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Abstract

During an epidemic, the daily number of reported (infected/death) cases is often lower than

the actual number of cases due to underreporting. Nowcasting aims to estimate the cases

that have not yet been reported and combine it with the already reported cases to obtain

an estimate of the daily cases. In this paper, we present a fast and flexible Bayesian ap-

proach to nowcasting combining P-splines and Laplace approximations. The main benefit of

Laplacian-P-splines (LPS) is the flexibility and faster computation time compared to Markov

chain Monte Carlo (MCMC) algorithms that are often used for Bayesian inference. In addi-

tion, it is natural to quantify the prediction uncertainty with LPS in the Bayesian framework,

and hence prediction intervals are easily obtained. Model performance is assessed through

simulations, and the method is applied to the Belgian COVID-19 mortality cases for the year

2021. Simulation results show that our model has good predictive performance except when

the nowcast date is near the peak date, where it has lower prediction interval coverage.

Keywords: Nowcasting, Laplacian-P-splines, Epidemic, COVID-19, Reporting delay.

∗Corresponding author. E-mail address: bryan.sumalinab@uhasselt.be

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 30, 2022. ; https://doi.org/10.1101/2022.08.26.22279249doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.08.26.22279249
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

Nowcasting is a term used for estimating the occurred-but-not-yet-reported-events (Donker

et al., 2011; Van de Kassteele et al., 2019). In epidemiology, real-time updates of new symp-

tomatic/infected individuals are helpful to assess the present situation and provide recommen-

dations for rapid planning and for implementing essential measures to contain an epidemic out-

break. The exact number of new daily cases is frequently subject to reporting delays, resulting

in underreporting of the real number of infected individuals for that day. Failing to account for

the reporting delays will lead to possibly biased predictions that might have an effect on policy

making (Gutierrez et al., 2020). The main goal of nowcasting is to estimate the actual number

of new cases by combining the (predicted) not-yet-reported-cases with the already reported cases.

Several early references that establish the statistical framework for this type of problem can

be found in the paper of Lawless (1994) which demonstrates how nowcasting can be used not

only in disease surveillance but also in other contexts such as warranty and insurance claims.

More recently, Höhle and an der Heiden (2014) applied nowcasting to the outbreak of Shiga

toxin-producing Escherichia coli in Germany and also to the SARS-CoV-2 outbreak (Glöckner

et al., 2020; Günther et al., 2021). Their approach is formulated within a hierarchical Bayesian

framework that consists of estimating the epidemic curve by using a quadratic spline based on

a truncated power basis function and the time-varying reporting delay distribution is approx-

imated by a discrete time survival model. Van de Kassteele et al. (2019) pointed out that a

potential drawback of such a method is the long computation time required by the Markov chain

Monte Carlo (MCMC) algorithm and therefore proposed an alternative fast and flexible mod-

elling strategy based on bivariate P-splines (Penalized B-splines). P-splines (Eilers and Marx,

1996) provide a flexible smoothing tool used to describe trends in the data. It introduces a

penalty parameter that controls the roughness of the fit and counterbalances the flexibility of a

rich B-splines basis (Eilers and Marx, 1996; Eilers et al., 2015). Other attractive features of the

P-splines smoother are the relatively simple structure of the penalty matrix that is effortlessly
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computed and a natural extension to the Bayesian framework (Lang and Brezger, 2004). Based

on the approach of Van de Kassteele et al. (2019), the number of cases are structured in a

two-dimensional table (with calendar time as the first dimension and delay time as the second

dimension), yielding the data matrix used as an input in the model. The reporting intensity is

assumed to be a smooth surface and is modelled using two-dimensional P-splines.

In this paper, we extend the method of Van de Kassteele et al. (2019) by proposing a new now-

casting methodology based on Laplacian-P-splines (LPS) in a fully Bayesian framework. A key

advantage of working with the Bayesian approach is the ease to obtain the predictive distribution

and quantify the uncertainty associated with the predictions. In addition, the posterior distribu-

tion of the penalty parameter can be explored, and hence its uncertainty can be accounted for.

The Laplace approximation uses a second-order Taylor expansion to approximate the posterior

distribution of the regression parameters by a Gaussian density. It is a sampling-free method

with the major advantage of faster computational time as opposed to MCMC approaches that

are commonly used in Bayesian inference. Therefore, given the flexibility of previously men-

tioned P-splines smoothers and the computational benefit of Laplace approximations, it can be

a helpful tool in the daily monitoring of new cases during an epidemic period. Laplacian-P-

splines already proved to be useful in survival models (Gressani and Lambert, 2018; Gressani

et al., 2022), generalized additive models (Gressani and Lambert, 2021) and also in epidemic

models for estimating the effective reproduction number (Gressani et al., 2021). We build on the

work of Gressani and Lambert (2021) to extend the Laplacian-P-splines methodology to now-

casting, thereby providing a fast and flexible (fully) Bayesian alternative to Van de Kassteele

et al. (2019). To evaluate the (predictive) performance of our method, a simulation study is

implemented and several performance measures are reported such as the mean absolute percent-

age error (MAPE), symmetric mean absolute percentage error (SMAPE) and prediction interval

coverage. Finally, we apply our method to the COVID-19 mortality data in Belgium for the year

2021. The data and R codes used to implement the method are available on GitHub through

this link https://github.com/bryansumalinab/Laplacian-P-spline-nowcasting.git.
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2 Methodology

2.1 Bayesian model formulation

In this section, we build upon the work of Van de Kassteele et al. (2019) to formulate a fully

Bayesian model based on P-splines. Let yt,d denote the number of cases that occurred at time

t = 1, 2, ..., T (corresponding to the calendar day) and reported with a delay of d = 0, 1, 2..., D

days. The information on cases can be summarized in matrix form:

Y =



y1,0 y1,1 y1,2 . . . y1,D

y2,0 y2,1 y2,2 . . . y2,D
...

...
... . . .

...

yT−(D−1),0 yT−(D−1),1 yT−(D−1),2 . . . yT−(D−1),D

...
...

... . . .
...

yT−1,0 yT−1,1 yT−1,2 . . . yT−1,D

yT,0 yT,1 yT,2 . . . yT,D



,

with cases that have not yet been reported (at time T ) highlighted in bold. The not-yet-reported

cases correspond to (t, d) combinations satisfying t > T − d. The main objective is to predict

the total number of cases, yt =
∑D

d=0 yt,d , for t = T − (D − 1), . . . , T for which the nowcasted

and already reported cases can be combined.

Let D := y = (y1, y2 . . . , yn)
′ denote the vector of the observed number of cases by stacking

the columns of matrix Y for the reported cases, where each entry corresponds to each (t, d)

combination of reported cases yt,d. The model assumes that the number of cases are Poisson

distributed, i.e., yt,d ∼ Poisson(µt,d) with mean µt,d > 0. Following Van de Kassteele et al.

(2019), the (log) mean number of cases is modeled with two dimensional B-splines:

log(µt,d) = β0 +

KT∑
j=1

KD∑
k=1

θj,kbj(t)bk(d) +

p∑
l=1

βlzl(t, d),

where β0 is the intercept; bj(·) and bk(·) are univariate B-splines basis functions specified in

the time and delay dimensions, respectively; and zl(t, d) represents additional covariates with
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regression coefficients βl. In matrix notation:

log(µ) = Bθ + Zβ, (1)

where the matrices B and Z correspond to the basis functions and covariates, respectively, and

vectors θ and β are the associated parameters to be estimated (Details in Appendix A1).

In the philosophy of P-splines (Eilers and Marx, 1996), we use a rich (cubic) B-splines basis and

counterbalance the associated flexibility by imposing a discrete roughness penalty on contiguous

B-spline coefficients. For the two dimensional P-splines, the penalty can be obtained based on

row-wise (direction of calendar time) and column-wise (direction of reporting delay) differences

for matrix Θ = (θj,k) with j = 1, . . . ,KT and k = 1, . . . ,KD (Appendix A1) (see Durbán et al.

(2002) and Fahrmeir et al. (2013) (pp. 507-508)). Let Dm
t and Dm

d denote the mth order row-

wise and column-wise difference matrix with dimensions (KT −m)×KT and (KD −m)×KD,

respectively. In this paper, we use a second order (m = 2) difference penalty. For ease of

notation, let Dt = Dm
t and Dd = Dm

d . The difference matrix for vector θ can be obtained by

expanding the difference matrix into IKD
⊗Dt and Dd ⊗ IKT

, where ⊗ denotes the Kronecker

product. Using this notation, the row-wise and column-wise difference penalty can be written,

respectively, as:

∥(IKD
⊗Dt)θ∥2= θ′(IKD

⊗Dt)
′(IKD

⊗Dt)θ = θ′(IKD
⊗D

′
tDt)θ and

∥(Dd ⊗ IKT
)θ∥2= θ′(Dd ⊗ IKT

)′(Dd ⊗ IKT
)θ = θ′(D

′
dDd ⊗ IKT

)θ.

Let λt > 0 and λd > 0 denote the row-wise and column-wise penalty parameter, respectively.

The penalty for the two dimensional B-splines is then given by:

λtθ
′(IKD

⊗D
′
tDt)θ + λdθ

′(D
′
dDd ⊗ IKT

)θ

= θ′
(
λt(IKD

⊗D
′
tDt) + λd(D

′
dDd ⊗ IKT

)

)
θ.

Let us define the penalty matrices Pt = D
′
tDt+ δIKT

and Pd = D
′
dDd+ δIKD

, where δ is a small
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number (say δ = 10−6), to ensure that the penalty matrices are full rank and thus invertible.

Following Lang and Brezger (2004), the penalty can be translated in the Bayesian framework

by specifying a Gaussian prior for each column and row vector of Θ. We write Θ in terms of its

columns and rows:

Θ = (θc
1, . . . ,θ

c
KD

) (columns ofΘ) and

Θ′ = (θr′
1 , . . . ,θ

r′
KT

) (rows ofΘ).

The priors are then given by (θc
k|λt) ∼ Ndim(θc

k)
(0, (λtPt)

−1) and (θr
j |λd) ∼ Ndim(θr

j )
(0, (λdPd)

−1)

for k = 1, . . . ,KD and j = 1, . . . ,KT , respectively. It follows that the joint prior for θ can be

written as:

p(θ|λt, λd) =

(
KD∏
k=1

p(θc
k|λt)

)KT∏
j=1

p(θr
j |λd)


∝ exp

(
−1

2
λt

KD∑
k=1

θc′
k Ptθ

c
k

)
exp

−1

2
λd

KT∑
j=1

θr
jPdθ

r′
j


= exp

(
−1

2
λtθ

′
(IKD

⊗ Pt)θ

)
exp

(
−1

2
λdθ

′
(Pd ⊗ IKT

)θ

)
= exp

(
−1

2
θ

′
(λt(IKD

⊗ Pt) + λd(Pd ⊗ IKT
))θ

)
.

Gaussian priors are assumed for β and θ, namely β ∼ Ndim(β)(0, V
−1
β ) with Vβ = ζIp+1

(small ζ, e.g. ζ = 10−5) and (θ|λ) ∼ Ndim(θ)(0,P−1(λ)), where λ = (λt, λd)
′ is the penalty vec-

tor and P(λ) = λt(IKD
⊗ Pt) + λd(Pd ⊗ IKT

) the global penalty matrix. Denote by X = (B,Z)

the global design matrix, ξ = (β′,θ′)′ the latent parameter vector and Qλ
ξ =

Vβ 0

0 P(λ)

 the

precision matrix for ξ. The full Bayesian model is then summarized as follows:

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 30, 2022. ; https://doi.org/10.1101/2022.08.26.22279249doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.26.22279249
http://creativecommons.org/licenses/by-nc-nd/4.0/


(yi|ξ) ∼ Poisson(µi) with log(µ) = Xξ,

(ξ|λ) ∼ Ndim(ξ)(0, (Q
λ
ξ )

−1),

(λt|δt) ∼ G
(
ν

2
,
νδt
2

)
,

(λd|δd) ∼ G
(
ν

2
,
νδd
2

)
,

δt ∼ G(aδ, bδ),

δd ∼ G(aδ, bδ),

where G(a, b) denotes a Gamma distribution with mean a/b and variance a/b2. This robust

prior specification on the penalty parameters follows from Jullion and Lambert (2007). They

have shown that when the hyperparameters aδ, bδ are chosen to be equal and small enough (say

10−4), then the resulting fit is robust to the value of ν (e.g. ν = 3 in this paper).

2.2 Laplace approximation to the conditional posterior of ξ

To obtain a Laplace approximation for the set of regression parameters ξ = (β′,θ′)′, we use

the posterior of ξ conditional on the vector of penalty parameters λ. Then, the gradient and

Hessian of the log-posterior are computed and used in a Newton-Raphson algorithm to obtain

the Gaussian approximation to the conditional posterior distribution of ξ.

Note that for a Poisson distributed yi with mean µi, we have f(yi) ∝ exp (yiγi − s(γi)), where

γi = log(µi) and s(γi) = exp(γi) = µi. Using Bayes’ rule, the posterior of ξ conditional on the

penalty vector λ is:

p(ξ|λ,D) ∝ L(ξ;D)p(ξ|λ)

∝ exp

( n∑
i=1

(yiγi − s(γi))

)
exp

(
− 1

2
(ξ

′
Qλ

ξ ξ)

)

= exp

( n∑
i=1

(yiγi − s(γi))−
1

2
(ξ

′
Qλ

ξ ξ)

)
,
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where L(ξ;D) denotes the likelihood function. Hence, the log-conditional posterior of ξ can be

obtained as:

log p(ξ|λ,D)=̇
n∑

i=1

(
yiγi − s(γi)

)
− 1

2
(ξ

′
Qλ

ξ ξ), (2)

where =̇ denotes equality up to an additive constant.

It is known for Poisson generalized linear models that the gradient (score vector) and Hessian

of the first term on the right hand side of (2) are given, respectively, by (see Agresti (2013), p.

136):

∇ξ logL(ξ;D) = X
′
(y − µ) and ∇2

ξ logL(ξ;D) = −X
′
WX,

where W = diag(w1, . . . , wn) is a diagonal matrix with wi = (V ar(yi)[g
′(µi)]

2)−1 = µi and

g(·) is the log-link function such that g(µi) = log(µi). Hence, the gradient and Hessian for the

log-conditional posterior of ξ are:

∇ξ log p(ξ|λ,D) = X
′
(y − µ)−Qλ

ξ ξ and ∇2
ξ log p(ξ|λ,D) = −(X

′
WX +Qλ

ξ ).

Using a Newton-Raphson algorithm, the Laplace approximation for the conditional posterior of

ξ is, by abuse of notation, p̃G(ξ|λ,D) = N (ξ̂λ, Σ̂λ) (Gressani and Lambert, 2021), where ξ̂λ

and Σ̂λ correspond to the mode and variance-covariance matrix, respectively, given by:

ξ̂λ = (X
′
W̃X +Qλ

ξ )
−1w̃ and

Σ̂λ = (X
′
W̃X +Qλ

ξ )
−1,

where w̃ is the vector at convergence resulting from the sequence w̃(0),w̃(1), w̃(2),. . . , with

w̃(0) = X
′
(y − µ(ξ(0))) + X

′
W (ξ(0))Xξ(0), the initial condition ξ(0) = (0, 0, . . . , 0, 0)′dim(ξ),

µ(ξ(0)) = exp(Xξ(0)), and W (ξ(0)) = diag(Xξ(0)).
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2.3 Hyperparameter optimization

In this section, we derive the (approximate) posterior distribution of the hyperparameters be-

longing to the penalization part, i.e., λ and δ. We first derive the joint posterior of λ and δ and

then proceed with an integration to isolate the marginal posterior distribution of the penalty

parameter.

Let η = (λt, λd, δt, δd)
′ denotes the vector of hyperparameters. Using Bayes’ theorem, the

marginal posterior of η is:

p(η|D) =
p(ξ,η|D)

p(ξ|η,D)

=
p(D|ξ,η)p(ξ,η)
p(D)p(ξ|η,D)

∝ L(ξ;D)p(ξ|η)p(η)
p(ξ|η,D)

.

Following Rue et al. (2009), the above posterior can be approximated by replacing p(ξ|η,D)

with p̃G(ξ|λ,D) obtained in Section 2.2 and by evaluating the latent vector at ξ̂λ. Note that

γi = x
′
iξ, where x

′
i corresponds to the ith row of the design matrix X. Also, the determinant

|Qλ
ξ | in p(ξ|λ) is |Qλ

ξ |∝ |P(λ)|. Hence, the approximated marginal posterior of η is:

p̃(η|D) ∝ L(ξ;D)p(ξ|η)p(η)
p̃G(ξ|η,D)

∣∣∣
ξ=ξ̂λ

∝ exp

(
n∑

i=1

(yix
′
iξ̂λ − s(x

′
iξ̂λ))

)

× |P(λ)|
1
2 exp

(
−1

2
ξ̂
′
λQ

λ
ξ ξ̂λ

)
× (λtλd)

( ν
2
−1) δ

( ν
2
+aδ−1)

t exp(−δt(bδ +
ν

2
λt))

× δ
( ν
2
+aδ−1)

d exp(−δd(bδ +
ν

2
λd))

× |X ′
W̃X +Qλ

ξ |−
1
2 .

To obtain the marginal posterior of λ, we need to integrate out the hyperparameters δt and δd
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from p̃(η|D) as follows:

∫ ∞

0
δ
( ν
2
+aδ−1)

t exp(−δt(bδ +
ν

2
λt)) dδt ∝ (bδ +

ν

2
λt)

−( v
2
+aδ) and∫ ∞

0
δ
( ν
2
+aδ−1)

d exp(−δd(bδ +
ν

2
λd)) dδd ∝ (bδ +

ν

2
λd)

−( v
2
+aδ).

Hence,

p̃(λ|D) =

∫ ∞

0

∫ ∞

0
p̃(η|D)dδt dδd

∝ |X ′
W̃X +Qλ

ξ |−
1
2 exp

(
n∑

i=1

(yix
′
iξ̂λ − s(x

′
iξ̂λ))−

1

2
ξ̂
′
λQ

λ
ξ ξ̂λ

)

× |P(λ)|
1
2 (λtλd)

( ν
2
−1)
(
(bδ +

ν

2
λt)(bδ +

ν

2
λd)
)−( v

2
+aδ)

.

The posterior mode (obtained via Newton-Raphson) is used as a point estimate for the penalty

vector. To ensure numerical stability, we log-transformed the penalty vector v = (vt, vd)
′ =

(log(λt), log(λd))
′. Using the method of transformations, we obtain the posterior of v given by:

p̃(v; y) ∝ |X ′
W̃X +Qv

ξ |−
1
2 exp

(
n∑

i=1

(yix
′
iξ̂v − s(x

′
iξ̂v))−

1

2
ξ̂
′
vQ

v
ξ ξ̂v

)

× |P(v)|
1
2

(
bδ +

ν

2
exp(λt)(bδ +

ν

2
exp(λd)

)−( v
2
+aδ)

× (exp(vt) exp(vd))
( ν
2
) .

The exponent of the last term above reduces to v
2 because of multiplying (exp(vd) exp(vt))

( ν
2
−1)

with the Jacobian of the transformation J = exp(vd) exp(vt). Moreover, the log-posterior of v

is given by:

log p̃(v; y)=̇− 1

2
log|X ′

W̃X +Qv
ξ |+

n∑
i=1

yix
′
iξ̂v −

n∑
i=1

s(x
′
iξ̂v)−

1

2
ξ̂
′
vQ

v
ξ ξ̂v

+
1

2
log|P (v)|−

(ν
2
+ aδ

)(
log(bδ +

ν

2
exp(vd)) + log(bδ +

ν

2
exp(vt))

)
+

ν

2
(vd + vt) .
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2.4 Nowcasting with prediction interval

To obtain the mean nowcast estimate with the prediction interval, note that log(µi) = x
′
iξ

or equivalently log(µt,d) = x
′
t,dξ, where p̃G(ξ|v,D) = N (ξ̂v, Σ̂v). Thus, p̃(log(µt,d)|v,D) =

N (x
′
t,dξ̂v, x

′
t,dΣ̂vxt,d). The mean estimate for the not-yet-reported cases is calculated as µ̂t,d =

exp(x
′
t,dξ̂v) for all (t, d) combinations with t > T − d. Then, the estimate for the total number

of cases for each t is obtained by summing the already reported cases and the mean estimate

for the not-yet-reported cases, i.e. µ̂t =
∑

{d:t≤T−d}

yt,d +
∑

{d:t>T−d}

µ̂t,d.

The prediction interval for the nowcast values is obtained by sampling from the posterior pre-

dictive distribution of the log-mean number of cases by following the five steps below:

1. For each (t, d) combinations with t > T − d (corresponding to the not-yet-reported cases),

generate 1000 random samples (ŷt,d) from a Gaussian distribution with mean x
′
t,dξ̂v and

variance x
′
t,dΣ̂vxt,d.

2. Exponentiate the sampled values from the previous step to obtain the average reporting

intensities µ̂t,d = exp(ŷt,d).

3. Compute the average prediction for the not-yet-reported cases for each t. That is, compute

µ̂t =
∑

d µ̂t,d for t > T − d.

4. For each t, sample ŷt containing 1000 values from Poisson(µ̂t).

5. Finally, compute the quantiles of the sampled values ŷt that correspond to the desired

prediction interval.

2.5 Delay distribution

To obtain the smooth estimate of the delay distribution, only the first term on the right hand

side of equation (1) is used (excluding the week effects), as explained in the paper of Van de

Kassteele et al. (2019). Specifically, the procedure to compute the delay distribution is as follows:

1. Compute the contribution of the smoothing term in equation (1) to the reporting intensity

for all (t, d) combinations: µsmooth = exp(Bθ).
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2. Arrange µsmooth into a T × (D + 1) matrix with entries µsmooth
t,d .

3. For each t = 1, . . . , T , compute the reporting delay distribution given by: f̂t(d) =
µsmooth
t,d∑D

d=0 µ
smooth
t,d

.

3 Simulations

A simulation study is implemented in order to evaluate the predictive performance of the pro-

posed method. The procedure to perform the simulations is as follows:

1. Consider a function f(t) that represents the mean epidemic curve of all cases such that

µ(t) = exp(f(t)) for t = 1, ..., T .

2. For each t, generate a random sample yt from a Poisson distribution with mean µ(t).

3. To account for possible delays d = 0, 1, 2, . . . , D, generate samples from a multinomial

distribution with probabilities (p0, p1, p2, · · · , pD such that
∑D

d=0 pd = 1), i.e.,

(yt,0, yt,1, yt,2, . . . , yt,D) ∼ Multinomial(yt, p0, p1, p2, · · · , pD).

This sample represents the reported number of cases for each (t, d) combination.

4. Repeat steps 1 to 3 for 1000 times to generate 1000 possible realizations and compute the

desired accuracy measures.

We consider two functions f(t) inspired from the paper of Noufaily et al. (2016) given by:

f1(t) = θ1 + θ2 sin

(
2πt

150

)
,

f2(t) = θ1 + θ2 sin

(
2πt

150

)
+ θ3

√
t,

for t = 1, . . . , 365. That is, we assume a one year (365 days) time window in the simulation.

In terms of delay probabilities, we consider a maximum delay of D = 7 days with probabilities

(p0, p1, p2, · · · , p7) = (0.0, 0.1, 0.4, 0.2, 0.1, 0.1, 0.05, 0.05). This is illustrated in Figure 1. For

example, at time T − 6, only the cases that have a delay of 7 days (with probability p7 = 0.05)

are not yet reported, or equivalently, 95% of the cases have already been reported. For time
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T − 5, only 90% of the cases have been reported, as cases with delays of 6 and 7 days are yet to

be reported. On the nowcast day (time T ), no case is reported, that is, the delay is 100%.

Two scenarios are considered for the first function f1(t): (i) the first one is having a small

number of cases with values of θ1 = 2 and θ2 = 1; (ii) the second scenario has relatively larger

cases with θ1 = 3 and θ2 = 1. These functions are denoted by f11(t) and f12(t), respectively.

The second function f2(t) has values θ1 = 0, θ2 = 0.4 and θ3 = 0.2. The first function has

a symmetric curve with three peaks as shown in Figures 2a and 2b. On the other hand, the

second function is not periodic as opposed to the first function (see Figure 2c). The plot for

(one realization of) simulated cases based on these functions are shown in Figure 3 with (blue

dashed) vertical lines corresponding to the different nowcast dates.

Figure 1: Illustration of the delay probabilities considered in the simulation.

(a) Plot for µ(t) = exp(f11(t)) (b) Plot for µ(t) = exp(f12(t)) (c) Plot for µ(t) = exp(f2(t))

Figure 2: Plot of the functions considered in the simulation.
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(a) µ(t) = exp(f11(t)) (b) µ(t) = exp(f12(t)) (c) µ(t) = exp(f2(t))

Figure 3: Plot of the simulated cases for different functions. Blue dashed vertical lines - different
nowcast dates.

The mean absolute percentage error (MAPE) and symmetric mean absolute percentage error

(SMAPE) are chosen to measure the predictive accuracy of our methodology. Moreover, for

each simulation, we consider a 95% prediction interval and determine the (true) unreported

cases that falls within the interval to obtain the prediction interval coverage. The formulas to

compute these measures are given by:

MAPEt =
1

S

S∑
s=1

∣∣∣∣yst − ŷst
yst

∣∣∣∣× 100%,

SMAPEt =
1

S

S∑
s=1

|yst − ŷst|
(|yst|+|ŷst|)/2

× 100%,

where S = 1000 is the number of generated realizations, yst is the true value (generated from step

2 of the simulation in Section 3 at iteration s) and ŷst is the corresponding predicted value (mean

nowcast estimate µ̂t in Section 2.4). The MAPE and SMAPE metrics are scale-independent and

measure the error of prediction from the actual value in terms of percentage. One disadvantage of

MAPE is that it could have undefined values when the actual values are zero, which is evident in

the formula where the true value is in the denominator. In our setting, this happened especially

with very small delay probabilities where there is a high probability of zero unreported cases,

and so we exclude this case in computing the MAPE. Another way to address this issue is to use

the SMAPE indicator that has values with lower and upper bounds of 0% and 200%, respectively.

In the simulation, every end of the month from March to November are set as nowcast dates.

For each nowcast date, the prediction measures are computed for the dates having unreported
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cases, that is, for t = T − (D− 1), . . . , T . As we have a maximum delay of 7 days, there will be

seven dates (including the nowcast date) that involves prediction of unreported cases. Tables 1-3

summarize the MAPE results for the different functions being considered. The error increases

as it gets closer to the nowcast day, that is, from 6 days prior to the nowcast day to the nowcast

day. This is expected, as there is less data available at each delay time as we approach the

nowcast day. Indeed, on day T , about 95% of the cases that occurred on day T − 6 have been

reported, while on day T no case is reported yet. The errors are relatively higher in March and

April, where we have the least available data. For functions f12(t) and f2(t), the MAPE on the

nowcast day ranges between 20% - 35% for May to November. This is reasonable considering

that we do not have data available on the nowcast day because all cases have a delay of at least

one day. Moreover, the MAPE results using LPS are similar to the ones obtained using Van de

Kaasteele et al.’s method (values in parentheses in the Table). There is no clear pattern that

indicates one approach has higher or lower error than the other.

Results for the prediction interval coverage can be found in Tables 4-6. For function f11(t), al-

most all of the values are higher than the 95% nominal prediction interval. For function f12(t),

the prediction interval coverage is close to 95% for most cases, although the coverage of the

nowcast day for June and November are somewhat too low (60.04% and 73.95%, respectively).

This could be resulting from reaching the peak (curve change) and the fact that no data is avail-

able for the nowcast day, that is, there is no zero delay. Moreover, the function f2(t) has high

coverage except on the nowcast day for October and November, having higher simulated cases.

There is moderate to strong undercoverage in the prediction interval with Van de Kassteele et

al.’s method for 4 to 6 days before the nowcast day, while LPS is more conservative and has

coverages that are closer to the nominal value. On the other hand, from 2 days before the now-

cast day to the nowcast day, Van de Kaasteele et al.’s method has higher coverage than LPS,

reflecting much wider prediction intervals. The results for SMAPE of the three functions are

also displayed in Appendix A2 with the percentage error of functions f12(t) and f2(t) ranging

between 20% - 40% on the nowcast day. Similar to MAPE results, LPS and Van de Kaasteele

et al.’s method have comparable SMAPE values with no systematic difference between the two

approaches.
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Table 1: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6) using function f11(t),
as well as the average over these days. Values in parentheses are results using Van de Kassteele et al.’s method.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 9.9 (4.8) 15.2 (9.8) 23.1 (19.8) 35.9 (23.6) 52.1 (37.5) 63.7 (50.0) 80.4 (53.3) 40.1 (28.4)
Apr 10.5 (5.5) 18.5 (10.7) 28.0 (19.2) 38.0 (29.2) 52.8 (35.0) 64.8 (47.4) 75.3 (54.8) 41.1 (28.8)
May 8.8 (4.8) 13.6 (9.9) 17.7 (16.0) 24.6 (12.0) 36.0 (18.0) 41.0 (21.5) 42.1 (22.8) 26.3 (15.0)
June 4.7 (5.0) 7.1 (9.7) 9.9 (16.0) 13.5 (12.8) 18.3 (16.6) 22.3 (22.4) 22.7 (22.7) 14.1 (15.0)
July 5.1 (5.0) 8.1 (10.0) 11.2 (15.2) 15.4 (13.7) 22.5 (23.9) 25.5 (28.8) 26.7 (32.6) 16.4 (18.4)
Aug 9.7 (5.0) 15.9 (10.3) 22.3 (20.1) 29.5 (23.6) 40.4 (36.8) 56.4 (47.0) 65.7 (50.5) 34.3 (27.6)
Sept 9.6 (5.3) 17.3 (10.0) 27.0 (20.4) 33.2 (28.8) 45.2 (34.7) 53.4 (50.3) 62.4 (51.1) 35.4 (28.7)
Oct 8.0 (4.8) 12.2 (9.2) 16.0 (20.4) 19.8 (18.3) 24.8 (24.1) 32.3 (33.5) 30.5 (34.9) 20.5 (20.8)
Nov 4.8 (5.0) 6.8 (10.2) 9.3 (15.1) 12.0 (12.3) 15.8 (16.8) 19.1 (19.8) 20.8 (22.4) 12.6 (14.5)

Table 2: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6) using function f12(t),
as well as the average over these days. Values in parentheses are results using Van de Kassteele et al.’s method.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 5.3 (4.9) 8.1 (9.6) 12.6 (16.7) 18.9 (19.6) 28.1 (31.4) 36.2 (45.4) 35.2 (46.6) 20.6 (24.9)
Apr 7.7 (5.5) 11.7 (10.1) 16.2 (20.3) 24.4 (19.1) 33.9 (26.0) 40.6 (39.3) 43.3 (43.7) 25.4 (23.4)
May 5.1 (5.0) 7.4 (10.4) 9.9 (13.7) 13.2 (11.3) 18.8 (32.3) 20.8 (29.5) 24.6 (32.8) 14.2 (19.3)
June 2.7 (4.9) 4.3 (9.9) 6.2 (14.2) 8.1 (10.2) 10.7 (26.5) 15.8 (25.5) 26.0 (26.7) 10.6 (16.9)
July 3.1 (5.0) 4.6 (10.2) 6.5 (12.0) 8.5 (19.5) 11.8 (47.0) 15.6 (46.7) 20.7 (51.4) 10.1 (27.4)
Aug 5.9 (4.8) 8.7 (10.2) 12.0 (17.4) 15.7 (15.4) 23.8 (21.7) 28.9 (32.5) 31.5 (37.5) 18.1 (19.9)
Sept 7.5 (4.9) 11.1 (9.5) 14.7 (19.8) 19.0 (19.6) 28.0 (25.2) 34.0 (37.8) 34.4 (40.6) 21.2 (22.5)
Oct 4.6 (5.0) 6.4 (9.9) 9.0 (17.0) 10.7 (14.1) 13.6 (14.5) 19.8 (22.5) 24.0 (24.5) 12.6 (15.4)
Nov 2.7 (4.9) 4.0 (10.0) 5.4 (13.7) 6.6 (10.9) 8.7 (31.2) 16.3 (29.5) 22.6 (30.5) 9.5 (18.7)

Table 3: Mean absolute percentage error (MAPE) for the number of cases at day T − t (t = 0, . . . , 6) using function f2(t),
as well as the average over these days. Values in parentheses are results using Van de Kassteele et al.’s method.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 9.9 (5.0) 15.9 (10.2) 23.3 (20.1) 32.1 (23.0) 46.5 (38.6) 57.6 (48.3) 68.7 (52.5) 36.3 (28.2)
Apr 8.6 (4.6) 14.5 (9.9) 19.2 (20.1) 25.4 (19.3) 35.1 (28.7) 44.8 (44.0) 55.8 (43.8) 29.1 (24.4)
May 6.2 (5.0) 9.7 (9.8) 13.9 (13.8) 18.3 (11.8) 23.8 (26.6) 27.9 (24.8) 29.0 (25.1) 18.4 (16.7)
June 4.3 (5.1) 6.8 (10.0) 9.3 (15.8) 12.6 (12.1) 17.5 (15.7) 21.6 (20.2) 23.1 (20.7) 13.6 (14.2)
July 3.9 (4.9) 6.1 (9.7) 8.7 (15.1) 10.7 (11.1) 15.5 (20.6) 18.4 (20.5) 21.4 (21.4) 12.1 (14.7)
Aug 4.7 (5.2) 7.3 (10.1) 9.6 (14.9) 12.0 (12.6) 17.1 (18.4) 21.6 (21.2) 22.8 (24.3) 13.6 (15.3)
Sept 4.5 (5.2) 6.7 (10.2) 9.3 (16.6) 11.7 (13.1) 15.7 (16.3) 21.5 (21.0) 22.8 (22.9) 13.2 (15.0)
Oct 3.7 (5.0) 5.1 (10.1) 7.1 (15.7) 9.0 (10.5) 11.0 (13.5) 18.5 (16.0) 24.5 (16.3) 11.3 (12.4)
Nov 2.5 (5.0) 3.7 (9.9) 5.3 (13.9) 6.7 (10.6) 8.6 (28.8) 17.8 (24.3) 26.4 (24.4) 10.1 (16.7)

Table 4: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6) using function f11(t), as well as the
average over these days. Values in parentheses are results using Van de Kassteele et al.’s method.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 100.0 (77.7) 99.9 (90.7) 99.3 (92.1) 98.2 (98.0) 95.4 (99.2) 95.1 (96.7) 94.9 (98.1) 97.5 (93.2)
Apr 100.0 (86.7) 99.9 (96.2) 99.5 (91.2) 99.6 (97.8) 99.3 (98.2) 97.5 (97.1) 95.9 (97.0) 98.8 (94.9)
May 100.0 (41.5) 99.5 (44.1) 99.2 (60.8) 98.4 (95.9) 95.5 (98.0) 95.3 (98.1) 96.1 (99.0) 97.7 (76.8)
June 99.4 (40.8) 99.5 (50.7) 97.4 (60.2) 95.7 (95.0) 93.6 (99.0) 93.6 (98.3) 94.9 (98.8) 96.3 (77.5)
July 99.9 (46.9) 99.5 (56.6) 97.7 (76.2) 96.3 (97.1) 95.7 (98.1) 97.0 (98.3) 98.2 (99.4) 97.8 (81.8)
Aug 100.0 (78.9) 100.0 (92.0) 99.5 (93.2) 99.5 (98.2) 99.3 (98.8) 97.4 (98.2) 97.9 (97.3) 99.1 (93.8)
Sept 100.0 (85.3) 100.0 (96.2) 99.8 (91.3) 99.6 (96.8) 99.7 (96.8) 99.0 (93.1) 98.4 (95.5) 99.5 (93.6)
Oct 99.9 (72.1) 99.9 (85.1) 99.2 (82.4) 99.2 (94.7) 97.9 (98.1) 96.7 (96.7) 98.7 (98.7) 98.8 (89.7)
Nov 99.6 (40.6) 98.9 (41.0) 96.6 (63.9) 96.1 (96.1) 96.0 (98.5) 96.2 (99.2) 95.7 (99.1) 97.0 (76.9)
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Table 5: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6) using function f12(t), as well as the
average over these days. Values in parentheses are results using Van de Kassteele et al.’s method.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 99.9 (50.4) 99.4 (66.3) 96.3 (86.1) 93.9 (98.8) 89.9 (99.1) 90.9 (99.0) 95.1 (99.5) 95.0 (85.6)
Apr 99.9 (67.5) 99.7 (82.3) 97.5 (86.4) 96.9 (98.0) 95.7 (99.2) 94.4 (99.2) 95.9 (98.8) 97.1 (90.2)
May 99.7 (9.1) 98.4 (11.1) 96.8 (75.4) 94.8 (95.7) 92.3 (99.3) 93.9 (98.9) 91.1 (99.8) 95.3 (69.9)
June 99.2 (9.6) 97.5 (12.8) 95.6 (73.7) 92.3 (94.9) 92.4 (98.8) 86.8 (98.2) 63.2 (99.3) 89.6 (69.6)
July 99.3 (13.4) 98.5 (29.5) 96.1 (83.4) 95.4 (98.0) 94.8 (98.7) 94.0 (99.6) 89.1 (98.6) 95.3 (74.5)
Aug 99.7 (55.5) 99.6 (69.7) 98.5 (86.4) 97.9 (98.8) 96.2 (99.6) 96.8 (99.0) 97.5 (98.8) 98.0 (86.8)
Sept 100.0 (68.4) 99.7 (83.8) 99.0 (82.2) 99.0 (96.3) 97.0 (98.9) 96.2 (98.6) 98.1 (98.6) 98.4 (89.5)
Oct 99.7 (38.7) 99.0 (43.4) 97.1 (64.2) 97.5 (97.6) 97.6 (99.5) 91.9 (99.0) 91.5 (99.5) 96.3 (77.4)
Nov 99.5 (8.2) 97.1 (10.5) 96.2 (76.9) 96.6 (97.3) 96.4 (99.7) 84.6 (99.4) 73.6 (99.4) 92.0 (70.2)

Table 6: Prediction interval coverage for the number of cases at day T − t (t = 0, . . . , 6) using function f2(t), as well as the
average over these days. Values in parentheses are results using Van de Kassteele et al.’s method.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 100.0 (75.1) 100.0 (89.1) 99.1 (91.1) 98.0 (97.2) 94.4 (99.0) 93.7 (97.5) 92.7 (98.6) 96.8 (92.5)
Apr 99.9 (76.2) 99.7 (88.1) 99.0 (89.8) 99.0 (96.6) 97.5 (99.3) 95.2 (97.4) 95.1 (97.8) 97.9 (92.2)
May 99.6 (8.0) 98.9 (9.5) 97.5 (57.3) 96.3 (87.3) 94.9 (98.1) 94.8 (95.8) 96.2 (97.9) 96.9 (64.8)
June 99.8 (34.2) 98.3 (40.2) 96.7 (53.1) 94.8 (93.1) 93.4 (98.8) 92.1 (99.1) 93.1 (98.8) 95.4 (73.9)
July 99.6 (31.3) 99.1 (39.2) 96.7 (63.3) 97.1 (95.6) 95.5 (98.1) 95.7 (98.4) 93.1 (99.3) 96.7 (75.0)
Aug 99.4 (38.7) 98.9 (46.5) 97.3 (71.9) 96.6 (95.6) 96.9 (98.4) 94.8 (98.2) 96.4 (98.1) 97.2 (78.2)
Sept 99.7 (39.3) 99.6 (45.3) 96.4 (60.3) 95.9 (93.4) 96.6 (98.4) 93.0 (97.2) 95.4 (98.2) 96.7 (76.0)
Oct 99.2 (21.5) 98.6 (20.9) 96.0 (42.2) 95.7 (90.8) 96.9 (99.2) 86.9 (96.7) 81.4 (98.2) 93.5 (67.1)
Nov 99.2 (5.7) 97.8 (7.5) 96.5 (60.4) 94.4 (93.1) 96.0 (98.4) 79.6 (97.8) 59.4 (98.3) 89.0 (65.9 )

4 Real Data application

We apply our method to COVID-19 mortality data in Belgium, for the year 2021. The raw data

is available on the website of the Sciensano research institute (see sciensano.be/covid19data).

The data contains the cumulative number of mortality cases, reported up to the day of the file.

The file is updated every day, and in this way, the number of cases and reporting delays are

obtained. The data is structured in matrix format with the date of death as rows and number

of days of reporting delay as columns. Figure 4 shows the total number of cases with (blue

dashed) vertical lines corresponding to different nowcast dates used for illustration. As no cases

are reported immediately on the day of death in the data, all cases have a delay of at least one

day. The proportion of cases reported for each delay is shown in Table 7. Majority of the cases

(66%) were reported with a delay of 2 days. Followed by a delay of 1 day and 3 days in 14% and

12% of the cases, respectively. The rest of the delays account for 8% of the cases. The reporting

delay is truncated to a maximum of seven days.
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Figure 4: Covid-19 death cases in Belgium for the year 2021. Blue dashed vertical lines - different
nowcast dates.

Table 7: Proportion of cases reported for each delay for the mortality data.

delay (days) 0 1 2 3 4 5 6 7

proportion 0.000 0.143 0.664 0.118 0.047 0.017 0.007 0.004

In this section, we present the model results at different nowcast dates. In the analysis, we

choose KT = 40 and KD = 10 as the number of B-splines for the time and delay dimension,

respectively. Moreover, a cubic B-splines basis with a second order penalty is used. In addition,

we also consider the day of the week effect as additional covariate in the model.

Figure 5 presents the nowcasting results using the mortality data at different nowcast dates

(namely, at every end of the month). The blue color represents the reported cases for the past

14 days on the nowcast date, the gray color are cases that have not yet been reported, and the

orange line corresponds to the nowcast prediction with the 95% prediction interval. It can be

seen that the nowcast predictions are fairly close to the observed cases (gray). In addition, all

of the observed cases fall within the prediction interval. The nowcasts at the day of nowcasting

(i.e. last date presented in the plots) for March and April are slightly underestimated. Based

on the simulation results, possible reasons for the underestimation are: (1) the number of cases

in this period is higher as compared to other periods; (2) the amount of information used in

this period is still limited (from January till March or April); and (3) at the nowcast date, no

information is available as there is a 100% delay of cases.
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Figure 5: Nowcast plot for mortality data with different nowcast dates. Blue - reported cases ;
Gray - Not-yet-reported cases; Orange - nowcast with prediction interval.
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The estimated delay density for different nowcast dates is shown in Figure 6. The steps to

obtain the time-varying delay distribution is outlined in Section 2.5. Figure 6 shows that the

delay distribution is fairly constant through time, with density being highest for a delay of 2

days. This confirms the observed reporting intensity in our data that most cases are reported

with a two-day delay. Furthermore, the density is highest between April and June, which relates

to a higher number of reported cases (see Figure 4).

Table 8 shows the computational time required for doing the nowcasting analysis using mortality

data. We used the microbenchmark() function from the microbenchmark package in R. The

analysis was implemented on a device with an Intel(R) Core(TM) i5-1135G7, CPU running at

a base frequency of 2.40GHz, and having 4 cores. Twenty function calls were evaluated for each

nowcast date. The average real elapsed time is around 12 to 25 seconds, except for the nowcast

date on October, for which we used almost all of the 2021 data with an average of 50 seconds.

Table 8: Computation time (in seconds) for 20 evaluations
using mortality data with the LPS methodology.

(seconds) min mean median max

March 14.99 15.46 15.35 16.45

April 20.07 20.43 20.41 20.91

May 19.10 19.44 19.43 19.73

June 12.34 12.53 12.54 12.85

July 24.59 24.81 24.80 25.12

August 24.08 24.65 24.46 26.19

September 16.26 16.52 16.50 16.78

October 49.69 50.16 50.04 51.41
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Figure 6: Estimated delay density for mortality data with different nowcast dates.
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5 Conclusion

This paper presents a novel Bayesian approach of the nowcasting model proposed by Van de

Kassteele et al. (2019). One advantage of using the Bayesian approach is that the prediction

intervals can be naturally obtained which is the main goal of nowcasting. Our proposed method-

ology is based on a combination of Laplace approximations and P-splines, making it both fast

and flexible. We perform a simulation study to evaluate the (predictive) performance of our

method. Simulation results show that nowcasts and prediction interval coverage are fairly close

to the true value and nominal (95%) prediction interval, respectively, except when the nowcast

date falls on the day of the peak where it has low coverage. This could be due to the higher

values and a shift in the epidemic trend. Moreover, we also apply our method to the Belgium

COVID-19 mortality data (2021). The nowcasts are close to the actual observed values, and

all of the 95% prediction intervals for the different nowcast dates being considered contain the

observed values.

This study has some limitations. First, it assumes that the counts are Poisson distributed.

One possible consequence of this is that the variability in the data tends to be underestimated

because of overdispersion, which can cause undercoverage in the prediction intervals. This can

be addressed by using the negative Binomial distribution. Another issue is that the priors for

the B-spline coefficients are based on the Kronecker product of the penalty matrices. Lang

and Brezger (2004) pointed out that this could overfit the data, and they suggest using spatial

smoothness priors. Moreover, as mentioned by Van de Kassteele et al. (2019) our model speci-

fication makes it difficult to model abrupt changes in the reporting process.
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COVID-19 pandemic in Bavaria. Biometrical Journal, 63(3):490–502.

Gutierrez, E., Rubli, A., and Tavares, T. (2020). Delays in death reports and their implications

for tracking the evolution of COVID-19. Available at SSRN 3645304.
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6 Appendix

A1.

In equation (1), we have a two-dimensional B-spline model:

log(µ) = Bθ + Zβ,

where

• B = BD ⊗BT is the Kronecker product of B-splines matrices BT and BD with dimension

T ×KT and D ×KD, given by:

BT =



b1(1) b2(1) . . . bKT
(1)

b1(2) b2(2) . . . bKT
(2)

...
... . . .

...

b1(T ) b2(T ) . . . bKT
(T )


andBD =



b̃1(1) b̃2(1) . . . b̃KD
(1)

b̃1(2) b̃2(2) . . . b̃KD
(2)

...
... . . .

...

b̃1(D) b̃2(D) . . . b̃KD
(D)


.

As a result, B has dimension TD ×KTKD.

• Z is the design matrix for additional covariates with dimension TD × (p + 1) and corre-

sponding parameters β. This is given by:

Z =



1 z1(1, 1) . . . zp(1, 1)

...
... . . .

...

1 z1(KT , 1) . . . zp(KT , 1)

...
... . . .

...

1 z1(1,KD) . . . zp(1,KD)

...
... . . .

...

1 z1(KT ,KD) . . . zp(KT ,KD)



.

• θ = vec(Θ) has dimension KTKD × 1 where vec(Θ) denotes the vectorization of a matrix

Θ. It is obtain by vectorizing the matrix:
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Θ =



θ1,1 θ1,2 . . . θ1,KD

θ2,1 θ2,2 . . . θ2,KD

...
... . . .

...

θKT ,1 θKT ,2 . . . θKT ,KD


of B-splines coefficients θj,k by stacking the columns of Θ, that is,

θ = (θ1,1, θ2,1, · · · , θKT ,1, θ1,2, θ2,2, · · · , θKT ,2, · · · , θ1,KD
, θ2,KD

, · · · , θKT ,KD
)′.

A2. Result for symmetric mean absolute percentage error (SMAPE)

Table 9: Symmetric mean absolute percentage error (SMAPE) for the number of cases at day T − t (t = 0, . . . , 6) using
function f11(t), as well as the average over these days. Values in parentheses are results using Van de Kassteele et al.’s
method.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 11.8 (5.6) 16.6 (12.3) 22.9 (25.3) 30.9 (25.8) 38.4 (33.6) 46.8 (47.8) 51.4 (49.1) 31.3 (28.5)
Apr 24.4 (7.9) 32.6 (15.5) 38.0 (28.0) 42.5 (42.3) 51.5 (45.9) 58.4 (64.0) 59.2 (63.7) 43.8 (38.2)
May 9.4 (5.1) 14.2 (10.7) 17.4 (17.9) 21.9 (13.0) 28.9 (16.5) 34.2 (20.9) 35.5 (21.9) 23.1 (15.1)
June 4.7 (5.3) 7.0 (10.6) 9.9 (18.1) 12.8 (13.8) 16.9 (15.3) 22.5 (21.8) 24.4 (21.9) 14.0 (15.2)
July 5.2 (5.3) 8.0 (10.9) 11.0 (17.1) 14.2 (13.9) 19.6 (20.6) 23.9 (25.6) 24.8 (28.0) 15.2 (17.3)
Aug 12.0 (6.1) 19.3 (13.1) 24.8 (26.5) 29.2 (27.8) 35.0 (35.0) 46.1 (47.0) 46.6 (50.5) 30.4 (29.4)
Sept 22.8 (7.1) 31.0 (14.1) 38.6 (29.9) 41.3 (39.4) 46.1 (46.9) 53.6 (67.2) 54.1 (63.5) 41.1 (38.3)
Oct 8.4 (5.4) 12.4 (10.5) 15.7 (24.7) 18.6 (20.6) 22.2 (24.6) 31.2 (35.7) 30.3 (35.4) 19.8 (22.4)
Nov 4.8 (5.3) 6.7 (11.0) 9.1 (16.9) 11.6 (13.2) 14.8 (15.5) 19.5 (19.4) 21.9 (21.4) 12.6 (14.7)

Table 10: Symmetric mean absolute percentage error (SMAPE) for the number of cases at day T − t (t = 0, . . . , 6) using
function f12(t), as well as the average over these days. Values in parentheses are results using Van de Kassteele et al.’s
method.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 5.4 (5.2) 8.1 (10.5) 12.5 (19.0) 17.1 (18.2) 23.4 (24.0) 31.0 (38.3) 31.9 (40.1) 18.5 (22.2)
Apr 7.8 (6.2) 11.4 (11.6) 15.9 (24.5) 21.5 (22.2) 27.4 (26.3) 34.4 (41.4) 35.5 (44.8) 22.0 (25.3)
May 5.1 (5.2) 7.4 (11.0) 9.8 (14.9) 12.7 (10.9) 17.1 (26.2) 21.8 (24.8) 27.7 (27.0) 14.5 (17.1)
June 2.8 (5.1) 4.3 (10.6) 6.2 (15.5) 8.0 (10.1) 10.3 (22.3) 17.4 (22.3) 30.8 (23.1) 11.4 (15.6)
July 3.1 (5.2) 4.5 (10.9) 6.4 (13.0) 8.3 (17.3) 11.3 (33.9) 16.5 (34.3) 23.5 (36.5) 10.5 (21.6)
Aug 6.0 (5.2) 8.6 (11.2) 12.1 (20.0) 15.1 (16.4) 21.1 (20.7) 27.2 (34.9) 28.7 (38.0) 17.0 (20.9)
Sept 7.8 (5.4) 11.1 (11.0) 14.6 (23.9) 17.8 (22.4) 24.2 (25.9) 31.7 (42.6) 32.6 (43.7) 20.0 (25.0)
Oct 4.6 (5.3) 6.4 (10.7) 9.1 (19.2) 10.7 (15.5) 13.4 (14.8) 21.9 (24.9) 27.8 (26.6) 13.4 (16.7)
Nov 2.7 (5.0) 3.9 (10.6) 5.5 (15.0) 6.6 (10.6) 8.8 (25.5) 18.1 (24.7) 26.2 (25.3) 10.2 (16.7)

Table 11: Symmetric mean absolute percentage error (SMAPE) for the number of cases at day T − t (t = 0, . . . , 6) using
function f2(t), as well as the average over these days. Values in parentheses are results using Van de Kassteele et al.’s
method.

t
Nowcast Dates 6 5 4 3 2 1 0 Average

March 10.8 (5.7) 17.1 (12.5) 22.1 (25.2) 26.4 (23.8) 34.4 (32.0) 43.8 (40.8) 44.7 (40.6) 28.5 (25.8)
Apr 9.9 (5.3) 15.1 (11.8) 18.6 (25.5) 22.3 (21.0) 28.6 (26.0) 37.7 (37.2) 39.5 (38.8) 24.5 (23.6)
May 6.3 (5.2) 9.6 (10.4) 13.8 (15.1) 17.0 (11.6) 21.0 (22.0) 27.2 (22.0) 28.3 (22.1) 17.6 (15.5)
June 4.4 (5.4) 6.8 (10.8) 9.3 (17.8) 12.0 (13.1) 15.9 (14.5) 22.2 (20.3) 25.2 (20.6) 13.7 (14.6)
July 3.9 (5.1) 6.0 (10.4) 8.7 (16.7) 10.4 (11.3) 14.3 (18.0) 19.2 (19.1) 23.4 (19.6) 12.3 (14.3)
Aug 4.7 (5.5) 7.2 (11.0) 9.6 (16.8) 11.8 (13.3) 16.0 (16.7) 22.1 (21.4) 24.2 (24.3) 13.7 (15.6)
Sept 4.5 (5.5) 6.7 (11.1) 9.4 (18.7) 11.5 (14.3) 15.0 (15.8) 22.8 (22.7) 25.5 (24.6) 13.6 (16.1)
Oct 3.7 (5.2) 5.1 (10.8) 7.2 (17.4) 9.0 (11.2) 11.0 (12.6) 20.9 (16.8) 28.9 (16.8) 12.2 (13.0)
Nov 2.5 (5.1) 3.7 (10.5) 5.4 (15.2) 6.8 (10.3) 8.8 (24.2) 20.1 (21.1) 31.2 (21.1) 11.2 (15.4)
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