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Abstract 

The heritability of susceptibility to tuberculosis disease (TB) has been well recognized. Over one-

hundred genes have been studied as candidates for TB susceptibility, and several variants were 

identified by genome-wide association studies (GWAS), but few replicate. We established the 

International Tuberculosis Host Genetics Consortium (ITHGC) to perform a multi-ancestry meta-

analysis of GWAS including 14153 cases and 19536 controls of African, Asian, and European 

ancestry. Our analyses demonstrate a substantial degree of heritability (pooled polygenic 

h2=26.3% 95% CI 23.7-29.0%) for susceptibility to TB that is shared across ancestries, highlighting 

an important host genetic influence on disease. We identified one global host genetic correlate 

for TB at genome-wide significance (p<5x10-8) in the human leukocyte antigen (HLA)-II region 

(rs28383206, p-value = 5.2x10-9). These data demonstrate the complex shared genetic 

architecture of susceptibility to TB and the importance of large scale GWAS analysis across 

multiple ancestries experiencing different levels of infection pressures.  
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Introduction 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and related species, remains a 

leading cause of death globally.  Around one-quarter of the global population is estimated to 

show immunological evidence of prior exposure to Mtb1, and in 2019 an estimated 10 million 

people developed disease resulting in 1.4 million deaths2. This disease burden could be 

substantially reduced with action to address the social determinants of disease and equitable 

scale-up of existing interventions. However, tools to prevent, diagnose and treat TB could be 

improved if a better understanding of the underpinning pathophysiology could help identify 

those at greatest risk of disease.  

The role of host genetic factors in TB susceptibility has long been of significant interest. Over one-

hundred candidate genes have been studied, but few associations have proven reproducible3. 

This failure to replicate may be a result of the modest size of many TB genome-wide association 

studies (GWAS), variability in phenotyping between studies, the impact of population specific 

effects, the challenge of complex population structure in some high burden settings (e.g. admixed 

individuals) and, possibly, pathogen variation4–10. Seventeen GWAS have been reported but only 

two loci replicate between studies5,10–25. The WT1 locus, identified in cohorts from Ghana and 

Gambia, replicated in South Africa and Russia. The  ASAP1 locus identified in Russia was replicated 

through re-analysis of prior studies4,7.  

To address these challenges, we established the International Tuberculosis Host Genetics 

Consortium (ITHGC) to study the host genetics of disease through collaborative and equitable 

data sharing3. The ITHGC includes 12 case-control GWAS studies from 9 countries in Europe, 

Africa, and Asia (total of 14153 pulmonary TB cases and 19536 healthy controls). Inclusion of 

multiple ancestral groups in a multi-ancestry meta-analysis has the advantage of maximizing 

power and enhancing fine-mapping resolution to identifying true global associated variants that 

influence TB susceptibility across population groups.  

Here we present the first analyses of the ITHGC dataset exploring host genetic correlates of TB 

susceptibility using a multi-ancestry meta-analysis approach, including fine mapping of HLA loci 

and estimation of genetic heritability.  
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Results 

Study overview 

In total 12 GWAS from three major ancestral groups (European, African, and Asian) were included 

in this study (Table 1), a more detailed table outlining selection of cases and controls is provided 

in Table S1. All individual datasets were imputed and aligned to the same reference allele before 

association testing, using an additive genetic model, to obtain odds ratios (OR) and p-values to 

be used in the meta-analysis. For each individual study (for which we had raw genotyping data) 

the polygenic heritability was estimated, and HLA alleles were imputed for fine-mapping of the 

HLA regions.  

The summary statistics from the individual GWAS of each dataset were used to conduct a 

combined, multi-ancestry meta-analysis using MR-MEGA and ancestry-specific (European, 

African, and Asian) fixed effects (FE) meta-analyses using GWAMA. Finally, the impact of infection 

pressure on the multi-ancestry meta-regression was assessed and the concordance in direction 

of effect for the reference allele between studies was investigated.  

Table 1: Summary of ITHGC TB-GWAS datasets. 

Dataset Population 

Cases/ 

Control
s 

TB 
prevalenc

e per 
100 000 

pa. 

Estimated 
proportion 
of controls 

ever 
exposed to 

Mtb 

(±SD)** 

#SNPs 
Genotypin
g platform 

Reference 

China 1* Asian 
483/ 
587 

89 
0.302 

(0.101) 
7 710 153 

Affymetrix 
Genome-

Wide 
Human 

SNP Array 
6.0 

thye@bni-
hamburg.de 

(unpublished) 

China 2* Asian 
1290/ 
1145 

89 
0.302 

(0.101) 
9 769 029 

Illumina 
Human 

OmniZhon

ghua-8 
chips. 

magdakellis@g
mail.com 

(unpublished) 

China 3 Asian 
972/ 
1537 

89 
0.302 

(0.101) 
9 726 450 

Illumina 
Human 

(Qi et al., 
2017) 
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Dataset Population 
Cases/ 
Control

s 

TB 
prevalenc

e per 
100 000 

pa. 

Estimated 
proportion 
of controls 

ever 
exposed to 

Mtb 
(±SD)** 

#SNPs 
Genotypin
g platform 

Reference 

OmniZhon
ghua-8 
chips. 

Thailand Asian 
433/ 
295 

236 
0.404 

(0.112) 
6 723 358 

Illumina 
Human610

-Quad 

(Mahasirimong
kol et al., 

2012) 

Japan Asian 
751/ 
3199 

23 
0.142 

(0.125) 
9 051 051 

Illumina 
HumanHa

p550 

(Mahasirimong
kol et al., 

2012) 

Russia* European 
5914/ 
6022 

109 
0.191 

(0.093) 
10 878 

777 

Affymetrix 
Genome-

Wide 
Human 

SNP Array 
6.0 

(Curtis et al., 
2015) 

Estonia European 
62/ 

2660 
13 

0.116 
(0.093) 

10 611 
556 

Illumina 
370K 

andres.metspa
lu@ut.ee 

(unpublished) 

Germany
* 

European 
586/ 
333 

7.8 
0.067 

(0.081) 
10 602 

193 

Illumina 

Omni2.5+e
xome 

thye@bni-

hamburg.de 
(unpublished) 

Gambia* African 
1316/ 
1382 

126 
0.280   

(0.089) 
18 634 

017 

Affymetrix 
GeneChip 

500K 

(Consortium, 
2007) 

Ghana* African 
1359/ 
1952 

282 
0.539      

(0.198) 
19 029 

214 

Affymetrix 
Genome-

Wide 
Human 

SNP Array 
6.0 

(Thye et al., 
2010) 

SAC(A)* ^ African 577/19 717 
0.436 

(0.127) 
9 227 330 

Affymetrix 
500k 

(Daya et al., 
2014b) 
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Dataset Population 
Cases/ 
Control

s 

TB 
prevalenc

e per 
100 000 

pa. 

Estimated 
proportion 
of controls 

ever 
exposed to 

Mtb 
(±SD)** 

#SNPs 
Genotypin
g platform 

Reference 

SAC(M)*^ African 
410/ 
405 

717 
0.436 

(0.127) 
11 371 

838 

Illumina 
MEGA 
array 

(Schurz et al., 
2019a) 

* Raw genotyping data available  
** Estimated proportion of control individuals ever infected with Mtb by age 35-44 in 2010, based 

on data from Houben & Dodd  
^ SAC(A/M): South African admixed population (SAC) Affymetrix (A) and MEGA (M) array data 

 

Polygenic heritability estimates suggest a genetic contribution to susceptibility 

Twin studies estimate the narrow sense heritability of susceptibility to TB at up to 80% (Diehl and 

von Verschner 1933, Kallman and Reisner 1943, Comstock 1978), but there are few modern 

estimates. Using raw (unimputed) genotyping data, and assuming population prevalence of 

disease in each study population equivalent to the reported WHO prevalence rates for that 

country2, we estimated polygenic heritability of susceptibility to TB in ten contributing studies 

which ranged from 5-36% (average of 26.3%, Table S2). Comparisons of the heritability estimates 

between studies from different geographical locations do not take into consideration differences 

in environmental pressures between the included studies and as such these estimates of 

heritability are only interpretable if the distribution of non-genetic determinants of TB are held 

constant26. Recent history has seen the near elimination of TB in several countries associated 

with economic development and public health action. However, while improvement of 

socioeconomic standing and environment have a stronger impact than host genetics, these crude 

estimates of polygenic heritability do indicate that TB susceptibility is, in part, heritable. These 

results require future, more rigorous investigations to narrow down the level of heritable risk 

and pinpoint genomic loci involved by accounting for population stratification to obtain more 

accurate heritability estimates.  
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Multi-ancestry meta-analysis identifies new susceptibility loci for TB  

For the primary multi-ancestry meta-analysis MR-MEGA was used as it allows for differences in 

allelic effects of variants on disease risk between GWAS. Principal components (PC), derived from 

a matrix of similarities in allele frequencies between GWAS, were plotted and revealed distinct 

separation between the three main ancestral groups included in the study (Figure 5).  To account 

for this the first two PCs were included as covariates in MR-MEGA as they sufficiently accounted 

for the allele frequency differences between the study populations, as assessed via a QQ-plot 

and associated lambda inflation value (Figure S1, lambda = 1.00). In total 26,620,804 variants 

with a MAF >1% and present in at least three studies were included in the analysis, of which 

3,184,478 were present in all 12 datasets. 

 

After removing variants that displayed within ancestry heterogeneity (Cochran’s-Q p-value <0.1 

in Europe, Asia or Africa) and associations that were driven by a single study, a significant peak 

on chromosome 6 was identified in the HLA class ll region (Figure 2). One variant (rs28383206) 

within this peak was associated with susceptibility to TB at genome-wide significance (p<5x10-8, 

Figure 3 and 4, Table 2). Both the residual heterogeneity (p-value = 0.012) and ancestry-

correlated heterogeneity (p-value = 5.28e-6) are significant (p-value < 0.05) for the associated 

variant. However, the evidence of ancestry-correlated heterogeneity is much stronger than for 

residual heterogeneity, indicating that genetic ancestry contributes more to differences in effects 

sizes between GWAS than does study design (phenotyping differences etc.). The association peak 

encompasses many HLA-ll genes, including HLA-DRB1/5 (major histocompatibility complex, class 

II, DR beta 1/5), HLA-DQA1 (major histocompatibility complex, class II, DQ alpha 1) and HLA-DQB3 

(major histocompatibility complex, class II, DQ beta 3, Figure 3). While not reaching genome-wide 

significance, the HLA class l locus is also indirectly tagged through the association with rs2621322, 

in the TAP2 (transporter 2, ATP binding cassette subfamily B member) gene, a transporter protein 

that restores surface expression of MHC class I molecules and has previously been implicated in 

TB susceptibility27. HLA-A, DQA1, DQB1, DRB1 and TAP2 genes have previously been linked to TB 

susceptibility through TB candidate gene and GWAS analysis27–31. The HLA-II locus encodes 
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several proteins crucial in antigen presentation including HLA-DR, HLA-DQ and HLA-DP, which are 

widely implicated in susceptibility to infection and autoimmunity32,33.  

Table 2: Significant and suggestive associations (p-value <= 1e-5) for the multi-ancestry analysis 

including data from all 12 datasets implementing MR-Mega analysis with GCC. 

Marker 
Name Chromosome  Position Gene Location 

CADD 
score EA  ̂ NEA^ EAF^ 

Sample 
size Datasets 

P-
value 

rs28383206 6 32575167 
HLA-
DRB1 intergenic 7.6 G A 0.168 25059 8 

8.26e-

09 

^EA and EAF: Effect allele and effect allele frequency  
^NEA: Non-effect allele 

 

Figure 1: Manhattan plot of p-values (more than three studies) from the MR-Mega analysis of all 

12 datasets with genomic control reveals one significant association in the HLA-ll region of 

chromosome 6 (rs28383206).  
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Figure 2: Regional association plot for the chromosome 6 HLA-ll rs28383206 association in the 

multi-ancestry analysis revealing a significant peak in the HLA-ll region. Image produced using the 

online LocusZoom database with LD mapping set to “all” and p-values > 0.01 removed34. 

 

 

 

 

 

 
 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2022. ; https://doi.org/10.1101/2022.08.26.22279009doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.26.22279009
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

 

 

        

Figure 3: Forest plot (Odds ratio and 95% confidence interval) of the significant chromosome 6 

association (rs28383206) for TB susceptibility in the multi-ancestry analysis, implemented using 

MR-Mega with GCC. Eight of the 12 studies included contained this variant. Studies that did not 

contain the variant are included in the plot but do not have results associated with them.  
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HLA-II 

Given the strong association peak in the HLA-ll locus (Figure 2 and 3) we imputed HLA-ll alleles to 

fine-map this association. HLA alleles were imputed using the HIBAG R package which utilizes 

both genotyping array and population specific reference panels to obtain the most accurate 

imputations for each individual dataset. Association testing was then conducted using an additive 

genetic model for each individual dataset before meta-analyzing the results. After Bonferroni 

correction for all tested alleles across all HLA regions, multiple HLA-l and HLA-ll alleles 

demonstrated significant associations with disease for both the multi-ancestry and ancestry-

specific analysis (supplementary data). The significant associations showed a strong consistency 

for direction of effects in all ancestry-specific meta-analysis, with the Asian and African having 

the least and most variation respectively, which is consistent with the higher genetic diversity 

within the African data. As expected, the multi-ancestry meta-analysis had more variation in 

effect sizes across all the input studies for the significant associations. However, some significant 

HLA class l and ll alleles presented with strong consistency in direction of effect across the input 

studies. Most notably, these associations included HLA-DQA1*03:01 and 03:03, also HLA-

DQB1*03:02 (Figure S2), which have previously been reported in Russian and Icelandic 

populations19. Further, associations with high degree of overlap in effect direction were found in 

the HLA-DRB1, HLA-DPB1 and class 1 HLA-A, B and C genes, with the HLA class ll region having a 

greater number of associations with concordant direction of effect than the class l region. The 

high number of associated HLA alleles and consistency in effect direction for both the global and 

ancestry-specific analysis suggests a high degree of population-specific and globally shared TB 

susceptibility variants, which are exploitable by various Mtb strains across the globe to bring 

about disease. Sequencing efforts of global mycobacterial isolates find hyperconservation of HLA-

II epitopes suggesting pathogen advantage achieved through HLA-II recognition and perhaps 

explaining risk associations of specific HLA variants35. The significant HLA associations overlap 

with the association peak observed in the multi-ancestry meta-analysis (Figure 4) but show more 

consistency in direction of effects between the input studies compared to the lead SNPs 

identified in the association peak. This suggests that the lead SNP in the meta-analysis is tagging 
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an HLA allele, where the different LD patterns from the included ancestral populations result in 

the differences in effects sizes between populations at the lead SNP.  

While the significant associations showed a high degree of consistent effect directions and similar 

alleles were under the topmost significant associations across all the ancestry-specific and multi-

ancestry meta-analysis, there is still a large amount of variation between all the included studies, 

especially for variants that did not reach significance. Examining the HLA allele association 

statistics in the individual studies revealed that the top significant associations vary greatly across 

all included studies. This variation in significant associations is, in part, attributable to the 

observed variation in HLA allele frequencies across all the included studies (supplementary data). 

Differences in HLA allele frequencies were observed between different ancestries (Africa vs. 

Europe), indicating the vast variation within these loci. This variation could partly be due to 

unique infectious pressures that each geographical region faces and could also explain why 

different strains of Mtb are more, or less prevalent in different regions as they adapted to the 

HLA profile of the population within this region. Previous work has shown evidence of interaction 

between genetic variants of the host and specific strains of Mtb in Ghanaian and South African 

populations7,8,36,37. These interactions provide further evidence that Mtb may have undergone 

substantial genetic evolution, in concert with host migration and evolution of different 

populations38,39. Some studies suggest that HLA-II epitopes may have undergone regional 

mutations that modify HLA-II binding and we speculate that the heterogeneity observed in HLA-

II associations between regions may, at least in part, be accounted for by different pressures 

exerted by varying stains of Mtb 40. However, part of this variation is likely due to differential 

tagging of underlying HLA alleles (or causal variants) by the SNPs available in the analysis. While 

imputation was done using genotyping array and population-specific reference panels, the 

available tagging SNPs will still vary by genotyping array, influencing the observed variation.   

Impact of infection pressure on meta-regression 

To further understand the heterogeneity across populations we attempted to account for 

variation in levels of prior exposure which could serve to mask host effects given that not all 

controls will have been exposed to Mtb. In low transmission settings, more susceptible but 
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unexposed individuals would be included as controls, who had they been exposed to Mtb might 

have progressed to TB disease.  

Overall, including each cohort’s estimated prevalence of prior exposure had a significant impact 

on the residual heterogeneity and association statistics of 5% of the variants included in the 

meta-analysis (419460/8355367), which at a significance level of p-value < 0.05 is what is to be 

expected purely by chance. Separating the results into bins according to p-values revealed that 

the bins where the covariate had the biggest impact was for p-values in the range of 1e-3 to 1e-5 

(Figure S3), while significant and suggestive associations reported in this study did not show any 

significant changes in residual heterogeneity. While the proportion of variants significantly 

impacted is low and has the biggest impact on variants not significantly associated with TB 

susceptibility there was still an overall reduction in the chi-square value for the residual 

heterogeneity (mean chi-square value reduced by 10). This suggests that accounting for potential 

lifetime of infections does account for some of the observed residual heterogeneity, it is most 

likely not the main driving force for these residuals.    

When considering the impact of force of infection, it is important to consider not only the 

proportion of controls ever exposed but also the impact of recurrent exposure. There is some 

evidence to suggest that genetic barriers to progression to TB may be overcome if the infectious 

dose is high41.  Repeated exposure may be observed where TB prevalence is high, as in South 

Africa, and could contribute to the overall lower effects sizes observed in the GWAS enrolling SAC 

people. Inclusion of potential lifetime infections in meta-regression could help adjust for these 

effects and prove useful for not only TB, but meta-analysis of infectious diseases in general and 

should be further explored.  

Other suggestive loci that did not reach significance  
 
There were four loci with suggestive associations and strong peaks on the Manhattan plot (Figure 

1) that did not reach significance but should still be considered as potential variants of interest 

(Table S3). One chr9 peak (rs4576509) was intergenic (Figure S4 ) while the second (rs6477824) 

is located in the 5’-UTR region of the zinc finger protein 483 (ZNF483) gene (Figure S4), previously 

associated with age at menarche42,43. The chromosome 11 peak is located in the PPFIA binding 

protein 2 (PPFIBP2) gene (Figure S5), which plays a role in axon guidance and neuronal synapse 
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development and has previously been implicated in cancer development44,45. The final peak, on 

chromosome 16 (Figure S6), is located in the craniofacial development protein 1 (CFDP1) gene 

region and involved in chromatin organization46. These genes have not been previously linked to 

TB susceptibility and a potential role is unclear and as a result further validation of these variants 

is needed before any conclusions on their impact to TB susceptibility can be drawn.  

Ancestry-specific meta-analysis  
  

Concordance in direction of effects of the risk allele between the ancestry-specific meta-analyses 

were examined to determine if significant enrichment (above the expected 50%) exists at 

different p-value thresholds. Significant enrichment in concordance of direction of effect was 

only observed when using the European ancestry as reference compared to the African meta-

analysis results for SNPs with p-values >0.001 and <0.01 (p-value = 0.0061, Table S4). The lack of 

enrichment between the ancestries suggests significant ancestry specific associations, which 

could be further compounded by differences in local infection pressures. Due to the lack of 

concordance and the separation of the ancestral populations in the PCA plot (Figure 4) ancestry-

specific meta-analysis were done.  

The PCA plot (Figure 4) for the 12 studies (based on mean pairwise genome-wide allele frequency 

differences calculated by MR-Mega) illustrates distinct separation between the three major 

population groups (Asia, Europe, Africa). The separation observed between the African studies 

(Gambia/Ghana and SAC) is due to the high level of admixture in the SAC population. The SAC 

population is a five-way admixed South African population with genetic contributions from 

Bantu-speaking African, KhoeSan, European, South and South East Asian populations, which 

explains the observed shift in the PCA plot47 (Figure 4).  

QQ-plots for the ancestry-specific analysis show no significant inflation or deflation and after 

removing associations without any clear peaks on the Manhattan plots (associations driven by a 

single study) we found no significant associations for the ancestry-specific analysis. However, 

suggestive peaks that did not reach genome-wide significance were identified in the European 

and Asian ancestry-specific analyses (Figure S8 and S9). Potential causes for the lack of 

associations and suggestive peaks in the African analysis (Figure S10) are the increased genetic 

diversity within Africa and the inclusion of admixed samples (SAC), which could have resulted in 
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a loss of power due to variation in allele frequencies. However, removing the admixed data and 

analyzing only the Gambian and Ghanaian datasets also did not produce any significant results.  

For the European analysis (Figure S8), suggestive peaks were identified on chromosome 6, 8, and 

11 (Table S5), while the Asian (Figure S9) analysis identified suggestive peaks on chromosome 6 

and 8 (Table S5). 

 

 

Figure 4: PCA plot of all 12 studies based on the MR-Mega mean pairwise genome-wide allele 

frequency differences 

 

The suggestive peaks on chromosome 6 and 11 in the European subgroup analysis overlap with 

the suggestive peaks of the multi-ancestry meta-analysis (Figure 1 and S7, Table S5), but the 

suggestive peak on chromosome 8 is unique to this population (Figure S8, Table S5). The peak is 

located in the ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) region, which 

encodes an ADP-ribosylation factor (ARF) GTPase-activating protein and is potentially involved in 

regulation of membrane trafficking and cytoskeleton remodeling48. Variants in  ASAP1 

(rs4733781 and rs10956514) have previously been linked to TB susceptibility in a TB-GWAS 

analysis of the same Russian population included here13.  While these ASAP1 variants were 

present in all twelve studies and had consistent direction of effects, they presented with a strong 
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signal in the European ancestry-specific analysis only (African and Asian p-values all >=0.1). These 

differences in association were not driven by allele frequency differences as they are similar 

between the included study populations. A possible explanation for the association being 

observed only in the European meta-analysis could thus be a result of the increased sample size 

and power to detect associations in the European ancestry-specific analysis. 

The suggestive peak on chromosome 8 in the Asian subgroup analysis lies in an intergenic region 

(Figure S9, Table S5) and the link to TB susceptibility is unclear. Finally, the suggestive region on 

chromosome 6 overlaps with the significant peak from the multi-ancestry analysis (Figure 1 and 

S9) and is located in the major histocompatibility complex, class II, DR beta 1 (HLA-DRB1), as 

discussed above (Figure S9, Table S5).  

Prior associations  

To determine if associations from previously published TB-GWAS replicate in this meta-analysis 

we extracted all significant and suggestive associations from prior analyses and compared these 

to our multi-ancestry and ancestry-specific meta-analysis results6,10–18,20,23–25,30,49. In total, 44 

SNPs and 36 genes were identified from the GWAS catalogue, of which 33 SNPs and all candidate 

genes were present in our data (supplementary data). We also extracted the association statistics 

for a further 90 previously identified candidate genes from our multi-ancestry and population 

specific meta-analysis results3.  

Using a Bonferroni corrected p-value of 0.0015 for the number of SNPs tested (33) as the 

significance threshold for replication, two candidate SNPs (rs4733781: p-value = 3.22e-05; 

rs10956514: p-value = 0.000118; supplementary data) replicated in the multi-ancestry meta-

analysis, both located in the ASAP1 gene region13,50,51.  Given the overlap between the multi-

ancestry meta-analysis and the GWAS in which these SNPs were discovered, it is not surprising 

that they also present with suggestive associations in this study. As discussed above however, 

these variants did not show a strong signal in any ancestry-specific analysis except for Asia, and 

the combined multi-ancestry analysis reveals that the p-values are lower when compared to the 

European ancestry-specific analysis. As the Russian cohort from Curtis et al. (2015) is included in 

this analysis, it is not surprising that these variants replicate in the European ancestry-specific 

analysis. The lack of signal for these variants in the Asian and African cohorts and reduced p-value 
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in the multi-ancestry analysis means that the European data drove the association of these ASAP1 

variants.   

For the Asian ancestry-specific analysis, the replicated variant was rs41553512, located in the 

HLA-DRB5 gene (p-value = 3.53E-05). HLA-DRB5 is located within the HLA-ll region identified in 

the multi-ancestry meta-analysis (Figure 2) and was previously identified by Qi et al. (2017) in a 

Han Chinese population. The African ancestry-specific analysis did not replicate previous 

associations, with the lowest p-value at rs6786408 in the FOXP1 gene (p-value = 0.023). While 

this variant was previously identified in a North African cohort, the fact that it does not replicate 

here could be because of the genetic diversity within Africa and specifically the variability 

introduced by the five-way admixed South African population.  

Discussion 

This first ever large-scale, multi-ethnic meta-analysis of genetic susceptibility to TB, involving 

14153 cases and 19536 controls, identified one risk locus achieving genome-wide significance 

and further investigation of this region revealed significant HLA epitopes. This association is 

noteworthy as HLA has consistently been associated with TB susceptibility across multiple 

populations, although not involving similar alleles28–30.  

While the significant association identified in this multi-ancestry analysis does present with a high 

level of heterogeneity (Figure 3) in genetic effects between the source populations, further 

analysis of the HLA locus identified multiple, significantly associated, HLA epitopes with 

consistent direction of effects and less heterogeneity. The consistency of effects for these HLA 

epitopes suggests a degree of globally shared TB susceptibility that should be explored further. 

However, while consistency in direction of effects was observed for some HLA epitopes, many 

still presented with high levels of heterogeneity and when comparing HLA epitope frequencies 

between the input studies, it is evident that the dominant epitopes vary between the included 

studies. 

Mtb was a human pathogen prior to human migration out of Africa, which supports the finding 

of a globally associated TB susceptibility variant, as identified here38. Subsequent host pathogen 

co-evolution and the emergence of dominant lineages in different populations52 could have 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2022. ; https://doi.org/10.1101/2022.08.26.22279009doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.26.22279009
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

driven the underlying heterogeneity observed between the studies by selecting for different HLA 

epitopes8,39,40. 

The p-values of residual heterogeneity in genetic effects between the studies in the multi-

ancestry meta-analysis show no significant inflation between the studies suggesting that 

differences in study design (phenotype definition, infection pressure, Mtb strain) are not a major 

contributor to the lack of significant associations. However, the ancestry-correlated 

heterogeneity p-values are generally lower than the residual heterogeneity, suggesting that 

genetic ancestry has a stronger impact on the differences in effects sizes between the studies. 

For the ancestry-specific analysis, fewer studies result in there being less input heterogeneity to 

account for, but the reduced sample size was not sufficient to detect any ancestry-specific 

genome-wide associations. This is particularly evident for the African ancestry-specific meta-

analysis where the large degree of heterogeneity, which could be a result of the high genetic 

diversity within Africa, resulted in no observable suggestive association peaks53,54. Furthermore, 

the suggestive associations reported in this study should be interpreted with care and further 

validation is required before any conclusions can be drawn on the impact that they could have 

on TB susceptibility.  

Polygenic heritability estimates revealed genetic contributions to TB susceptibility for all studies, 

but the level of this contribution varied greatly (5-36%), suggesting that other factors are 

contributing to both the lack of significant associations detected in this meta-analysis and the 

variation observed for the polygenic heritability estimates. These factors likely include 

environmental, socioeconomic, and varying levels of infection pressures, as well as genetic 

ancestry specific effects between the included study populations. An individual from South Africa 

will face a much higher force of infection than individuals in Europe, and making the assumption 

that environmental circumstances are equal will significantly skew these crude heritability 

estimates26. This argument is sustained by the fact that increasing disease prevalence (higher 

infection pressure) increased the level of genetic contribution to TB susceptibility up to a certain 

point, after which further increasing the infection pressure will not further impact genetic 

susceptibility. 
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To determine the impact that force of infection has on the level of genetic contribution to TB 

susceptibility we modeled values for proportion of people ever infected with Mtb to include in 

the multi-ancestry meta-analysis and correct for the different force of infection faced by 

individuals in each country. Inclusion of this covariate however only resulted in a significant 

difference for 5% of the analyzed variants, what is to be expected based on chance alone and as 

such we cannot conclude that a significant portion of the observed residual heterogeneity is 

explained by this. Limited meta-data forced us to make a number of assumptions about the ages 

of study participants and the dates on which they were enrolled. With more precise meta-data, 

or Mtb infection test results in controls, the potential impact of lifetime infection could be better 

quantified and may contribute to elucidating genetic TB susceptibility. Multi-ancestry meta-

analysis of other infectious diseases could also potentially benefit from inclusion of force of 

infection covariates. It would also be important to determine whether there is a level of exposure 

beyond which host genetic barriers to infection are overcome55.  

While a significant association was identified in this multi-ancestry meta-analysis, the number of 

associations is small when compared to other meta-analyses of similar sizes. Factors contributing 

to this include the difficulty of analyzing multi-ancestry data, the outdated arrays and lack of 

suitable reference panels for included study populations, and heterogeneity in case and control 

definitions between the studies. The issue of heterogeneity in definitions is especially 

pronounced for this study as it included unpublished data with limited information, which does 

not indicate how cases were confirmed and controls were collected. The complexity of TB and 

generally small genetic effects suggest that larger sample sizes or alternative methods of 

investigation are needed. Utilizing GWAS arrays that better capture diverse populations in 

combination with imputation making use of larger and more diverse reference panels would 

allow for larger and more consistent datasets for future meta-analysis. Remapping of specific 

areas of interest such as the HLA, ASAP1 or TLR using long read sequencing would be invaluable. 

Increased amounts of genetic data will also allow for more accurate TB heritability analysis and 

permit analysis of polygenic risk scores and exploration of host pathogen interactions.  

In conclusion, this first large-scale multi-ancestry TB GWAS meta-analysis revealed significant 

associations and shared genetic TB susceptibility architecture across multiple populations from 
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different genetic backgrounds. The analysis shows the value of collaboration and data sharing to 

solve difficult problems and elucidate what determines susceptibility to complex diseases such 

as TB. We hope that this publication will encourage others to make their data available for future 

large scale meta-analysis.  

Methods 
 

Data 
 
This analysis includes 12 of the 17 published (and un-published, Table 1 and S1) GWAS studies of 

TB (with HIV negative cohorts) prior to 202210–17,49. It excludes data from Iceland and Vietnam 

18,30, as they declined to share data. It excludes data from China, Korea, Peru and Japan6,20,21,23,30, 

as data sharing agreements could not be finalized in time for this analysis. The Indonesian data 

was not suitable for reliable imputation and the Moroccan data was family-based and thus also 

not suitable for this meta-analysis24,25. Finally, genotyped TB cases and controls are also available 

in the UK Biobank, but this data was not included in this analysis as genetic association studies 

on such highly selected datasets need to be undertaken with caution and to not bias results were 

excluded for this analysis56.  

Included individuals were genotyped on a variety of genotyping arrays (Table 1 and S1), and raw 

genotyping data was available for eight datasets and for the remainder association testing 

summary statistics were obtained to use in the meta-analysis (Table 1 and S1). Quality control 

(QC) and imputation of the data with raw genotyping information available (Table 1 and S1) was 

done using Plink (v1.9), followed by pre-phasing using SHAPEIT and Impute2 with the 1000 

genomes phase 3 reference panel57–60. QC and imputation was done as described previously10,61, 

briefly we used a minor allele filter of 0.025 and an individual and SNP missingness filter of 0.1. 

Hardy–Weinberg equilibrium threshold was set at a Bonferroni corrected p-value according to 

the number of SNPs testes (0.05/number of SNPs) and samples where sex could not be 

determined from genotyping were also removed. Imputed data was filtered at a quality score of 

0.3, prior to individual and genotype filtration steps. Prior to QC and imputation, allele 

orientation was corrected using Genotype Harmoniser version 1.4.15 and the genome build of 

all datasets was checked for consistency (GRCh37) and updated if necessary using the liftOver 
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software from the UCSC genome browser62,63. The four datasets with only summary statistics 

available (Table 1 and S1) were imputed and QC’d during the original investigations, but the 

marker names and allele orientation were checked for concordance between the summary 

statistics and the rest of the consortium’s imputed data.  

Polygenic heritability analysis 
 
To assess the level of genetic contribution to TB susceptibility we estimated Polygenic heritability 

on the individual studies for which raw genotyping data was available (Table 1 and S1). Polygenic 

heritability estimates were calculated using GCTA (v1.93.2), a genomic risk prediction tool64. The 

genetic relationship matrix was calculated for each autosomal chromosome prior to being 

merged and filtered by removing cryptic relatedness (--grm-cutoff 0.025) and assuming that the 

causal loci have similar distribution of allele frequencies as the genotyped SNPs (--grm-adj 0). 

Principal components were then calculated (--pca 20) to include as covariates prior to estimating 

heritability. The average heritability estimate was calculated by taking the mean of all estimates 

and the confidence intervals were estimated based on the standard error across all studies and 

the number of studies included. 

Meta-analysis 
 
All variants with minor allele frequency (MAF) >1% and polymorphic in at least three studies 

(from at least two different ancestries) were included in the primary analysis. For the GWAS 

summary statistics of each dataset variants with infinite confidence intervals were removed prior 

to the meta-analysis. A multi-ancestry meta-analysis plus separate ancestry-specific analyses for 

Africa, Asia and Europe were performed. MR-MEGA (Meta-Regression of Multi-Ethnic Genetic 

Association, v0.20), a meta-analysis tool that maximizes power and enhances fine-mapping when 

combining data across different ethnicities, was used for the multi-ancestry meta-analysis65. To 

account for the expected heterogeneity in allelic effects between populations, MR-MEGA 

implements a multi-ancestry meta-regression that includes covariates to represent genetic 

ancestry, obtained from multi-dimensional scaling of mean pairwise genome-wide allele 

frequency differences. Genomic control correction (GCC) was implemented during the MR-MEGA 

analysis for the individual input data (if lambda was >1.05) and output statistics, and the first two 
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principal components (PCs), calculated from the genome-wide allele frequency differences, were 

included as covariates in the regression.  QQ-plots of p-values and associated lambda values were 

used to assess the quality of results prior to downstream investigation.    

For the ancestry-specific analyses, the studies were grouped by the major ancestral groups (Table 

1 and S1) and all variants with a MAF of >1% that were observed in at least 2 studies were 

included in the meta-analysis. We performed traditional fixed effects meta-analyses in GWAMA 

(v2.2.2), implementing GCC, and assessed the results using QQ-plots66. The genome-wide 

significance threshold for all association testing was set at p-value <= 5x10-8 67.  

HLA imputation 
 

To fine-map HLA alleles over the HLA locus we imputed HLA class l and ll variants for all studies 

for which raw data was available (Table 1 and S1). HLA imputation for the HLA class l regions A, 

B and C as well as the HLA class ll regions DPB1, DRB1, DQB1 and DQA1 was done using the R 

package HIBAG (version 1.5), implemented in the R free software environment (version 4.0.5) 

using the predict() command for imputation68–70.  

The reference datasets for HLA imputation are both genotyping panel and population specific 

and HIBAG has a database of reference data for many genotyping arrays. Each reference panel is 

also available for either Asian, European or African populations or a mixture of the three 

(https://hibag.s3.amazonaws.com/hlares_index.html#estimates). For each dataset included for 

imputation the reference panel chosen was the same as the genotyping array used for the data 

and the reference population was chosen to match the data as closely as possible. Asian and 

European reference panels were used for the Asian and European populations and African 

references were used for the Gambia and Ghana datasets, while mixed datasets were 

implemented for the admixed SAC population.  

Following imputation, the HIBAG package (hlaAssocTest) command was used to implement an 

additive association test for the HLA alleles across the different regions. Association testing 

results for the eight included studies were then combined with a restricted maximum-likelihood 

estimator model meta-analysis using the R package metafor (version 2.4-0). Ancestry-specific 

meta-analysis grouped according to the major population groups (Table 1 and S1) were also done 

using the same method. Meta-analysis models were chosen based on heterogeneity in the data. 
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For a heterogeneity result of p-value > 0.1 the fixed effects (FE) model (inverse-variance method) 

was implemented and for p-value ≤ 0.1 the random effects (RE) model (restricted maximum 

likelihood estimator) was used to calculate pooled OR and CI values71. 

Estimation of infection pressure 
 
To generate a covariate capturing the likely cumulative exposure to Mtb for included controls, 

the results of Houben and Dodd (2016) were adapted to produce a distance matrix to feed into 

the meta-analysis. A sample of 200 estimated histories of the annual risk of TB infection in each 

country was used to calculate the expected fraction of control participants ever infected with 

Mtb, assuming that controls were uniformly aged between 35-44 years in 2010. This was done 

by including estimates for the potential lifetime infections for each source population as a 

covariate in the MR-MEGA multi-ancestry meta regression. To determine the impact of the 

covariate a chi-square difference test was implemented, on a SNP-SNP basis, on the residual and 

association testing statistics of two meta-analysis output statistics, one including and the other 

excluding the potential lifetime infections covariate72. The aim was to determine if inclusion of 

potential lifetime infections in the regression explained some of the residual heterogeneity.  

Concordance of direction of effect 

To determine the degree to which direction of effect is shared for SNPs between the ancestry 

specific meta-analysis we followed the methodology of Mahajan et. al.73. First identified all 

variants present in all 12 included datasets. Among these SNPs we then identified an independent 

subset of variants in the European ancestry-specific meta-analysis showing nominal evidence of 

association (p-value <= 0.001) and separated by at least 500kb. The identified SNPs were then 

extracted from the Asian and African ancestry-specific meta-analysis results to calculate the 

number of SNPs that had the same direction of effect as in the European analysis. To determine 

if significant excess in concordance of effect direction was present a one-sided binomial test was 

implemented with the expected concordance set at 50%. This analysis was then repeated for 

other p-value thresholds (0.001 < P ≤ 0.01; 0.01 < P ≤ 0.5; and 0.5 < P ≤ 1), and also using the 

African and Asian meta-analysis results as reference.  
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