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292 (𝛾). In other words, we studied two types of interventions: those affecting the number of contacts 

293 per person per day, and those affecting the transition between stages by adding new transition 

294 states.

295 2-3-1. Vaccination against COVID-19

296 By April 2021, the US has administered more than 3 million vaccine shots per day, or around 0.01 

297 shots per person daily across the country33. To study the impact of vaccination against COVID-

298 19, we defined a varying range for vaccination rate for the state of Indiana, ranging from 0 to 0.005 

299 (person per day) and further ran sensitivity analysis on the impact of vaccination rate on the model. 

300 Figure 3 demonstrates how sensitive the size of each compartment is to the rate of vaccination.  As 

301 the rate of vaccination increased, a visible decrease in the number of infected individuals could be 

302 identified; daily flu infection and COVID19 – flu co-infection cases decline for at least 85% as the 

303 daily per capita vaccination rate increases by 0.0005 person.day-1. This in fact is in accordance 

304 with the minute level of reported flu cases in 2020 and early 202142. Similarly, yet more slowly 

305 for the COVID-19 daily case, with a 0.001 increase in daily per capita vaccination rate there was 

306 a 45% reduction in the total number COVID-19 infected individuals. The second wave of COVID-

307 19 was also mitigated as the vaccination rate increased. The total number of deaths also decreased 

308 with the higher prevalence of vaccination. The impact of vaccination was more pronounced on the 

309 influenza and co-infection compartments, which can be justified due to lower incubation rate 

310 associated with influenza in comparison to COVID-19.

311 An important point to consider here is the fact that, in this setting, higher vaccination rates 

312 corresponded to faster transitions between the susceptible compartment and the COVID-19 

313 recovered compartment. As mentioned previously, from the modeling perspective, vaccination 
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314 plays the role of a shortcut from susceptible compartment to recovered compartment. That is why 

315 there is a fall in the number of susceptible individuals as the rate of vaccination against COVID-

316 19 increases. This also affects the total number of COVID-19 recovered individuals, which is not 

317 entirely due to infection.

318 Figure 3 – The effect of COVID-19 vaccine on the simulation results – lighter curves indicate smaller rate of 

319 vaccination.

320 2-3-2. Quarantine and education 

321 In order to study the impact of non-pharmaceutical interventions such as quarantine and 

322 education43, we assumed that the contact rate per person can decrease by up to 80% by quarantining 

323 non-infected individuals, social distancing and educating the public. This assumption is made to 

324 enable the model to capture a wide range of contact rates, without considering the feasibility of 

325 providing so in practice. In this case, the simulation structure remains the same as the original 

326 simulation except for the values of 𝛾𝑓, 𝛾𝑐 and 𝛾𝑓𝑐 will be reduced by up to 20% of the original 

327 values, in increments of 10 percent. As shown in Figure 4, as the contact rate declined from 1 

328 (100%) to 0.2 (20%), the total number of deceased individuals dropped dramatically in all the 

329 deceased compartments. Similarly, the peak for influenza infection and COVID-19 – influenza 

330 infection dampened as the number of contacts decreased.  For example, a 50% reduction in the 

331 contact rate resulted in more than a 90% reduction in the daily cases of influenza and co-infection 

332 and led to a delay of around 75 days in the peak of COVID-19 propagation. However, in the case 

333 of individuals with COVID-19 only, the primary effect of the reduction in contact rate was a 

334 delayed peak.  As the contact rate decreased (from 70% of the maximum effective contact rate to 

335 20%), we observed more than 60% reduction in the peak of COVID-19 cases as well.
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336 Like what was observed through vaccination, changes in the contact rate induced similar behavior 

337 in the model, such as the short-term increase (for a window of about 100 days) in the peak of 

338 COVID-19 infection. Similar behavior was found in other compartments of COVID-19 infection 

339 branch as well, and in all cases the peak occurred later in time. We can explain this behavior based 

340 on both the model structure and assumptions. Here we noticed a steady reduction in influenza 

341 infection cases and the number of cases in other influenza related compartments, which indicates 

342 the sensitivity of influenza to the contact rate, unlike COVID-19 with a short term increase and 

343 further decrease behavior. Since fewer patients moved from the susceptible compartment to the 

344 influenza infected compartment (up to 60% less in comparison to COVID-19 cases at the peak), 

345 more individuals would remain susceptible and further move to the COVID-19 exposed and 

346 infected compartments. This is a weakness of compartment models per se, which prevents 

347 individuals from belonging to multiple compartments at the same time. Therefore, we cannot rely 

348 on these results to estimate how well education and quarantining can reduce the speed of infection. 

349 However, we can claim that reducing the contact rate was associated with delay in when the peak 

350 in infection curve occurred.

351 Figure 4 – The effect of quarantine and education on the simulation results – lighter curves indicate higher decrease 

352 in the contact rates (1: no decrease in contact rates, 0.2: 20% of the maximum effective contact rate, etc.)

353 4. Discussion

354 In this paper, the co-circulation of SARS-CoV-2 and influenza was studied using a joint SEIRS-

355 SIRS compartmental model, including the impact of various interventions and policy actions. In 

356 addition, the basic reproduction number associated with the co-infection of COVID-19 and 

357 influenza was computed and found to be heavily influenced by the COVID-19 branch. The basic 
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358 reproduction number computed based on the model (~7.5) was also higher in comparison to R0 

359 associated with COVID-19 or influenza separately, pointing to the importance of understanding 

360 and mitigating co-infection. 

361 In terms of interventions, the effect of interventions such as vaccination against COVID-19 was 

362 found to be significant in controlling the spread of COVID-19 alongside seasonal flu, with more 

363 than a 65% reduction in the total number of deceased individuals per year based on a vaccination 

364 rate of 3 susceptible individuals out of 1000 per day. Other types of interventions that affect the 

365 rate of transmission were not as successful as vaccination in reducing the total number of infected 

366 and deceased individuals but did effectively delay the peak in infection. Both interventions resulted 

367 in significant decrease in the number of flu cases, which is what was observed in 202042. This 

368 implies that preventive interventions against COVID-19, pharmaceutical or non-pharmaceutical, 

369 automatically reduced the effect of other circulating respiratory pathogens such as influenza virus 

370 family. 

371 There are several limitations to our work. For the sake of simplicity, we made several assumptions 

372 such as negligible incubation period for influenza, adjustment coefficients, and vaccination only 

373 against COVID-19, and parameterized the model with data from the developing, and in some cases 

374 contradicting, literature on the ongoing COVID-19 pandemic. Moreover, we limited the simulation 

375 to a closed environment with natural rates of birth and death equal to zero, as well as a 365-day 

376 simulation period that could lead to missing patterns of disease propagation and multiple waves 

377 that might occur over a period longer than a year. The model also only accounts for simultaneous 

378 co-infection and not sequential infection for periods shorter than 6 months (the recovery period of 

379 influenza) which could lead to biased simulation results.  Another limitation to this work is that 

380 the influenza virus family was considered to be a seasonal infection, usually occurring in the fall 
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381 and winter44 with a year-round circulation (with an expected peak between December and February 

382 in the US). On the other hand, there is lack of agreement in the literature over whether infection 

383 with influenza can potentially block infection with COVID-1913,45,46, in this model we only 

384 focused on the possibility of higher co-infection rates among patients infected with other 

385 pathogens. Further research could increase the accuracy of the current model by relaxing some of 

386 those assumptions.

387 Despite these limitations, our model successfully mimicked the observed patterns of COVID-19 

388 and flu infections throughout 2020 and early 2021, when the COVID-19 pandemic was still away 

389 from an endemic phase. For future work, considering a simple cost-and-effect analysis, this model 

390 can assist healthcare policy makers to design and establish  more efficient and less costly 

391 interventions to control the co-spread of such diseases36. In the times of deadly pandemics such 

392 the recent COVID-19 pandemic, making cost-effective decisions regarding control policies can 

393 heavily determine how well the economy can tolerate the impacts associated with such chaotic 

394 situations.

395 5. Conclusion

396 The simulation analysis presented in this work could provide public health officials with modeling 

397 tools and information that will help them to issue proper preventive guidelines and policy actions 

398 for the upcoming flu season in the southern hemisphere, and particularly in countries with yet 

399 ongoing COVID-19 crisis. Moreover, this work contributes to the current literature by introducing 

400 a novel epidemic model for simulating the co-dynamics of respiratory infection with two or more 

401 infectious pathogens, and has applicability in other settings including co-infection of Sexually 

402 Transmitted Diseases (STDS), Human Immunodeficiency Virus (HIV), Bacterial Pneumonia, etc.
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