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Abstract

During an epidemic, the daily number of reported infected cases, deaths or hospitalizations

is often lower than the actual number due to reporting delays. Nowcasting aims to estimate

the cases that have not yet been reported and combine it with the already reported cases to

obtain an estimate of the daily cases. In this paper, we present a fast and flexible Bayesian

approach to do nowcasting by combining P-splines and Laplace approximations. The main

benefit of Laplacian-P-splines (LPS) is the flexibility and faster computation time compared

to Markov chain Monte Carlo (MCMC) algorithms that are often used for Bayesian inference.

In addition, it is natural to quantify the prediction uncertainty with LPS in the Bayesian

framework, and hence prediction intervals are easily obtained. Model performance is assessed

through simulations and the method is applied to COVID-19 mortality and incidence cases

in Belgium.
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1 Introduction

Nowcasting is a term used for estimating the occurred-but-not-yet-reported-events (Donker

et al., 2011; Van de Kassteele et al., 2019). In epidemiology, real-time updates of new symp-

tomatic/infected individuals are helpful to assess the present situation and provide recommen-

dations for rapid planning and for implementing essential measures to contain an epidemic out-

break. The exact number of new daily cases is frequently subject to reporting delays, resulting

in underreporting of the real number of infected individuals for that day. Failing to account for

the reporting delays will lead to possibly biased predictions that might have an effect on policy

making (Gutierrez et al., 2020). The main goal of nowcasting is to estimate the actual number

of new cases by combining the (predicted) not-yet-reported-cases with the already reported cases.

Several early references that establish the statistical framework for this type of problem can

be found in the paper of Lawless (1994) which demonstrates how nowcasting can be used not

only in disease surveillance but also in other contexts such as warranty and insurance claims.

More recently, Höhle and an der Heiden (2014) applied nowcasting to the outbreak of Shiga

toxin-producing Escherichia coli in Germany and also to the SARS-CoV-2 outbreak (Glöckner

et al., 2020; Günther et al., 2021). Their approach is formulated within a hierarchical Bayesian

framework that consists of estimating the epidemic curve by using a quadratic spline based on

a truncated power basis function and the time-varying reporting delay distribution is approx-

imated by a discrete time survival model. Van de Kassteele et al. (2019) pointed out that a

potential drawback of such a method is the long computation time required by the Markov chain

Monte Carlo (MCMC) algorithm and therefore proposed an alternative fast and flexible mod-

elling strategy based on bivariate P-splines (Penalized B-splines). P-splines (Eilers and Marx,

1996) provide a flexible smoothing tool used to describe trends in the data. It introduces a

penalty parameter that controls the roughness of the fit and counterbalances the flexibility of a

rich B-splines basis (Eilers and Marx, 1996; Eilers et al., 2015). Other attractive features of the

P-splines smoother are the relatively simple structure of the penalty matrix that is effortlessly
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computed and a natural extension to the Bayesian framework (Lang and Brezger, 2004). Based

on the approach of Van de Kassteele et al. (2019), the number of cases are structured in a

two-dimensional table (with calendar time as the first dimension and delay time as the second

dimension), yielding the data matrix used as an input in the model. The reporting intensity is

assumed to be a smooth surface and is modelled using two-dimensional P-splines.

In this paper, we build upon the work of Van de Kassteele et al. (2019) by proposing a new

nowcasting methodology based on Laplacian-P-splines (LPS) in a fully Bayesian framework.

A key advantage of working with the Bayesian approach is the ease to obtain the predictive

distribution and quantify the uncertainty associated with the predictions. In addition, the pos-

terior distribution of the penalty parameter can be explored, and hence its uncertainty can be

accounted for. The Laplace approximation uses a second-order Taylor expansion to approx-

imate the posterior distribution of the regression parameters by a Gaussian density. It is a

sampling-free method with the major advantage of faster computational time as opposed to

MCMC approaches that are commonly used in Bayesian inference. Therefore, given the flex-

ibility of previously mentioned P-splines smoothers and the computational benefit of Laplace

approximations, it can be a helpful tool in the daily monitoring of new cases during an epidemic

period. Laplacian-P-splines already proved to be useful in survival models (Gressani and Lam-

bert, 2018; Gressani et al., 2022a), generalized additive models (Gressani and Lambert, 2021)

and also in epidemic models for estimating the effective reproduction number (Gressani et al.,

2022b). We build on the work of Gressani and Lambert (2021) to extend the Laplacian-P-splines

methodology to nowcasting, thereby providing a fast and flexible (fully) Bayesian alternative

to Van de Kassteele et al. (2019). To evaluate the (predictive) performance of our method, a

simulation study is implemented and several performance measures are reported such as the

mean absolute percentage error (MAPE), prediction interval coverage, and prediction interval

width. Finally, we apply our method to the COVID-19 mortality data in Belgium for the year

2021. The data and R codes used to implement the method are available on GitHub through

the link https://github.com/bryansumalinab/Laplacian-P-spline-nowcasting.git.
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2 Methodology

2.1 Bayesian model formulation

In this section, we follow the work of Van de Kassteele et al. (2019) to formulate a fully Bayesian

model based on P-splines. Let yt,d denote the number of cases that occurred at time t = 1, 2, ..., T

(corresponding to the calendar day) and are reported with a delay of d = 0, 1, 2..., D days. The

information on cases can be summarized in matrix form:

Y =



y1,0 y1,1 y1,2 . . . y1,D

y2,0 y2,1 y2,2 . . . y2,D
...

...
... . . .

...

yT−(D−1),0 yT−(D−1),1 yT−(D−1),2 . . . yT−(D−1),D

...
...

... . . .
...

yT−1,0 yT−1,1 yT−1,2 . . . yT−1,D

yT,0 yT,1 yT,2 . . . yT,D



,

with cases that have not yet been reported (at time T ) highlighted in bold. The not-yet-reported

cases correspond to (t, d) combinations satisfying t > T − d. The main objective is to predict

the total number of cases, yt =
∑D

d=0 yt,d , for t = T − (D − 1), . . . , T for which the nowcasted

and already reported cases can be combined.

Let D := y = (y1, y2 . . . , yn)
′ denote the vector of the observed number of cases by stacking

the columns of matrix Y for the reported cases, where each entry corresponds to each (t, d)

combination of reported cases yt,d. The model assumes that the number of cases either follows a

Poisson or a negative binomial (NB) distribution, i.e., yt,d ∼ Poisson(µt,d) or yt,d ∼ NB(µt,d, ϕ)

with mean µt,d > 0. For the negative binomial, ϕ > 0 is an overdispersion parameter and the

variance is var(yt,d) = µt,d +
µ2t,d
ϕ . Following Van de Kassteele et al. (2019), the (log) mean

number of cases is modeled with two dimensional B-splines:

log(µt,d) = β0 +

KT∑
j=1

KD∑
k=1

θj,kbj(t)bk(d) +

p∑
l=1

βlzl(t, d),

3
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where β0 is the intercept; bj(·) and bk(·) are univariate B-splines basis functions specified in

the time and delay dimensions, respectively; and zl(t, d) represents additional covariates with

regression coefficients βl. In matrix notation:

log(µ) = Bθ + Zβ, (1)

where the matrices B and Z correspond to the basis functions and covariates, respectively, and

vectors θ and β are the associated parameters to be estimated (Details in Appendix A1).

In the philosophy of P-splines (Eilers and Marx, 1996), we use a rich (cubic) B-splines basis and

counterbalance the associated flexibility by imposing a discrete roughness penalty on contiguous

B-spline coefficients. For the two dimensional P-splines, the penalty can be obtained based on

row-wise (direction of calendar time) and column-wise (direction of reporting delay) differences

for matrix Θ = (θj,k) with j = 1, . . . ,KT and k = 1, . . . ,KD (Appendix A1) (see Durbán et al.

(2002) and Fahrmeir et al. (2013) (pp. 507-508)). Let Dm
t and Dm

d denote the mth order row-

wise and column-wise difference matrix with dimensions (KT −m)×KT and (KD −m)×KD,

respectively. In this paper, we use a second order (m = 2) difference penalty. For ease of

notation, let Dt = Dm
t and Dd = Dm

d . The difference matrix for vector θ can be obtained by

expanding the difference matrix into IKD
⊗Dt and Dd ⊗ IKT

, where ⊗ denotes the Kronecker

product. Using this notation, the row-wise and column-wise difference penalty can be written,

respectively, as:

∥(IKD
⊗Dt)θ∥2= θ′(IKD

⊗Dt)
′(IKD

⊗Dt)θ = θ′(IKD
⊗D

′
tDt)θ and

∥(Dd ⊗ IKT
)θ∥2= θ′(Dd ⊗ IKT

)′(Dd ⊗ IKT
)θ = θ′(D

′
dDd ⊗ IKT

)θ.

Let λt > 0 and λd > 0 denote the row-wise and column-wise penalty parameter, respectively.

The penalty for the two dimensional B-splines is then given by:

λtθ
′(IKD

⊗D
′
tDt)θ + λdθ

′(D
′
dDd ⊗ IKT

)θ

= θ′
(
λt(IKD

⊗D
′
tDt) + λd(D

′
dDd ⊗ IKT

)

)
θ.
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Let us define the penalty matrices Pt = D
′
tDt+ δIKT

and Pd = D
′
dDd+ δIKD

, where δ is a small

number (say δ = 10−6), to ensure that the penalty matrices are full rank and thus invertible.

Following Lang and Brezger (2004), the penalty can be translated in the Bayesian framework

by specifying a Gaussian prior for each column and row vector of Θ. We write Θ in terms of its

columns and rows:

Θ = (θc1, . . . ,θ
c
KD

) (columns ofΘ) and

Θ′ = (θr
′

1 , . . . ,θ
r′
KT

) (rows ofΘ).

The priors are then given by (θck|λt) ∼ Ndim(θc
k)
(0, (λtPt)

−1) and (θrj |λd) ∼ Ndim(θr
j )
(0, (λdPd)

−1)

for k = 1, . . . ,KD and j = 1, . . . ,KT , respectively. It follows that the joint prior for θ can be

written as:

p(θ|λt, λd) =

(
KD∏
k=1

p(θck|λt)

)KT∏
j=1

p(θrj |λd)


∝ exp

(
−1

2
λt

KD∑
k=1

θc
′
k Ptθ

c
k

)
exp

−1

2
λd

KT∑
j=1

θrjPdθ
r′
j


= exp

(
−1

2
λtθ

′
(IKD

⊗ Pt)θ

)
exp

(
−1

2
λdθ

′
(Pd ⊗ IKT

)θ

)
= exp

(
−1

2
θ

′
(λt(IKD

⊗ Pt) + λd(Pd ⊗ IKT
))θ

)
.

Gaussian priors are assumed for β and θ, namely β ∼ Ndim(β)(0, V
−1
β ) with Vβ = ζIp+1

(small ζ, e.g. ζ = 10−5) and (θ|λ) ∼ Ndim(θ)(0,P−1(λ)), where λ = (λt, λd)
′ is the penalty vec-

tor and P(λ) = λt(IKD
⊗ Pt) + λd(Pd ⊗ IKT

) the global penalty matrix. Denote by X = (B,Z)

the global design matrix, ξ = (β′,θ′)′ the latent parameter vector and Qλ
ξ =

Vβ 0

0 P(λ)

 the

precision matrix for ξ. From here, we focus on the negative binomial model for the number of

cases. The Poisson model is described in detail in Appendix A3. The full Bayesian (negative
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binomial) model is summarized as follows:

(yi|ξ) ∼ NB(µi, ϕ) with log(µ) = Xξ,

(ξ|λ) ∼ Ndim(ξ)(0, (Q
λ
ξ )

−1),

(λt|δt) ∼ G
(
ν

2
,
νδt
2

)
,

(λd|δd) ∼ G
(
ν

2
,
νδd
2

)
,

δt ∼ G(aδ, bδ),

δd ∼ G(aδ, bδ),

ϕ ∼ G(aϕ, bϕ),

where G(a, b) denotes a Gamma distribution with mean a/b and variance a/b2. This robust

prior specification on the penalty parameters follows from Jullion and Lambert (2007). They

have shown that when the hyperparameters aδ, bδ are chosen to be equal and small enough (say

10−4), then the resulting fit is robust to the value of ν (e.g. ν = 3 in this paper).

2.2 Laplace approximation to the conditional posterior of ξ

To obtain a Laplace approximation for the set of regression parameters ξ = (β′,θ′)′, we use the

posterior of ξ conditional on the vector of penalty parameters λ. The gradient and Hessian of

the (log) conditional posterior are analytically derived and used in a Newton-Raphson algorithm

to obtain the Gaussian approximation to the conditional posterior distribution of ξ.

Note that for a negative binomial distributed yi with mean E(yi) = µi, the probability dis-

tribution can be written as an exponential dispersion family given by p(yi; γ, ϕ) = exp{[yiγi −

b(γi)]/a(ϕ)+c(yi, ϕ)}, where γi = ϕ log
(

µi
µi+ϕ

)
, b(ηi) = −ϕ2 log

(
ϕ

µi+ϕ

)
, c(yi, ϕ) = log

(
Γ(yi+ϕ)

Γ(yi+1)Γ(ϕ)

)
,

a(ϕ) = ϕ and Γ(·) is the gamma function. Thus, for fixed ϕ, a negative binomial regression model

is a generalized linear model (GLM) where µi is linked on the linear predictor through the link

function g(µi) such that g(µi) =
∑q

i=1 ξjxij (see Agresti (2013) for a detailed account about

GLMs). Here, we use the log-link function g(µi) = log(µi). The log-likelihood is given by

logL(ξ, ϕ;D) =
∑n

i=1 {[yiγi − b(γi)]/a(ϕ) + c(yi, ϕ)} and it can be shown that for a negative

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2022.08.26.22279249doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.26.22279249
http://creativecommons.org/licenses/by-nc-nd/4.0/


binomial model, the gradient and Hessian are:

∇ξ logL(ξ, ϕ;D) = X ′WD(y − µ) and ∇2
ξ logL(ξ, ϕ;D) = X ′MVX −X ′WX,

where W = diag(w1, . . . , wn), wi = [V ar(yi)(g
′(µi))

2]−1, D = diag(g′(µ1), . . . , g
′(µn)), V =

diag(v1, v2, . . . , vn), vi =
1

g′(µi)

(
1

V ar(yi)
∂(g′(µi)−1)

∂µi
+ 1

g′(µi)
∂(V ar(yi)

−1)
∂µi

)
andM = diag(y1−µ1, . . . , yn−

µn) (see details in Appendix A2).

Using Bayes’ rule, the posterior of ξ conditional on the penalty vector λ and overdispersion

parameter ϕ is:

p(ξ|λ, ϕ,D) ∝ L(ξ, ϕ;D)p(ξ|λ)

∝ exp

{
1

ϕ

n∑
i=1

[yiγi − b(γi)]−
1

2
(ξ

′
Qλ

ξ ξ)

}
.

The gradient and Hessian for the log-conditional posterior of ξ are:

∇ξ log p(ξ|λ, ϕ,D) = X ′WD(y − µ)−Qλ
ξ ξ,

∇2
ξ log p(ξ|λ, ϕ,D) = X ′MVX −X ′WX −Qλ

ξ .

The above gradient and Hessian can then be used in a Newton-Raphson algorithm to obtain

the mode of the conditional posterior of ξ. After convergence, the Laplace approximation of

the conditional posterior of ξ is a multivariate Gaussian density denoted by p̃G(ξ|λ, ϕ,D) =

N (ξ̂λ, Σ̂λ) where ξ̂λ is the mean/mode and Σ̂λ is the variance-covariance.

2.3 Hyperparameter optimization

In this section, we derive the (approximate) posterior distribution of the hyperparameters be-

longing to the penalization part, i.e., λ and δ and overdispersion part ϕ. We first derive the joint

posterior of λ, δ and ϕ and then proceed with an integration to isolate the marginal posterior

distribution of λ and ϕ.

Let η = (λt, λd, δt, δd, ϕ)
′ denote the vector of hyperparameters. Using Bayes’ theorem, the
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marginal posterior of η is:

p(η|D) =
p(ξ,η|D)

p(ξ|η,D)

=
p(D|ξ,η)p(ξ,η)
p(D)p(ξ|η,D)

∝ L(ξ;D)p(ξ|η)p(η)
p(ξ|η,D)

.

Following Rue et al. (2009), the above posterior can be approximated by replacing p(ξ|η,D)

with p̃G(ξ|λ, ϕ,D) obtained in Section 2.2 and by evaluating the latent vector at ξ̂λ. Note that

γi = x
′
iξ, where x

′
i corresponds to the ith row of the design matrix X. Also, the determinant

|Qλ
ξ | in p(ξ|λ) is |Qλ

ξ |∝ |P(λ)|. Hence, the approximated marginal posterior of η is:

p̃(η|D) ∝ L(ξ, ϕ;D)p(ξ|η)p(η)
p̃G(ξ|η,D)

∣∣∣
ξ=ξ̂λ

∝ exp

(
n∑
i=1

[yix
′
iξ̂λ − b(x

′
iξ̂λ)]/ϕ+ log(Γ(yi + ϕ))− Γ(ϕ)

)

× |P(λ)|
1
2 exp

(
−1

2
ξ̂
′
λQ

λ
ξ ξ̂λ

)
× (λtλd)

( ν
2
−1) δ

( ν
2
+aδ−1)

t exp(−δt(bδ +
ν

2
λt))

× δ
( ν
2
+aδ−1)

d exp(−δd(bδ +
ν

2
λd))

× ϕ(aϕ−1) exp(−bϕϕ)|Σ̂λ|
1
2 .

To obtain the joint marginal posterior of λ and ϕ, we need to integrate out the hyperparameters

δt and δd from p̃(η|D) as follows:

∫ ∞

0
δ
( ν
2
+aδ−1)

t exp(−δt(bδ +
ν

2
λt)) dδt ∝ (bδ +

ν

2
λt)

−( v
2
+aδ) and∫ ∞

0
δ
( ν
2
+aδ−1)

d exp(−δd(bδ +
ν

2
λd)) dδd ∝ (bδ +

ν

2
λd)

−( v
2
+aδ).

8
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Hence,

p̃(λ, ϕ|D) =

∫ ∞

0

∫ ∞

0
p̃(η|D)dδt dδd

∝ exp

(
n∑
i=1

[yix
′
iξ̂λ − b(x

′
iξ̂λ)]/ϕ+ log(Γ(yi + ϕ))− Γ(ϕ)

)

× |P(λ)|
1
2 exp

(
−1

2
ξ̂
′
λQ

λ
ξ ξ̂λ

)
ϕ(aϕ−1) exp(−bϕϕ)|Σ̂λ|

1
2

× (λtλd)
( ν
2
−1)
(
(bδ +

ν

2
λt)(bδ +

ν

2
λd)
)−( v

2
+aδ)

.

The posterior mode (obtained via Newton-Raphson) is used as a point estimate for λ and ϕ. To

ensure numerical stability, we log-transformed the penalty vector v = (vt, vd)
′ = (log(λt), log(λd))

′

and overdispersion parameter vϕ = log(ϕ). Using the method of transformations, we obtain the

Jacobian of the transformation J = exp(vd) exp(vt) exp(vϕ). Hence, the joint posterior of v and

vϕ is given by:

p̃(v, vϕ|D) ∝ exp

(
n∑
i=1

[yix
′
iξ̂v − b(x

′
iξ̂v)]/exp(vϕ) + log(Γ(yi + exp(vϕ)))− Γ(exp(vϕ))

)

× |P(v)|
1
2 exp

(
−1

2
ξ̂
′
vQ

v
ξ ξ̂v

)
(exp(vϕ))

(aϕ) exp(−bϕevϕ)|Σ̂v|
1
2

× (exp(vt) exp(vd))
( ν
2
)
(
(bδ +

ν

2
exp(λt))(bδ +

ν

2
exp(λd))

)−( v
2
+aδ)

.

Moreover, the joint log-posterior of v and vϕ is given by:

log p̃(v, vϕ; y)=̇

n∑
i=1

[yix
′
iξ̂v − b(x

′
iξ̂v)]/exp(vϕ) + log(Γ(yi + exp(vϕ)))− Γ(exp(vϕ))

+
1

2
log|P (v)|−1

2
ξ̂
′
vQ

v
ξ ξ̂v + aϕvϕ − bϕe

vϕ +
1

2
log|Σ̂v|

+
ν

2
(vd + vt)−

(ν
2
+ aδ

)(
log(bδ +

ν

2
exp(vd)) + log(bδ +

ν

2
exp(vt))

)
.

Rather than maximizing the above joint posterior, we maximized the conditional posterior of vt

by keeping vϕ fixed at its method of moment estimate and setting vd to zero. This approach offers

faster computational speed while still producing nearly identical results as when maximizing the

joint posterior.

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2022.08.26.22279249doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.26.22279249
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.4 Nowcasting with prediction interval

To obtain the mean nowcast estimate with the prediction interval, note that log(µi) = x
′
iξ

or equivalently log(µt,d) = x
′
t,dξ, where p̃G(ξ|v,D) = N (ξ̂v, Σ̂v). Thus, p̃(log(µt,d)|v,D) =

N (x
′
t,dξ̂v, x

′
t,dΣ̂vxt,d). The mean estimate for the not-yet-reported cases is calculated as µ̂t,d =

exp(x
′
t,dξ̂v) for all (t, d) combinations with t > T − d. Then, the estimate for the total number

of cases for each t is obtained by summing the already reported cases and the mean estimate

for the not-yet-reported cases, i.e. µ̂t =
∑

{d:t≤T−d}

yt,d +
∑

{d:t>T−d}

µ̂t,d.

The prediction interval for the nowcast values is obtained by sampling from the posterior pre-

dictive distribution of the log-mean number of cases by following a five-step procedure:

1. For each (t, d) combinations with t > T − d (corresponding to the not-yet-reported cases),

generate 1000 random samples (ŷt,d) from a Gaussian distribution with mean x
′
t,dξ̂v and

variance x
′
t,dΣ̂vxt,d.

2. Exponentiate the sampled values from the previous step to obtain the average reporting

intensities µ̂t,d = exp(ŷt,d).

3. Compute the average prediction for the not-yet-reported cases for each t. That is, compute

µ̂t =
∑

d µ̂t,d for t > T − d.

4. For each t, sample ŷt containing 1000 values from NB(µ̂t, exp(v̂ϕ)).

5. Finally, compute the quantiles of the sampled values ŷt that correspond to the desired

prediction interval.

2.5 Delay distribution

To obtain the smooth estimate of the delay distribution, only the first term on the right hand

side of equation (1) is used (excluding the day of the week effects), as explained in the paper of

Van de Kassteele et al. (2019). Specifically, the procedure to compute the delay distribution is

as follows:
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1. Compute the contribution of the smoothing term in equation (1) to the reporting intensity

for all (t, d) combinations: µsmooth = exp(Bθ).

2. Arrange µsmooth into a T × (D + 1) matrix with entries µsmooth
t,d .

3. For each t = 1, . . . , T , compute the reporting delay distribution given by: f̂t(d) =
µsmooth
t,d∑D

d=0 µ
smooth
t,d

.

3 Simulations

A simulation study is implemented in order to evaluate the predictive performance of the pro-

posed method. The procedure to perform the simulations is as follows:

1. Consider a function f(t) that represents the mean epidemic curve of all cases such that

µ(t) = exp(f(t)) for t = 1, ..., T .

2. For each t, generate a random sample yt from a negative binomial distribution with mean

µ(t) and fixed overdispersion parameter (we choose the value of 10).

3. To account for possible delays d = 0, 1, 2, . . . , D, generate samples from a multinomial

distribution with probabilities (p0, p1, p2, · · · , pD such that
∑D

d=0 pd = 1), i.e.,

(yt,0, yt,1, yt,2, . . . , yt,D) ∼Multinomial(yt, p0, p1, p2, · · · , pD).

This sample represents the reported number of cases for each (t, d) combination.

4. Repeat steps 1 to 3 for 500 times to generate 500 possible realizations.

We consider two functions f(t) inspired from the paper of Noufaily et al. (2016) given by:

f1(t) = θ1 + θ2 sin

(
2πt

150

)
,

f2(t) = θ1 + θ2 sin

(
2πt

150

)
+ θ3

√
t,

for t = 1, . . . , 365. That is, we assume a one year (365 days) time window in the simulation.

In terms of delay probabilities, we consider a maximum delay of D = 7 days with probabilities

(p0, p1, p2, · · · , p7) = (0.0, 0.1, 0.4, 0.2, 0.1, 0.1, 0.05, 0.05), as illustrated in Figure 1. For example,
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at time T − 6, only the cases that have a delay of 7 days (with probability p7 = 0.05) are not

yet reported, or equivalently, 95% of the cases have already been reported. For time T − 5, only

90% of the cases have been reported, as cases with delays of 6 and 7 days are yet to be reported.

On the nowcast day (time T ), no case is reported, that is, the delay is 100%.

Two scenarios are considered for the first function f1(t): (i) the first one is having a small

number of cases with values of θ1 = 3 and θ2 = 1; (ii) the second scenario has relatively larger

cases with θ1 = 3 and θ2 = 2 and an additional factor of 50 is added on the mean function

such that µ(t) = 50 + exp(f(t)). These functions are denoted by f11(t) and f12(t), respectively.

Similarly, two scenarios are also considered for the second function f2(t): (i) the first scenario

has values θ1 = 0, θ2 = 0.4 and θ3 = 0.2; (ii) the second scenario has values θ1 = 1.5, θ2 = 0.4

and θ3 = 0.2. We denote these functions by f21(t) and f22(t), respectively. The first function

has a symmetric curve with three peaks as shown in Figures 2a and 2b. On the other hand, the

second function is not periodic as opposed to the first function (see Figures 2c and 2d). The

plot for (one realization of) simulated cases based on these functions are shown in Figure 3 with

(dashed) vertical lines corresponding to the different nowcast dates.

Figure 1: Illustration of the delay probabilities considered in the simulation.
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(a) µ(t) = exp(f11(t)) (b) µ(t) = exp(f12(t))

(c) µ(t) = exp(f21(t)) (d) µ(t) = exp(f22(t))

Figure 2: Mean epidemic curves considered in the simulations.

(a) µ(t) = exp(f11(t)) (b) µ(t) = exp(f12(t))

(c) µ(t) = exp(f21(t)) (d) µ(t) = exp(f22(t))

Figure 3: Simulated cases for different epidemic curves. The dashed vertical lines correspond to
different nowcast dates.

For each generated data set, we fit the proposed models (LPS-NB and LPS-Poisson) as well as

the method proposed by Van de Kasteele et al. (VK) on the data, and compute the desired

accuracy measures. The mean absolute percentage error (MAPE) and 95% prediction interval

coverage are chosen to measure the predictive accuracy of our methodology. The MAPE is scale-
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independent and measures the error of prediction from the actual value in terms of percentage.

The formula to compute the MAPE at a given calendar day t is given by:

MAPEt =
1

S

S∑
s=1

∣∣∣∣yst − ŷst
yst

∣∣∣∣× 100%,

where S = 500 is the number of generated realizations, yst is the true value (generated from

step 2 of the simulation in Section 3 at iteration s) and ŷst is the corresponding predicted value

(mean nowcast estimate µ̂t in Section 2.4). The prediction interval coverage is obtained by

determining the percentage of (true) unreported cases that fall within the interval. Moreover,

for each simulation, the interval width is obtained, which is the difference between the upper

and lower bound of the prediction interval.

In the simulation, we fix the nowcast date at the end of the month (from March to November).

For each nowcast date, the prediction measures are computed for the dates having unreported

cases, that is, for t = T − (D− 1), . . . , T . As we have a maximum delay of 7 days, there will be

seven dates (including the nowcast date) that involves prediction of unreported cases. All simu-

lation results are presented in Appendix A5. Tables 1-4 provide a summary of the results for the

prediction measures on the nowcast date (time T ) for the different functions being considered.

Results show that the MAPE values for LPS-NB and LPS-Poisson are relatively similar for the

different function for each month. These MAPE values are a bit larger for functions f11(t) and

f21(t) (that exhibit a smaller number of cases) ranging from 31% to 95%. However, for functions

f12(t) and f22(t) (characterized by a larger number of cases), the MAPE for LPS-NB and LPS-

Poisson are smaller, ranging between 32% and 47%. Van de Kassteele et al.’s method, on the

other hand, has generally higher MAPE values (up to 1016%) compared to our LPS method,

especially for functions f12(t) and f22(t). This means that LPS has better prediction accuracy,

especially for scenarios with higher numbers of cases.

In terms of prediction interval coverage, the LPS-NB has more stable coverage rates and is

closer to the nominal 95% nominal prediction interval across the different functions and nowcast

dates ranging between 88% and 96%. The method of Van de Kassteele et al. on the other
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hand, tends to have high coverage rates (up to 100%) resulting from wide prediction intervals,

indicating higher uncertainty in its predictions. This is mainly the case when the number of

cases is large, as for functions f12(t) and f22(t). The LPS-Poisson, however, generally has the

narrowest prediction interval widths resulting in lower coverage rates. This is expected since

we simulate the data from the negative binomial distribution with an overdispersion parameter

which is not accounted for by the Poisson distribution. In general, these findings are also true

for prediction at any other day (Appendix A5), such that the LPS-NB model performs better,

particularly for larger cases, having lower MAPE and having coverage closer to the nominal 95%

level.

Table 1: Performance measures on the nowcast date for function f11(t): LPS-NB - LPS model with a negative
binomial distribution for the number of cases; LPS-Poisson - LPS model with a Poisson distribution for the
number of cases; VK - Methodology of Van de Kassteele et al. (2019)

MAPE PI coverage PI width
LPS-NB LPS-Poisson Van LPS-NB LPS-Poisson Van LPS-NB LPS-Poisson Van

March 57.7 57.4 117.5 92.6 80.2 99.4 21.7 15.7 87.9
Apr 66.2 72.4 57.3 94.0 87.6 99.2 17.0 13.4 27.5
May 44.7 39.2 40.8 92.4 76.2 99.8 34.7 19.5 70.0
June 37.4 33.2 62.2 92.6 54.2 99.4 82.5 28.8 223.5
July 38.0 30.3 90.5 93.4 74.0 97.8 54.1 24.5 190.5
Aug 52.8 53.7 56.7 96.2 86.8 98.2 20.3 14.8 32.5
Sept 53.7 59.3 48.5 95.8 89.2 98.0 16.5 13.2 22.8
Oct 37.3 33.0 39.7 93.4 79.6 99.6 37.4 20.3 68.0
Nov 37.4 32.7 65.4 91.8 55.2 99.4 86.1 30.0 227.9

Table 2: Performance measures on the nowcast date for function f12(t): LPS-NB - LPS model with a negative
binomial distribution for the number of cases; LPS-Poisson - LPS model with a Poisson distribution for the
number of cases; VK - Methodology of Van de Kassteele et al. (2019)

MAPE PI coverage PI width
LPS-NB LPS-Poisson Van LPS-NB LPS-Poisson Van LPS-NB LPS-Poisson Van

March 40.4 34.9 247.2 88.8 53.0 100.0 85.4 30.2 32840.4
Apr 36.0 34.7 110.3 91.8 54.0 100.0 78.1 28.9 7143.6
May 32.6 34.9 66.9 90.2 44.2 100.0 97.3 32.5 3351.4
June 36.0 37.2 102.7 90.4 22.8 100.0 273.8 50.2 11608.2
July 36.7 33.4 181.9 91.0 36.1 100.0 154.5 39.6 20618.0
Aug 30.6 34.3 62.7 92.0 49.2 100.0 74.2 29.2 1876.1
Sept 33.6 32.4 52.0 94.4 55.0 100.0 77.1 29.1 1141.0
Oct 29.7 35.2 55.1 90.4 37.2 100.0 98.4 33.7 1708.1
Nov 35.8 33.9 153.7 91.6 27.0 100.0 296.8 52.9 11876.0

Table 3: Performance measures on the nowcast date for function f21(t): LPS-NB - LPS model with a negative
binomial distribution for the number of cases; LPS-Poisson - LPS model with a Poisson distribution for the
number of cases; VK - Methodology of Van de Kassteele et al. (2019)

MAPE PI coverage PI width
LPS-NB LPS-Poisson Van LPS-NB LPS-Poisson Van LPS-NB LPS-Poisson Van

March 88.0 95.6 68.8 94.0 88.4 98.0 14.3 11.8 13.8
Apr 73.8 65.6 65.4 95.6 90.9 95.6 15.0 12.0 13.1
May 51.9 45.3 45.1 92.8 87.4 95.4 22.3 15.5 20.5
June 47.8 35.6 37.4 92.6 77.3 96.8 37.5 19.9 39.7
July 44.0 36.0 46.2 93.2 78.2 97.0 38.6 20.5 48.9
Aug 41.1 36.7 44.5 94.4 83.0 96.4 30.2 18.4 35.0
Sept 37.9 38.7 35.9 95.4 78.8 96.8 31.4 18.8 34.9
Oct 36.8 34.5 38.5 93.4 64.1 97.4 52.8 24.1 68.5
Nov 38.3 31.3 60.0 91.8 55.2 94.8 88.5 30.4 156.9
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Table 4: Performance measures on the nowcast date for function f22(t): LPS-NB - LPS model with a negative
binomial distribution for the number of cases; LPS-Poisson - LPS model with a Poisson distribution for the
number of cases; VK - Methodology of Van de Kassteele et al. (2019)

MAPE PI coverage PI width
LPS-NB LPS-Poisson Van LPS-NB LPS-Poisson Van LPS-NB LPS-Poisson Van

March 47.1 44.1 48.0 87.4 67.9 98.0 38.3 21.4 62.5
Apr 41.8 35.8 39.4 92.0 66.8 97.8 42.2 21.9 61.3
May 36.5 36.5 41.8 89.8 46.7 98.8 75.8 28.6 144.1
June 31.6 33.7 108.3 92.6 39.7 96.0 135.8 37.5 530.5
July 32.6 35.6 195.1 93.2 34.8 92.6 142.5 38.5 1213.5
Aug 33.0 33.4 127.4 91.0 40.8 98.2 105.8 34.2 747.3
Sept 32.0 32.0 85.4 93.6 41.9 100.0 112.4 35.4 686.5
Oct 30.3 36.1 185.9 92.8 24.0 99.8 208.3 46.6 2512.9
Nov 31.1 37.0 1016.6 92.2 17.0 96.2 364.0 59.6 26540.2

4 Real Data application

We apply our method to COVID-19 mortality data in Belgium for 2021 and incidence data

for 2022. The raw data is available on the website of the Sciensano research institute (see

sciensano.be/covid19data). The data contains the cumulative number of cases, reported up

to the day of the file. The file is updated every day, and in this way, the number of cases

and reporting delays are obtained. The data is structured in matrix format with the date of

death/confirmed case as rows and number of days of reporting delay as columns. Figure 4 shows

the total number of cases with (dashed) vertical lines corresponding to different nowcast dates

used for illustration. As no cases are reported immediately on the day of death/confirmed case

in the data, all cases have a delay of at least one day. The proportion of cases reported for each

delay is shown in Table 5. Majority of the cases (66% for mortality and 61% for incidence) were

reported with a delay of 2 days. Followed by a delay of 1 day (14%) for mortality and 3 days

(37%) for incidence. The rest of the delays account for very small percentages of the cases. The

reporting delay is truncated to a maximum number of seven days.
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(a) Mortality cases (b) Incidence cases

Figure 4: Covid-19 death (a) and incidence (b) cases in Belgium. Dashed vertical lines corre-
spond to different nowcast dates.

Table 5: Proportion of cases reported for each delay in the mortality data.

delay (days) 0 1 2 3 4 5 6 7

proportion 0.000 0.143 0.664 0.118 0.047 0.017 0.007 0.004

Table 6: Proportion of cases reported for each delay in the incidence data.

delay (days) 0 1 2 3 4 5 6 7

proportion 0.000 0.001 0.61 0.373 0.012 0.002 0.001 0.001

In this section, we present the model results at different nowcast dates. In the analysis, we

choose KT = 40 and KD = 10 as the number of B-splines for the time and delay dimension,

respectively. Moreover, a cubic B-splines basis with a second order penalty is used. In addition,

we also consider the day of the week effect as an additional covariate in the model.

Figure 5 presents the nowcasting results using the mortality data at different nowcast dates

(namely, at every end of the month). The blue color represents the reported cases for the past

14 days on the nowcast date, the gray color are cases that have not yet been reported, and the

orange line corresponds to the nowcast prediction with the 95% prediction interval. It can be

seen that most of the nowcast predictions on the nowcast date are fairly close to the observed

cases (gray). In addition, all of the observed cases fall within the prediction interval. For the
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incidence data, we used a maximum delay of 5 days. The nowcast plots are shown in Figure

6. The accuracy of nowcast estimates for incidence data is comparatively lower than that of

mortality data in most cases. The nowcast results tend to exhibit varying degrees of underesti-

mation. This means that some nowcast values are close to the observed values, while others are

further away, and some are moderately close.

The plot for the estimated delay density is shown in Appendix A4. The steps to obtain the time-

varying delay distribution is outlined in Section 2.5. The plots show that the delay distribution

is fairly constant through time for both the incidence and mortality data. The density is highest

for the delay of 2 days except in the beginning of the year for incidence data. This confirms the

observed reporting intensity in our data that most cases are reported with a two-day delay.
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Figure 5: Nowcast for mortality data with different nowcast dates. Blue - reported cases ; Gray
- not-yet-reported cases; Orange - nowcast with prediction interval.
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Figure 6: Nowcast for incidence data with different nowcast dates. Blue - reported cases ; Gray
- not-yet-reported cases; Orange - nowcast with prediction interval.
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5 Conclusion

This paper presents a novel Bayesian approach of the nowcasting model proposed by Van de

Kassteele et al. (2019). During a pandemic or outbreak, it is very important to get an idea

on the number of actual cases in real-time. One advantage of using the Bayesian framework is

that the prediction intervals, which is the main goal of nowcasting, can be naturally obtained.

Our proposed methodology is based on a combination of Laplace approximations and P-splines,

making it both fast and flexible.

Based on the results presented in this paper, Bayesian nowcasting with Laplacian P-Splines

seems to be a promising tool. We performed a simulation study to evaluate the (predictive)

performance of our method. Simulation results show that our proposed method, when assuming

a negative binomial distribution, performs better than Van de Kassteele et al. (2019), especially

for larger cases. In particular, our model has lower MAPE values implying better prediction

accuracy and the prediction interval coverage are fairly close to the nominal (95%) prediction

interval. In addition, the method of Van de Kassteele et al. (2019) tends to have very wide

prediction interval widths indicating higher uncertainty in its predictions. Moreover, we also

applied our method to the COVID-19 mortality and incidence data in Belgium. The nowcast

predictions for the mortality data seem to be fairly close to the actual observed values, and

all of the 95% prediction intervals for the different nowcast dates being considered contained

the observed values. In the case of incidence data with larger numbers of cases, the nowcast

results tend to exhibit varying degrees of underestimation. However, it is important to take note

that we have no data for the nowcast day, and there are very few reported cases (0.1%) with

a one-day delay for the incidence data. This makes it much more difficult to produce accurate

nowcast predictions.

While nowcasting can provide valuable real-time information and predictions, it also has cer-

tain drawbacks. Nowcasting heavily relies on real-time data, which may not always be readily

available, or of good quality. Biases in the the data (such as double-counting of cases) that

are corrected at a later time, can impact the nowcasting prediction. In addition, gaps in data

collection, processing, or dissemination can impact the timeliness and effectiveness of nowcasting

predictions. Despite these drawbacks, nowcasting has been a very important tool for obtain-
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ing timely information and short-term predictions. While the proposed nowcasting models are

complex, the R codes used to implement the methods are made freely available on a GitHub

account, so that the proposed method is available for practical use.

Finally, there are several potential extensions to the LPS methodology for nowcasting. One

possible extension is to incorporate the LPS nowcasting model into the estimation of the repro-

duction number in the (LPS) method proposed by Gressani et al. (2022b). This would allow for a

more comprehensive understanding of the underlying dynamics and transmission of the disease.

Additionally, it would be beneficial to consider the correlation of cases for each time point (t).

By doing this, the model can capture temporal dependencies and may provide better estimates

of the variability. Furthermore, accounting for spatial correlation and other covariate effects

would be valuable. Incorporating spatial information can account for local variations while

considering additional covariates can provide a better understanding of the factors influencing

disease spread.
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6 Appendix

A1.

In equation (1), we have a two-dimensional B-spline model:

log(µ) = Bθ + Zβ,

where

• B = BD ⊗BT is the Kronecker product of B-splines matrices BT and BD with dimension

T ×KT and D ×KD, given by:

BT =



b1(1) b2(1) . . . bKT
(1)

b1(2) b2(2) . . . bKT
(2)

...
... . . .

...

b1(T ) b2(T ) . . . bKT
(T )


andBD =



b̃1(1) b̃2(1) . . . b̃KD
(1)

b̃1(2) b̃2(2) . . . b̃KD
(2)

...
... . . .

...

b̃1(D) b̃2(D) . . . b̃KD
(D)


.

As a result, B has dimension TD ×KTKD.

• Z is the design matrix for additional covariates with dimension TD × (p + 1) and corre-

sponding parameters β. This is given by:

Z =



1 z1(1, 1) . . . zp(1, 1)

...
... . . .

...

1 z1(KT , 1) . . . zp(KT , 1)

...
... . . .

...

1 z1(1,KD) . . . zp(1,KD)

...
... . . .

...

1 z1(KT ,KD) . . . zp(KT ,KD)



.

• θ = vec(Θ) has dimension KTKD × 1 where vec(Θ) denotes the vectorization of a matrix

Θ. It is obtained by vectorizing the matrix:
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Θ =



θ1,1 θ1,2 . . . θ1,KD

θ2,1 θ2,2 . . . θ2,KD

...
... . . .

...

θKT ,1 θKT ,2 . . . θKT ,KD


of B-splines coefficients θj,k by stacking the columns of Θ, that is,

θ = (θ1,1, θ2,1, · · · , θKT ,1, θ1,2, θ2,2, · · · , θKT ,2, · · · , θ1,KD
, θ2,KD

, · · · , θKT ,KD
)′.

A2. Gradient and Hessian of an negative binomial GLM

A2.1 Negative Binomial as an exponential dispersion family

Let y ∼ NB(µ, ϕ) then y has a probability distribution

p(y) =
Γ(y + ϕ)

Γ(y + 1)Γ(ϕ)

(
µ

µ+ ϕ

)y ( ϕ

µ+ ϕ

)ϕ
,

where E(y) = µ and V ar(y) = µ+ µ2

ϕ .

The negative binomial probability distribution can be expressed as an exponential dispersion

family:

p(y; γ, ϕ) = exp{[yγ − b(γ)]/a(ϕ) + c(y, ϕ)}.

where E(y) = b′(γ) = µ and V ar(y) = a(ϕ)b′′(γ).

We have:

p(y) = exp(log(f(y))

= exp

{
y log

(
µ

µ+ ϕ

)
+ ϕ log

(
ϕ

µ+ ϕ

)
+ log

(
Γ(y + ϕ)

Γ(y + 1)Γ(ϕ)

)}
= exp

{
1

ϕ

[
yϕ log

(
µ

µ+ ϕ

)
+ ϕ2 log

(
ϕ

µ+ ϕ

)]
+ log

(
Γ(y + ϕ)

Γ(y + 1)Γ(ϕ)

)}

with γ = ϕ log
(

µ
µ+ϕ

)
, b(γ) = −ϕ2 log

(
ϕ

µ+ϕ

)
, c(y, ϕ) = log

(
Γ(y+ϕ)

Γ(y+1)Γ(ϕ)

)
and a(ϕ) = ϕ.
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A2.2 Gradient and Hessian of an exponential dispersion family

Suppose we have independent observations y1, . . . , yn where each yi has a probability distribution

from an exponential dispersion family given by

p(yi; γi, ϕ) = exp{[yiγi − b(γi)]/a(ϕ) + c(yi, ϕ)}.

The GLM links the mean E(yi) = µi to the linear predictor ψi =
∑p

i=1 ξjxij through the

link function g(µi), such that ψi = g(µi). The log-likelihood is given by L =
∑n

i=1{[yiγi −

b(γi)]/a(ϕ) + c(yi, ϕ)} =
∑n

i=1 Li.

Gradient

We have:

∂L
∂ξj

=
n∑
i=1

∂Li
∂γi

∂γi
∂µi

∂µi
∂ψi

∂ψi
∂ξj

,

where

• ∂Li
∂γi

= yi−b′(γi)
a(ϕ) = yi−µi

a(ϕ) (since b′(γi) = µi).

• ∂µi
∂γi

= ∂b′(γi)
∂γi

= b′′(γi) =
V ar(yi)
a(ϕ) =⇒ ∂γi

∂µi
= 1

∂µi
∂γi

= a(ϕ)
V ar(yi)

(since V ar(yi) = a(ϕ)b′′(γi)).

• ∂ψi

∂µi
= ∂g(µi)

∂µi
= g′(µi) =⇒ ∂µi

∂ψi
= 1

g′(µi)
.

• ∂ψi

∂ξj
= xij .

Thus,

∂L
∂ξj

=

n∑
i=1

yi − µi
a(ϕ)

a(ϕ)

V ar(yi)

1

g′(µi)
xij =

n∑
i=1

(yi − µi)xij
V ar(yi)

1

g′(µi)
.

Let ξ = (ξ1, . . . , ξp)
′. The gradient is given by

∇ξL =



∂L
∂ξ1

∂L
∂ξ2
...

∂L
∂ξp


=



∑n
i=1

(yi−µi)xi1
V ar(yi)

1
g′(µi)∑n

i=1
(yi−µi)xi2
V ar(yi)

1
g′(µi)

...∑n
i=1

(yi−µi)xip
V ar(yi)

1
g′(µi)


.
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In matrix notation∇ξL = X ′WD(y−µ), whereW = diag(w1, . . . , wn), wi = [V ar(yi)(g
′(µi))

2]−1

and D = diag(g′(µ1), . . . , g
′(µn)).

Hessian

We have

∂2L
∂ξh∂ξj

=
∂

∂ξh

(
n∑
i=1

(yi − µi)xij
V ar(yi)

1

g′(µi)

)

=

n∑
i=1

[
(yi − µi)xij

∂

∂ξh

(
1

V ar(yi)

1

g′(µi)

)
+

1

V ar(yi)g′(µi)

∂

∂ξh

(
(yi − µi)xij

)]

=
n∑
i=1

{
(yi − µi)xij

[
1

V ar(yi)

∂

∂ξh

(
1

g′(µi)

)
+

1

g′(µi)

∂

∂ξh

(
1

V ar(yi)

)]
+

1

V ar(yi)g′(µi)

∂

∂ξh

(
(yi − µi)xij

)}

=

n∑
i=1

[
(yi − µi)xij

(
1

V ar(yi)

∂(g′(µi)
−1)

∂µi

∂µi
∂ψi

∂ψi
∂ξh

+
1

g′(µi)

∂(V ar(yi)
−1)

∂µi

∂µi
∂ψi

∂ψi
∂ξh

)
+

1

V ar(yi)g′(µi)

(
−xij

∂µi
∂ψi

∂ψi
∂ξh

)]
(Note that V ar(yi) is a function of µi)

=
n∑
i=1

[
(yi − µi)xij

(
1

V ar(yi)

∂(g′(µi)
−1)

∂µi

1

g′(µi)
xih +

1

g′(µi)

∂(V ar(yi)
−1)

∂µi

1

g′(µi)
xih

)
−

1

V ar(yi)g′(µi)

(
−xij

1

g′(µi)
xih

)]

=
n∑
i=1

[
(yi − µi)xijxih

g′(µi)

(
1

V ar(yi)

∂(g′(µi)
−1)

∂µi
+

1

g′(µi)

∂(V ar(yi)
−1)

∂µi

)
−

xijxih
V ar(yi)

(
1

g′(µi)

)2
]
.

Let V = diag(v1, v2, . . . , vn) where vi =
1

g′(µi)

(
1

V ar(yi)
∂(g′(µi)−1)

∂µi
+ 1

g′(µi)
∂(V ar(yi)

−1)
∂µi

)
and M =

diag(y1 − µ1, . . . , yn − µn). Then, in matrix notation, the Hessian can be written as

∇2
θL = X ′MVX −X ′WX.

Using a log link function, i.e., g(µi) = log(µi), we recover g′(µi) = 1
µi

and ∂
∂µi

(
g′(µi)

−1
)
=

∂
∂µi

(µi) = 1. Also, for the negative binomial model, we have V ar(yi) = µi +
µ2i
ϕ . Hence,
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∂(V ar(yi)
−1)

∂µi
=
∂
(
(µi +

µ2i
ϕ )−1

)
∂µi

= −
(
µi +

µ2i
ϕ

)−2(
1 +

2µi
ϕ

)
.

Thus, vi = µi

(
1

V ar(yi)
− µi

V ar(yi)2
(1 + 2µi

ϕ )
)
.

A3. Derivations for the LPS-Poisson model

The full Bayesian LPS-Poisson model is given by:

(yi|ξ) ∼ Poisson(µi) with log(µ) = Xξ,

(ξ|λ) ∼ Ndim(ξ)(0, (Q
λ
ξ )

−1),

(λt|δt) ∼ G
(
ν

2
,
νδt
2

)
,

(λd|δd) ∼ G
(
ν

2
,
νδd
2

)
,

δt ∼ G(aδ, bδ),

δd ∼ G(aδ, bδ).

A3.1 Laplace approximation to the conditional posterior of ξ

Note that for a Poisson distributed yi with mean µi, we have f(yi) ∝ exp (yiγi − s(γi)), where

γi = log(µi) and s(γi) = exp(γi) = µi. Using Bayes’ rule, the posterior of ξ conditional on the

penalty vector λ is:

p(ξ|λ,D) ∝ L(ξ;D)p(ξ|λ)

∝ exp

( n∑
i=1

(yiγi − s(γi))

)
exp

(
− 1

2
(ξ

′
Qλ

ξ ξ)

)

= exp

( n∑
i=1

(yiγi − s(γi))−
1

2
(ξ

′
Qλ

ξ ξ)

)
,

where L(ξ;D) denotes the likelihood function. Hence, the log-conditional posterior of ξ can be
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obtained as:

log p(ξ|λ,D)=̇

n∑
i=1

(
yiγi − s(γi)

)
− 1

2
(ξ

′
Qλ

ξ ξ), (2)

where =̇ denotes equality up to an additive constant.

It is known for Poisson generalized linear models that the gradient (score vector) and Hessian

of the first term on the right hand side of (2) are given, respectively, by (see Agresti (2013), p.

136):

∇ξ logL(ξ;D) = X
′
(y − µ) and ∇2

ξ logL(ξ;D) = −X ′
WX,

where W = diag(w1, . . . , wn) is a diagonal matrix with wi = (V ar(yi)[g
′(µi)]

2)−1 = µi and

g(·) is the log-link function such that g(µi) = log(µi). Hence, the gradient and Hessian for the

log-conditional posterior of ξ are:

∇ξ log p(ξ|λ,D) = X
′
(y − µ)−Qλ

ξ ξ and ∇2
ξ log p(ξ|λ,D) = −(X

′
WX +Qλ

ξ ).

A3.2 Hyperparameter optimization

Let η = (λt, λd, δt, δd)
′ denote the vector of hyperparameters. The approximated marginal

posterior of η is:

p̃(η|D) ∝ L(ξ;D)p(ξ|η)p(η)
p̃G(ξ|η,D)

∣∣∣
ξ=ξ̂λ

∝ exp

(
n∑
i=1

(yix
′
iξ̂λ − s(x

′
iξ̂λ))

)

× |P(λ)|
1
2 exp

(
−1

2
ξ̂
′
λQ

λ
ξ ξ̂λ

)
× (λtλd)

( ν
2
−1) δ

( ν
2
+aδ−1)

t exp(−δt(bδ +
ν

2
λt))

× δ
( ν
2
+aδ−1)

d exp(−δd(bδ +
ν

2
λd))

× |X ′
W̃X +Qλ

ξ |−
1
2 .
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The approximated marginal posterior of λ is given by:

p̃(λ|D) =

∫ ∞

0

∫ ∞

0
p̃(η|D)dδt dδd

∝ |X ′
W̃X +Qλ

ξ |−
1
2 exp

(
n∑
i=1

(yix
′
iξ̂λ − s(x

′
iξ̂λ))−

1

2
ξ̂
′
λQ

λ
ξ ξ̂λ

)

× |P(λ)|
1
2 (λtλd)

( ν
2
−1)
(
(bδ +

ν

2
λt)(bδ +

ν

2
λd)
)−( v

2
+aδ)

.

To ensure numerical stability, we log-transformed the penalty vector v = (vt, vd)
′ = (log(λt), log(λd))

′.

The log-posterior of v is then given by:

log p̃(v; y)=̇− 1

2
log|X ′

W̃X +Qv
ξ |+

n∑
i=1

yix
′
iξ̂v −

n∑
i=1

s(x
′
iξ̂v)−

1

2
ξ̂
′
vQ

v
ξ ξ̂v

+
1

2
log|P (v)|−

(ν
2
+ aδ

)(
log(bδ +

ν

2
exp(vd)) + log(bδ +

ν

2
exp(vt))

)
+
ν

2
(vd + vt) .
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A4. Estimated delay density plot

Figure 7: Estimated delay density for mortality data at different nowcast dates.

32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2022.08.26.22279249doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.26.22279249
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8: Estimated delay density for incidence data at different nowcast dates.
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A5. Simulation results

Results for function f11(t)

Table 7: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6), as
well as the average over these days, for the function f11(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 7.6 11.8 19.0 29.6 42.8 46.2 57.7 30.7
Apr 15.1 16.8 22.7 35.7 50.1 59.9 66.2 38.1
May 6.0 9.8 12.2 21.0 32.3 39.9 44.7 23.7
June 3.4 6.2 8.8 17.3 27.5 34.2 37.4 19.3
July 4.0 7.3 10.0 16.6 31.7 36.0 38.0 20.5
Aug 7.1 12.3 15.5 26.3 39.6 39.7 52.8 27.6
Sept 14.3 14.1 21.7 30.7 37.0 53.7 53.7 32.2
Oct 5.2 8.1 12.3 16.4 26.6 32.1 37.3 19.7
Nov 3.5 6.7 9.8 15.3 27.9 34.3 37.4 19.3

Table 8: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6), as
well as the average over these days, for the function f11(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 4.7 10.4 17.1 42.2 99.0 112.0 117.5 57.6
Apr 4.6 10.3 19.5 19.6 34.1 52.0 57.3 28.2
May 4.9 9.9 17.7 16.6 21.3 39.0 40.8 21.5
June 5.0 9.8 13.9 15.5 45.0 51.5 62.2 29.0
July 5.1 10.1 12.1 27.9 76.0 90.3 90.5 44.6
Aug 4.6 9.8 18.1 19.9 31.8 45.9 56.7 26.7
Sept 5.3 9.6 20.5 21.0 32.0 48.3 48.5 26.5
Oct 5.1 10.1 17.6 15.8 22.3 34.3 39.7 20.7
Nov 4.7 9.9 13.0 16.8 50.0 61.4 65.4 31.6

Table 9: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6), as
well as the average over these days, for the function f11(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 6.3 10.3 16.5 24.1 41.0 61.4 57.4 31.0
Apr 8.7 12.7 20.2 28.1 45.3 54.1 72.4 34.5
May 5.5 8.7 14.0 19.0 29.2 39.8 39.2 22.2
June 3.2 6.2 9.3 13.5 19.0 30.4 33.2 16.4
July 3.4 5.8 9.9 16.3 19.9 33.0 30.3 17.0
Aug 6.1 11.3 15.1 19.8 29.6 45.9 53.7 25.9
Sept 9.0 11.6 19.4 26.5 35.0 45.8 59.3 29.5
Oct 5.2 7.3 11.3 15.0 22.5 31.4 33.0 18.0
Nov 3.2 5.8 8.4 10.6 16.9 28.9 32.7 15.2
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Table 10: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f11(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 100.0 99.0 98.4 96.2 95.4 93.6 92.6 96.5
Apr 100.0 99.6 99.2 99.6 97.8 94.2 94.0 97.8
May 100.0 99.2 98.8 96.6 96.0 92.0 92.4 96.4
June 99.0 99.6 99.2 93.8 93.2 93.0 92.6 95.8
July 99.8 99.4 97.8 96.2 91.4 93.8 93.4 96.0
Aug 100.0 99.6 98.6 98.6 97.0 95.4 96.2 97.9
Sept 100.0 100.0 98.0 99.2 98.6 95.2 95.8 98.1
Oct 99.8 99.8 99.8 97.6 97.4 94.6 93.4 97.5
Nov 100.0 99.0 98.2 96.2 91.4 93.6 91.8 95.7

Table 11: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f11(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 51.3 68.9 92.2 99.8 99.2 99.0 99.4 87.1
Apr 70.4 81.6 91.2 99.4 100.0 98.6 99.2 91.5
May 45.6 53.4 71.4 98.4 99.8 99.8 99.8 81.2
June 9.2 22.4 86.8 100.0 99.4 99.8 99.4 73.9
July 15.8 35.4 93.0 100.0 98.0 97.8 97.8 76.8
Aug 58.4 72.2 87.4 99.2 99.4 98.8 98.2 87.7
Sept 67.8 83.8 86.6 97.0 99.4 97.6 98.0 90.0
Oct 38.8 42.2 70.6 98.6 99.4 100.0 99.6 78.5
Nov 13.6 16.8 88.2 99.8 99.6 99.0 99.4 73.8

Table 12: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f11(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 99.6 98.4 92.4 91.6 83.4 78.8 80.2 89.2
Apr 100.0 99.6 98.0 95.8 94.0 87.4 87.6 94.6
May 99.6 98.0 91.8 89.2 83.8 77.4 76.2 88.0
June 98.4 92.6 84.6 76.0 73.8 58.8 54.2 76.9
July 98.4 94.8 87.8 79.6 78.0 68.7 74.0 83.0
Aug 99.4 99.8 97.8 95.8 94.6 88.0 86.8 94.6
Sept 100.0 99.8 97.4 97.0 94.8 92.2 89.2 95.8
Oct 99.2 98.8 94.6 89.2 88.4 76.4 79.6 89.5
Nov 97.8 92.2 87.0 83.2 76.0 59.2 55.2 78.7
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Table 13: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f11(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 4.9 6.4 8.8 12.7 17.0 18.9 21.7 12.9
Apr 3.8 4.5 6.0 9.0 12.3 14.0 17.0 9.5
May 4.9 6.9 10.3 15.8 24.1 29.3 34.7 18.0
June 10.6 15.7 22.9 35.8 57.7 72.0 82.5 42.4
July 10.0 14.0 18.8 27.2 41.2 49.5 54.1 30.7
Aug 4.7 5.8 7.7 11.0 15.2 17.9 20.3 11.8
Sept 3.7 4.2 5.4 7.9 11.6 13.7 16.5 9.0
Oct 5.0 7.0 10.4 15.8 25.2 32.1 37.4 19.0
Nov 11.2 16.5 23.5 35.5 58.1 76.0 86.1 43.9

Table 14: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f11(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 0.0 1.6 12.4 43.6 74.9 84.7 87.9 43.6
Apr 0.0 1.0 3.0 8.8 17.4 23.9 27.5 11.6
May 0.0 1.0 4.6 16.6 37.4 54.2 70.0 26.3
June 0.0 2.0 18.0 78.8 156.2 196.5 223.5 96.4
July 0.0 2.6 24.6 93.1 155.7 179.1 190.5 92.2
Aug 0.0 1.2 4.6 13.6 24.5 30.2 32.5 15.2
Sept 0.0 1.0 2.5 6.8 13.8 19.5 22.8 9.5
Oct 0.0 1.1 5.1 18.6 40.9 57.6 68.0 27.3
Nov 0.0 2.1 19.6 85.8 166.1 204.0 227.9 100.8

Table 15: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f11(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 4.0 5.1 6.7 9.0 12.3 14.6 15.7 9.6
Apr 3.4 3.9 5.0 7.0 9.6 11.6 13.4 7.7
May 4.0 5.7 7.8 10.5 14.7 18.2 19.5 11.5
June 6.7 10.1 13.3 16.9 22.8 28.6 28.8 18.2
July 6.3 9.1 11.8 14.6 19.4 23.9 24.5 15.7
Aug 3.8 4.7 6.1 8.1 10.8 13.3 14.8 8.8
Sept 3.5 3.8 4.8 6.6 9.2 11.3 13.2 7.5
Oct 4.2 6.0 8.2 10.6 14.5 18.5 20.3 11.7
Nov 7.0 10.3 13.5 16.8 22.3 28.7 30.0 18.3
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Results for function f12(t)

Table 16: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6),
as well as the average over these days, for the function f12(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 3.1 5.7 8.8 16.9 29.2 34.6 40.4 19.8
Apr 3.4 5.4 8.6 17.7 29.6 31.5 36.0 18.9
May 3.3 4.9 7.9 14.1 23.1 29.9 32.6 16.5
June 2.1 4.2 7.1 13.0 24.2 31.0 36.0 16.8
July 2.5 5.1 7.7 14.5 26.6 30.6 36.7 17.7
Aug 3.0 5.5 8.6 12.6 19.8 29.9 30.6 15.7
Sept 3.0 5.8 8.6 15.2 22.7 31.8 33.6 17.2
Oct 2.9 4.9 7.9 12.3 19.5 28.1 29.7 15.0
Nov 2.1 3.8 7.5 12.1 25.6 31.1 35.8 16.9

Table 17: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6), as
well as the average over these days, for the function f12(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 4.9 9.6 19.8 29.6 61.4 233.9 247.2 86.6
Apr 4.8 10.0 20.6 26.4 49.4 104.2 110.3 46.5
May 4.9 10.1 19.6 24.1 28.8 57.9 66.9 30.3
June 5.0 10.2 19.5 21.5 33.4 77.0 102.7 38.5
July 4.9 9.9 19.6 21.2 57.8 157.9 181.9 64.7
Aug 5.0 9.9 20.2 25.0 32.7 55.5 62.7 30.2
Sept 5.1 9.8 20.5 25.0 28.6 48.2 52.0 27.0
Oct 4.9 10.1 19.7 22.8 26.9 51.7 55.1 27.3
Nov 5.0 10.1 18.9 17.0 50.5 124.6 153.7 54.3

Table 18: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6),
as well as the average over these days, for the function f12(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 2.8 5.6 8.6 13.9 23.7 40.3 34.9 18.5
Apr 3.5 5.8 9.2 14.4 22.3 33.7 34.7 17.6
May 2.9 5.0 8.6 12.7 18.0 30.8 34.9 16.1
June 2.0 4.1 7.2 11.7 16.5 27.0 37.2 15.1
July 2.3 4.6 8.2 12.1 15.0 28.1 33.4 14.8
Aug 2.9 5.7 7.8 12.0 17.5 30.5 34.3 15.8
Sept 3.2 5.4 8.7 11.9 18.2 28.1 32.4 15.4
Oct 2.8 4.7 7.9 10.5 16.3 27.6 35.2 15.0
Nov 2.1 4.1 6.8 9.6 13.9 26.0 33.9 13.8
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Table 19: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f12(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 100.0 98.6 97.6 94.8 91.2 92.2 88.8 94.7
Apr 99.6 99.2 97.6 93.4 90.6 93.4 91.8 95.1
May 99.4 98.6 97.4 95.4 94.0 93.0 90.2 95.4
June 99.8 99.2 98.4 96.0 93.0 92.2 90.4 95.6
July 100.0 99.0 98.8 93.2 91.6 92.6 91.0 95.2
Aug 99.6 99.4 96.2 96.4 96.6 91.8 92.0 96.0
Sept 99.8 99.2 98.6 95.2 94.6 94.2 94.4 96.6
Oct 99.2 99.2 96.6 97.0 96.8 92.2 90.4 95.9
Nov 99.8 100.0 98.6 94.6 90.6 94.2 91.6 95.6

Table 20: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f12(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 6.4 45.0 97.6 100.0 100.0 100.0 100.0 78.4
Apr 9.6 46.6 99.0 100.0 100.0 100.0 100.0 79.3
May 7.0 41.5 99.0 100.0 100.0 100.0 100.0 78.2
June 0.0 24.4 100.0 100.0 100.0 100.0 100.0 74.9
July 0.8 62.8 100.0 100.0 100.0 100.0 100.0 80.5
Aug 7.0 45.8 99.8 100.0 100.0 100.0 100.0 78.9
Sept 7.4 34.0 98.4 100.0 100.0 100.0 100.0 77.1
Oct 5.8 25.8 98.4 100.0 100.0 100.0 100.0 75.7
Nov 0.6 19.6 100.0 100.0 100.0 100.0 100.0 74.3

Table 21: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f12(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 96.6 88.4 82.2 73.6 64.0 52.2 53.0 72.9
Apr 96.8 90.6 79.2 73.2 67.4 56.2 54.0 73.9
May 95.8 91.2 78.2 73.6 67.6 52.6 44.2 71.9
June 90.8 77.6 63.6 48.0 49.8 36.2 22.8 55.5
July 93.2 79.5 68.7 61.0 60.0 41.4 36.1 62.9
Aug 97.8 92.0 86.4 79.9 72.5 53.2 49.2 75.9
Sept 98.2 91.6 85.4 78.8 73.8 60.8 55.0 77.7
Oct 97.0 92.2 82.7 75.3 65.9 50.0 37.2 71.5
Nov 91.4 76.4 64.0 60.6 51.0 36.2 27.0 58.1
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Table 22: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f12(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 12.0 17.7 26.4 42.7 65.9 75.7 85.4 46.5
Apr 10.9 16.0 23.5 37.1 58.3 69.2 78.1 41.9
May 12.2 18.2 26.9 42.8 70.5 86.8 97.3 50.7
June 27.6 41.8 64.5 107.0 187.0 241.2 273.8 134.7
July 26.2 35.8 49.8 74.6 118.8 145.5 154.5 86.4
Aug 10.9 15.8 22.2 33.6 54.3 68.5 74.2 39.9
Sept 10.8 15.7 22.3 33.6 54.6 69.8 77.1 40.6
Oct 12.6 18.3 26.5 40.2 67.6 89.7 98.4 50.5
Nov 30.5 45.3 68.9 108.5 192.0 265.1 296.8 143.9

Table 23: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f12(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 0.0 5.9 313.7 6030.2 23470.4 31834.1 32840.4 13499.2
Apr 0.0 5.1 158.5 2082.7 5744.0 6876.0 7143.6 3144.3
May 0.0 5.0 106.1 899.0 2517.8 3050.0 3351.4 1418.5
June 0.0 11.0 347.5 2936.9 8309.3 10085.2 11608.2 4756.9
July 0.0 17.7 734.5 6118.6 16102.7 18831.3 20618.0 8917.5
Aug 0.0 5.4 105.3 683.4 1558.5 1799.7 1876.1 861.2
Sept 0.0 3.3 50.5 338.4 884.5 1091.6 1141.0 501.3
Oct 0.0 4.1 71.7 489.0 1269.0 1589.4 1708.1 733.0
Nov 0.0 11.1 381.7 3140.9 8402.7 10755.3 11876.0 4938.2

Table 24: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f12(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 7.3 10.7 14.1 18.3 26.2 32.5 30.2 19.9
Apr 6.9 10.3 13.6 17.4 24.3 29.9 28.9 18.8
May 7.6 11.3 15.1 19.4 26.9 33.6 32.5 20.9
June 12.2 18.6 25.2 31.4 42.4 53.2 50.2 33.3
July 11.4 16.3 21.2 25.5 33.0 41.1 39.6 26.9
Aug 7.4 10.7 13.9 17.1 22.8 28.6 29.2 18.5
Sept 7.1 10.3 13.5 16.7 22.2 28.2 29.1 18.2
Oct 7.8 11.5 15.3 18.9 25.3 32.7 33.7 20.8
Nov 13.0 19.0 25.6 31.1 40.6 52.8 52.9 33.6
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Results for function f21(t)

Table 25: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6),
as well as the average over these days, for the function f21(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 21.0 23.7 29.4 42.6 70.1 75.3 88.0 50.0
Apr 21.1 21.7 29.3 40.8 52.1 67.4 73.8 43.8
May 10.0 14.0 18.6 29.3 42.0 41.6 51.9 29.6
June 5.4 9.7 12.1 20.8 32.5 37.4 47.8 23.7
July 5.4 7.8 12.7 19.8 30.0 43.4 44.0 23.3
Aug 5.9 9.1 14.9 20.6 32.7 39.4 41.1 23.4
Sept 5.2 8.8 12.1 18.8 29.8 36.7 37.9 21.3
Oct 4.4 7.0 10.3 14.6 23.5 32.4 36.8 18.4
Nov 3.2 6.0 8.7 14.5 26.3 29.6 38.3 18.1

Table 26: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6), as
well as the average over these days, for the function f21(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 5.0 10.3 21.0 24.2 45.3 58.1 68.8 33.2
Apr 5.4 10.3 19.2 22.1 38.6 51.2 65.4 30.3
May 4.8 9.4 19.6 16.5 26.6 40.3 45.1 23.2
June 4.9 10.1 15.3 13.8 24.8 37.7 37.4 20.6
July 5.0 10.0 14.2 15.3 34.2 39.7 46.2 23.5
Aug 4.8 10.5 15.1 14.9 29.4 44.5 44.5 23.4
Sept 4.9 9.4 15.7 14.9 23.0 36.2 35.9 20.0
Oct 4.8 9.6 15.0 11.9 25.4 31.4 38.5 19.5
Nov 4.8 10.1 12.2 16.9 50.3 52.4 60.0 29.5

Table 27: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6),
as well as the average over these days, for the function f21(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 9.6 15.9 27.5 40.9 55.4 73.1 95.6 45.4
Apr 9.5 16.4 21.9 30.7 47.6 59.8 65.6 35.9
May 6.9 10.7 17.6 25.1 37.4 51.3 45.3 27.7
June 5.1 8.3 13.3 16.8 27.5 35.5 35.6 20.3
July 4.7 7.5 11.8 17.2 24.6 34.3 36.0 19.4
Aug 4.9 8.8 13.4 16.7 26.2 37.6 36.7 20.6
Sept 5.5 8.6 11.3 15.5 26.2 36.2 38.7 20.3
Oct 4.0 6.8 9.6 14.3 20.4 29.0 34.5 16.9
Nov 3.2 5.4 8.7 12.6 19.2 29.1 31.3 15.6
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Table 28: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f21(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 100.0 99.4 99.2 99.0 96.4 94.8 94.0 97.5
Apr 100.0 99.8 99.2 99.6 97.8 93.8 95.6 98.0
May 99.8 99.2 99.4 98.0 94.8 95.8 92.8 97.1
June 99.4 99.4 99.6 97.4 95.6 95.4 92.6 97.1
July 99.6 99.6 98.0 96.6 94.8 93.8 93.2 96.5
Aug 99.8 99.6 98.6 97.4 96.0 96.0 94.4 97.4
Sept 99.4 99.8 98.4 97.6 94.8 96.0 95.4 97.3
Oct 99.6 99.6 98.4 97.2 96.8 94.0 93.4 97.0
Nov 99.6 98.6 98.4 98.2 93.2 97.2 91.8 96.7

Table 29: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f21(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 76.8 89.4 90.8 97.0 99.4 97.2 98.0 92.7
Apr 72.8 89.8 87.8 96.2 99.4 95.4 95.6 91.0
May 63.0 73.4 72.2 94.8 98.4 94.0 95.4 84.5
June 39.0 43.2 64.0 97.4 98.6 96.6 96.8 76.5
July 32.6 44.0 80.6 97.8 96.8 97.6 97.0 78.1
Aug 44.6 47.0 81.0 98.8 98.4 97.0 96.4 80.5
Sept 44.8 52.4 72.6 98.4 99.2 97.0 96.8 80.2
Oct 23.6 28.4 61.0 98.8 98.0 98.8 97.4 72.3
Nov 12.8 14.2 80.0 99.4 92.6 96.4 94.8 70.0

Table 30: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f21(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 100.0 100.0 97.8 96.8 92.0 87.8 88.4 94.7
Apr 100.0 99.8 98.8 98.0 94.9 88.9 90.9 95.9
May 99.8 98.8 96.0 93.4 89.6 83.5 87.4 92.6
June 99.4 98.6 89.8 89.2 82.3 78.7 77.3 87.9
July 98.6 96.8 90.8 87.6 85.8 78.0 78.2 88.0
Aug 99.8 98.6 94.2 91.8 89.6 81.0 83.0 91.1
Sept 99.8 97.8 94.2 91.8 88.0 79.6 78.8 90.0
Oct 98.6 95.8 91.4 83.6 80.6 66.9 64.1 83.0
Nov 97.6 92.4 84.0 78.0 69.2 59.0 55.2 76.5
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Table 31: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f21(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 3.7 4.2 5.4 7.8 10.1 11.5 14.3 8.1
Apr 3.7 4.2 5.4 7.9 10.7 12.2 15.0 8.4
May 4.1 5.2 7.4 11.2 15.9 18.7 22.3 12.1
June 5.8 8.2 11.9 17.8 26.7 32.3 37.5 20.0
July 6.6 9.1 12.9 18.8 28.4 34.2 38.6 21.2
Aug 5.5 7.3 10.3 14.8 22.0 26.6 30.2 16.7
Sept 5.2 7.1 10.0 14.6 22.3 27.5 31.4 16.9
Oct 7.2 10.4 14.8 22.2 36.0 46.7 52.8 27.2
Nov 11.7 17.0 24.3 36.5 60.0 78.8 88.5 45.2

Table 32: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f21(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 0.0 1.0 2.3 5.2 9.3 12.0 13.8 6.2
Apr 0.0 1.0 2.1 4.8 9.0 11.8 13.1 6.0
May 0.0 1.0 2.5 6.9 13.4 18.3 20.5 8.9
June 0.0 1.0 4.4 14.3 27.8 36.2 39.7 17.6
July 0.0 1.3 6.3 20.8 37.4 45.7 48.9 22.9
Aug 0.0 1.1 5.0 15.0 26.8 32.9 35.0 16.5
Sept 0.0 1.0 4.3 13.3 25.1 32.2 34.9 15.8
Oct 0.0 1.3 6.7 24.3 48.8 62.4 68.5 30.3
Nov 0.0 2.1 17.1 67.2 121.6 145.4 156.9 72.9

Table 33: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f21(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 3.3 3.7 4.6 6.4 8.3 9.8 11.8 6.8
Apr 3.3 3.6 4.5 6.3 8.4 10.0 12.0 6.9
May 3.5 4.4 6.0 8.3 11.5 13.9 15.5 9.0
June 4.4 6.4 8.5 11.1 15.2 18.6 19.9 12.0
July 4.8 6.9 9.1 11.6 15.6 19.4 20.5 12.5
Aug 4.3 5.9 7.8 10.0 13.6 16.8 18.4 11.0
Sept 4.2 5.9 7.9 10.1 13.8 17.3 18.8 11.1
Oct 5.3 8.0 10.4 13.1 17.7 22.7 24.1 14.5
Nov 7.3 10.5 13.8 17.1 22.7 29.2 30.4 18.7
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Results for function f22(t)

Table 34: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6),
as well as the average over these days, for the function f22(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 5.3 8.7 13.0 24.0 34.4 35.7 47.1 24.0
Apr 4.8 7.5 11.0 19.0 30.8 37.8 41.8 21.8
May 3.5 6.2 9.6 14.4 26.2 31.1 36.5 18.2
June 2.7 5.0 7.7 14.4 25.4 29.4 31.6 16.6
July 2.6 4.9 7.6 13.4 24.4 31.1 32.6 16.7
Aug 2.8 5.1 7.3 13.5 23.8 31.9 33.0 16.8
Sept 2.7 4.5 7.3 10.8 19.8 27.5 32.0 14.9
Oct 2.1 4.0 6.4 11.4 19.3 28.2 30.3 14.5
Nov 1.9 4.1 7.0 11.7 22.0 28.1 31.1 15.1

Table 35: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6), as
well as the average over these days, for the function f22(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 5.2 10.2 15.0 15.1 35.6 43.3 48.0 24.6
Apr 5.0 10.0 15.1 14.0 24.4 33.4 39.4 20.2
May 5.1 9.9 14.2 13.2 35.1 37.1 41.8 22.3
June 5.0 9.9 10.1 34.7 95.6 104.7 108.3 52.6
July 5.0 9.6 10.0 65.2 167.9 199.6 195.1 93.2
Aug 5.0 10.0 11.7 40.8 103.2 125.6 127.4 60.5
Sept 5.0 10.4 13.2 21.4 66.8 79.5 85.4 40.2
Oct 5.0 10.1 11.8 37.5 128.7 172.1 185.9 78.7
Nov 4.9 9.8 11.2 111.3 509.2 843.2 1016.6 358.0

Table 36: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6),
as well as the average over these days, for the function f22(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 4.7 8.3 12.8 18.8 31.9 46.7 44.1 23.9
Apr 4.4 7.7 11.3 16.8 26.0 37.6 35.8 19.9
May 3.3 5.4 9.8 13.2 21.8 32.3 36.5 17.5
June 2.4 4.6 8.3 11.6 17.6 28.7 33.7 15.3
July 2.5 5.2 7.2 11.9 17.0 28.1 35.6 15.4
Aug 2.5 4.8 7.9 10.4 17.2 27.4 33.4 14.8
Sept 2.8 4.8 7.9 10.4 16.1 29.6 32.0 14.8
Oct 2.3 4.1 7.4 10.0 14.6 28.7 36.1 14.8
Nov 2.0 4.0 6.9 9.0 14.4 27.7 37.0 14.4
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Table 37: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f22(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 99.6 99.4 97.0 93.4 92.0 92.2 87.4 94.4
Apr 99.4 99.2 98.0 95.8 92.4 91.6 92.0 95.5
May 99.6 98.2 97.0 96.6 90.4 92.8 89.8 94.9
June 99.6 99.2 98.8 93.2 91.8 92.4 92.6 95.4
July 99.8 99.2 98.4 96.8 92.0 92.8 93.2 96.0
Aug 100.0 98.2 98.2 96.2 93.4 92.0 91.0 95.6
Sept 99.8 99.4 97.2 97.2 94.6 93.0 93.6 96.4
Oct 99.8 99.2 98.2 96.2 94.8 93.4 92.8 96.3
Nov 100.0 99.6 98.2 95.6 93.4 95.0 92.2 96.3

Table 38: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f22(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 30.1 41.7 77.6 99.4 98.8 99.0 98.0 77.8
Apr 29.6 36.8 65.6 98.0 99.6 98.8 97.8 75.2
May 11.4 19.2 74.2 99.6 98.0 99.0 98.8 71.5
June 3.6 10.6 95.4 99.8 93.4 96.0 96.0 70.7
July 2.4 23.6 97.6 99.8 93.6 94.4 92.6 72.0
Aug 4.4 27.2 96.6 100.0 99.0 98.8 98.2 74.9
Sept 4.0 20.0 94.6 100.0 100.0 100.0 100.0 74.1
Oct 0.4 16.8 99.0 100.0 100.0 99.6 99.8 73.7
Nov 0.0 35.0 100.0 100.0 100.0 99.2 96.2 75.8

Table 39: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f22(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 99.0 95.2 86.4 84.2 73.4 66.5 67.9 81.8
Apr 98.8 96.6 90.6 84.2 80.0 68.2 66.8 83.6
May 97.6 93.4 83.2 77.4 68.3 57.9 46.7 74.9
June 94.4 88.0 76.6 68.3 56.9 42.7 39.7 66.7
July 93.6 82.2 74.8 64.0 59.6 43.0 34.8 64.6
Aug 96.0 90.4 79.8 75.0 64.6 52.8 40.8 71.3
Sept 93.8 89.0 79.0 74.6 66.1 47.1 41.9 70.2
Oct 92.8 81.4 68.6 61.6 53.2 32.0 24.0 59.1
Nov 86.0 72.3 55.1 48.5 41.5 29.3 17.0 50.0
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Table 40: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f22(t) using LPS-NB.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 6.5 9.3 13.4 20.2 29.0 33.4 38.3 21.4
Apr 6.3 9.2 13.3 20.5 31.0 36.9 42.2 22.8
May 9.5 14.2 20.8 32.8 53.3 66.4 75.8 39.0
June 16.8 24.6 36.2 57.4 96.2 121.3 135.8 69.8
July 19.9 28.2 40.8 62.6 103.4 130.9 142.5 75.5
Aug 15.7 22.3 31.6 47.8 77.4 97.9 105.8 56.9
Sept 14.5 21.0 30.2 46.5 78.1 102.8 112.4 57.9
Oct 22.9 33.7 50.3 79.2 139.6 188.9 208.3 103.3
Nov 41.0 59.6 88.7 137.5 243.1 333.0 364.0 181.0

Table 41: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f22(t) using the method of Van de Kassteele et al.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 0.0 1.4 6.9 23.3 43.6 55.2 62.5 27.6
Apr 0.0 1.3 6.3 21.8 42.9 55.4 61.3 27.0
May 0.0 1.8 12.7 51.5 102.8 129.9 144.1 63.2
June 0.0 3.8 52.8 234.4 409.0 483.6 530.5 244.9
July 0.0 6.2 123.6 573.2 982.8 1130.8 1213.5 575.7
Aug 0.0 5.1 85.2 371.3 632.3 714.3 747.3 365.1
Sept 0.0 4.2 63.3 289.7 552.5 648.8 686.5 320.7
Oct 0.0 7.3 171.8 976.1 1989.6 2335.2 2512.9 1141.8
Nov 0.0 20.7 989.9 8271.6 20653.7 23985.2 26540.2 11494.5

Table 42: Prediction interval width for the number of cases at day T − t (t = 0, . . . , 6), as well as the
average over these days, for the function f22(t) using LPS-Poisson.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 4.8 6.9 9.2 12.3 17.3 21.2 21.4 13.3
Apr 4.8 7.1 9.4 12.4 17.5 21.5 21.9 13.5
May 6.4 9.7 12.8 16.6 23.1 28.9 28.6 18.0
June 9.2 13.7 18.2 22.8 30.7 38.6 37.5 24.4
July 10.1 14.6 19.4 23.9 31.4 39.4 38.5 25.3
Aug 8.8 12.6 16.6 20.3 26.8 33.9 34.2 21.9
Sept 8.6 12.6 16.7 20.5 27.3 34.8 35.4 22.3
Oct 11.4 16.7 22.2 27.2 35.8 46.2 46.6 29.4
Nov 15.4 22.1 29.5 35.6 46.3 60.2 59.6 38.4
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