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Identification of 64 new risk loci for major depression, refinement of the genetic 1 

architecture and risk prediction of recurrence and comorbidities  2 

 3 

Thomas D. Als1,2,3, Mitja Kurki4, Jakob Grove1,2,3,5, Georgios Voloudakis6,7,8,9,10,11, Karen 4 
Therrien6,7,8,9,10,11,12, Elisa Tasanko13, Trine Tollerup Nielsen1,2,3, Joonas Naamanka13, Kumar 5 
Veerapen14,15,16, Daniel Levey17,18, Jaroslav Bendl6,7,8,9,10, Jonas Bybjerg-Grauholm2,19, Biao 6 
Zheng6,7,8,9,10, Ditte Demontis1,2,3, Anders Rosengren2,20, Georgios Athanasiadis2,20, Marie Bækved-7 
Hansen2,19, Per Qvist1,2,3, Bragi Walters21, Thorgeir Thorgeirsson21, Hreinn Stefánsson21, Katherine L 8 
Musliner2,22,23,24, Veera Manikandan1,2,3, Leila Farajzadeh1,2,3, Janne Thirstrup1,2,3, Bjarni J. 9 
Vilhjálmsson2,5,25, John J. McGrath25,26,27, Manuel Mattheisen2, Sandra Meier2, iPSYCH-Broad 10 
Consortium, Esben Agerbo2,22,23, Kári Stefánsson21, Merete Nordentoft2,28, Thomas Werge2,20, David 11 
M. Hougaard2,19, Preben B. Mortensen2,22,23, Murray Stein29,30, Joel Gelernter17,18, Iiris Hovatta13, 12 
Panos Roussos6,7,8,9,10,11,31, Mark J. Daly4,14,15,16, Ole Mors2,32, Aarno Palotie4, and Anders D. 13 
Børglum1,2,3 14 

 15 
1 Department of Biomedicine, Aarhus University, Aarhus, Denmark 16 
2 The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark 17 
3 Center for Genomics and Personalized Medicine, Aarhus, Denmark 18 
4 Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland 19 
5 Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark 20 
6 Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY, USA 21 
7 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA 22 
8 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New 23 
York, NY, USA 24 
9 Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount 25 
Sinai, NY, USA 26 
10 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA 27 
11 Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA 28 
Medical Center, Bronx, NY, USA 29 
12 Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, 30 
NY, USA 31 
13 Department of Psychology and Logopedics, SleepWell Research Program, University of Helsinki, 32 
Finland 33 
14 Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital 34 
and Harvard Medical School, Boston, MA, USA 35 
15 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 36 
USA 37 
16 Department of Medicine, Harvard Medical School, Boston, MA, USA 38 
17 Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New 39 
Haven, CT, USA 40 
18 Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA 41 
19 Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, 42 
Copenhagen, Denmark 43 
20 Mental Health Centre Sct. Hans, Capital Region of Denmark, Institute of Biological Psychiatry, 44 
Copenhagen University Hospital, Copenhagen, Denmark 45 
21 deCODE genetics / Amgen, Reykjavik, Iceland 46 
22 NCRR - National Centre for Register-Based Research, Business and Social Sciences, Aarhus 47 
University, Aarhus, Denmark 48 
23 Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark 49 
24 Department of Affective Disorders, Aarhus University Hospital-Psychiatry, Aarhus Denmark 50 
25 National Centre for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark 51 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.24.22279149doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.08.24.22279149


 2 

26 Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, QLD 1 
4076, Australia 2 
27 Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia 3 
28 Mental Health Centre Copenhagen, Capital Region of Denmark, Copenhagen University Hospital, 4 
Copenhagen, Denmark 5 
29 Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA 6 
30 Departments of Psychiatry and Herbert Wertheim School of Public Health, University of California, 7 
San Diego, La Jolla, CA, USA 8 
31 Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 9 
10962, USA 10 
32 Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Denmark 11 

Corresponding authors: Thomas D Als tda@biomed.au.dk and Anders D Børglum 12 

anders@biomed.au.dk  13 

 14 

Abstract  15 

Major depression (MD) is a common mental disorder and a leading cause of disability 16 

worldwide. We conducted a GWAS meta-analysis of more than 1.3 million individuals, 17 

including 371,184 with MD, identifying 243 risk loci. Sixty-four loci are novel, including 18 

glutamate and GABA receptors that are targets for antidepressant drugs. Several biological 19 

pathways and components were enriched for genetic MD risk, implicating neuronal 20 

development and function. Intersection with functional genomics data prioritized likely 21 

causal genes and revealed novel enrichment of prenatal GABAergic neurons, astrocytes and 22 

oligodendrocyte lineages. 23 

We found MD to be highly polygenic, with around 11,700 variants explaining 90% of the 24 

SNP heritability. Bivariate Gaussian mixture modeling estimated that > 97% of risk variants 25 

for other psychiatric disorders (anxiety, schizophrenia, bipolar disorder and ADHD) are 26 

influencing MD risk when both concordant and discordant variants are considered, and nearly 27 

all MD risk variants influence educational attainment. Additionally, we demonstrated that 28 

MD genetic risk is associated with impaired complex cognition, including verbal reasoning, 29 

attention, abstraction and mental flexibility. 30 
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 3 

Analyzing Danish nation-wide longitudinal data, we dissected the genetic and clinical 1 

heterogeneity, revealing distinct polygenic architectures across case subgroups of MD 2 

recurrency and psychiatric comorbidity and demonstrating two- to six-fold increases in 3 

absolute risks for developing comorbid psychiatric disorders among MD cases with the 4 

highest versus the lowest polygenic burden. 5 

The results deepen the understanding of the biology underlying MD and its progression and 6 

inform precision medicine approaches in MD. 7 

 8 

Introduction 9 

Major depression (MD) is a genetic and phenotypic complex disorder with a lifetime 10 

prevalence of 15-20%1-3. It is often recurrent and accompanied by considerable morbidity and 11 

co-morbidity, excess mortality, increased risk of suicide and substantial costs worldwide4-8. 12 

Individuals diagnosed with MD have an increased risk of developing practically all other 13 

types of mental disorders, particularly anxiety (ANX), bipolar disorder (BD), schizophrenia 14 

(SZ) and substance use disorder (SUD)9,10. 15 

Heritability estimates based on twin studies (h2 = 0.37) have indicated that familial 16 

aggregation of MD is influenced by additive genetic effects11, and several recent studies have 17 

documented a considerable genetic overlap between MD and multiple psychiatric as well as 18 

somatic disorders and traits12-17. Despite the substantial heritability of MD and other mental 19 

disorders, the potential for translating genetic insights into precision psychiatry has yet to be 20 

fulfilled, including demonstrating clinical utility of polygenic risk scores (PRS)18-20.  21 

 22 

Major advancement in understanding the genetic architecture of MD has only recently been 23 

achieved, primarily via genome-wide association studies (GWAS) led by the Psychiatric 24 

Genomics Consortium (PGC). Most recently, GWAS results from the PGC12, UK Biobank 25 
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 4 

(UKB)14,21, FinnGen and 23andMe, Inc.22 were combined with data from the Million Veteran 1 

Program (MVP) in a large meta-analysis23, identifying 178 risk loci. The identified loci 2 

explain a small fraction of the overall heritability of MD12,21,23 and even larger GWASs are 3 

needed to further elucidate genetic factors contributing to the risk of developing MD and 4 

advance genetically informed patient stratification and outcome prediction towards clinical 5 

utility.  6 

Here, we present the largest MD GWAS to date, including expanded iPSYCH24 and FinnGen 7 

cohorts, meta-analyzed with PGC, UKB, 23andMe and MVP data23, revealing  numerous 8 

novel risk loci and characterizing functional implications of associated variants by 9 

intersecting with functional genomics data. We refine the genetic architecture of MD and 10 

case subgroups, and demonstrate the impact of MD genetic risk on domains of cognitive 11 

performance. Leveraging nation-wide longitudinal health data on the Danish iPSYCH cohort, 12 

we dissect the genetic architecture of single-episode and recurrent MD as well as cases who 13 

have developed ANX, BD, SZ and SUD. Furthermore, to inform precision psychiatry 14 

approaches, we calculate time-dependent absolute risks and hazard rate ratios for developing 15 

recurrent depression, ANX, BP, SZ and SUD depending on different polygenic burdens of 16 

MD cases.    17 

 18 

Results 19 

Genome-wide association  20 

We analyzed data from the large population-based case-cohort of iPSYCH24,25, which include 21 

genotypes from all individuals born in Denmark between 1981 and 2008 who have received 22 

treatment for MD in hospitals and outpatient clinics (ICD-10 codes F32-F33 in the Danish 23 

Psychiatric Central Research Register26). Compared to the latest GWAS of MD23, which 24 

included samples from the initial iPSYCH2012 cohort12,25, we added 11,710 cases and 18,410 25 
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 5 

controls from the expanded iPSYCH2015 cohort24,25, summarizing to a total of 30,618 cases 1 

and 38,200 controls after relatedness pruning and removal of ancestry outliers. In addition, 2 

we included an updated dataset consisting of 28,098 cases and 228,817 controls from the 3 

FinnGen study. When combining these with data from previously published samples from the 4 

PGC, UKB, 23andMe and MVP, the number of samples added up to a total of 371,184 MD 5 

cases and 978,703 controls (Supplementary Table S1). 6 

We performed a variance weighted fixed effects meta-analysis using METAL27, testing the 7 

effects of 6,037,120 SNPs common across all the data sets. This revealed a total of 303 8 

genome-wide significant LD-independent (r2 < 0.1) lead variants located in 243 distinct loci. 9 

A conditional association analysis using GCTA-COJO28,29 retained 251 independent SNPs in 10 

the 243 loci. Manhattan plots are shown in Figure 1, regional plots are provided in 11 

Supplementary Figure S2 and details on lead variants are provided in Supplementary Table 12 

S2A, while GCTA-COJO independent variants are listed in Supplementary Table S2B. No 13 

statistically significant heterogeneity was observed between the datasets (Supplementary 14 

Figure S3). Sixty-four (64) of the 243 loci are novel, i.e., not overlapping with the two most 15 

recent MD meta-analyses14,23 (Supplementary Table S2A). The three most significant loci 16 

were located near NEGR1, in SORCS3 and in the HIST1 histone cluster, respectively. Among 17 

the novel loci, the three strongest associations were in BPTF, LINGO1 and GRIA1 (Table 1). 18 

All three genes have been associated with monogenic forms of neurodevelopmental 19 

disorders30-32 and GRIA1, encoding glutamate ionotropic receptor AMPA type subunit 1 20 

(GluA1), is the first genome-wide significant locus implicating an AMPA receptor subunit in 21 

MD. We also note that the seventh-strongest novel locus is located in GABRA1, which is the 22 

first time a GABA receptor locus has been identified in GWAS of MD. Both AMPA and 23 

GABA receptors are targets for antidepressants33,34. 24 

 25 
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 6 

Genetic correlations and heritability  1 

Analyzing the GWAS meta-analysis by LD score regression (LDsc)35 produced a genomic 2 

inflation factor (𝜆𝐺𝐶) estimate of 1.89 with an intercept of 1.06 (SE = 0.01) and an 3 

attenuation ratio of 0.047 (SE = 0.012), indicating that 95% of the observed inflation of the 4 

test statistics (Supplementary Figure S1) is due to polygenic signal rather than population 5 

structure. The individual GWASs (iPSYCH2015, Howard et al. 201914, Wray et al. 201812, 6 

Levey et al. 202023 and FinnGen) showed significant pairwise genetic correlations, ranging 7 

from 𝑟𝐺 = 0.77 to 𝑟𝐺 = 0.95 (Supplementary Table S4 and Figure S6), thus corroborating 8 

that the GWAS results are combined in a meta-analysis. We note that the SNP-heritability 9 

estimate35 for the iPSYCH cohort (ℎ𝑆𝑁𝑃
2 = 0.167, SE = 0.014, prevalence = 0.2) was 10 

significantly higher (around double) compared to the other cohorts (Supplementary Table S5 11 

and Figure S7). This may reflect that the iPSYCH sample is more homogeneous and includes 12 

relatively severe cases who have been treated in hospitals.  13 

 14 

We investigated genetic correlations with other phenotypes available at LD Hub36 and in-15 

house, including published GWASs (N = 258) and GWAS results for UKB traits (N = 597). 16 

MD was significantly correlated (P < 2 x 10-4) with 364 phenotypes representing several 17 

domains and overall confirming previous observations12-15,37-42 (Supplementary Table S6A 18 

and Figure S8A). Among psychiatric disorders, MD showed significant correlation with e.g., 19 

ADHD (rG = 0.56, SE = 0.022, P = 1 x 10-135), autism spectrum disorder (ASD) (rG = 0.35, 20 

SE = 0.033, P = 6.5 x 10-24), BP (rG = 0.31, SE = 0.033, P = 3 x 10-18), SZ (rG = 0.33, SE = 21 

0.021, P = 4 x 10-53), ANX (rG = 0.79, SE = 0.017, P = 3.2 x 10-193), alcohol dependence (rG 22 

= 0.65, SE = 0.097, P = 4.3 x 10-9) and cannabis use disorder (rG = 0.44, SE = 0.036, P = 2.2 23 

x 10-31). In UKB data, the three strongest genetic correlations were seen for “Seen doctor 24 
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 7 

(GP) for nerves_ anxiety_ tension or depression”, “Mood swings” and “Miserableness” (rG = 1 

0.96, 0.71, 0.71, respectively; Supplementary Table S6B and Figure S8B). 2 

 3 

To dissect the observed genetic overlap further, we used uni- and bivariate gaussian mixture 4 

modeling, as implemented in MiXeR43, to quantify the actual number of variants that (i) 5 

explain 90% of the SNP heritability of MD, and (ii) overlap between MD and MD-correlated 6 

phenotypes. Approximately 11,700 (SE = 310) common variants were estimated to confer 7 

liability to MD, suggesting that MD is the most polygenic of the major psychiatric disorders 8 

evaluated, showing number of risk variants ranging between 6-10,00043,44  (Figure 3, 9 

Supplementary Table S7). MiXeR considers all variants irrespective of the direction of 10 

correlation (i.e. both variants with same and opposite direction of effects, hereafter 11 

collectively referred to as “influencing” variants). Strikingly, the vast majority of variants 12 

conferring risk to the other psychiatric disorders investigated were found to influence MD 13 

(range 85-98%; Figure 3; Supplementary Table S7), most pronounced for ANX, SZ, BP and 14 

ADHD with 97-99%44 of their risk variants also influencing MD. The other investigated traits 15 

showed also substantial overlap with MD (range 85-98%). Notably, the fraction of 16 

concordant variants within the shared part varied considerably; lowest for educational 17 

attainment (42%) and highest for SUD (88%) and ANX (90%).  18 

 19 

Association with cognitive performance 20 

Educational attainment was among the most prominent negatively correlated traits. To further 21 

evaluate the impact of MD genetic risk on cognition, we analyzed the association of MD 22 

polygenic scores (MD-PRS) with 15 cognitive measures in the Philadelphia 23 

Neurodevelopmental Cohort (PNC, N = 4,973)45,46. Cognitive performance was measured by 24 

the Computerized Neurocognitive Battery47, including 14 tests in 5 domains: executive-25 
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 8 

control, episodic memory, complex cognitive processing, social cognition, and sensorimotor 1 

speed. In addition, the Wide Range Achievement Test (WRAT-4)48 was used as a proxy 2 

measure for overall IQ46. MD-PRS was negatively associated with attention ( = -0.036, SE 3 

= 0.012, P = 0.032) and abstraction and mental flexibility ( = -0.036, SE = 0.013, P = 0.032) 4 

in the executive-control domain, and verbal reasoning ( = -0.029, SE = 0.011, P = 0.032) in 5 

the reasoning domain, while e.g. the WRAT-4 test did not show association (Figure 2, 6 

Supplementary Table S8). The results demonstrate, for the first time, that genetic MD risk is 7 

associated with attenuated functioning in specific cognitive domains. This is consistent with 8 

observations that individuals suffering from MD show lower performance in cognitive 9 

domains such as executive function, memory, language and attention49-51. 10 

 11 

Gene-wise and pathway analysis 12 

A genome-wide gene-based association study conducted in Multi-Marker Analysis of 13 

GenoMic Annotation (MAGMA)52, mapped the GWAS SNPs to 17,840 protein coding genes 14 

and revealed 411 genes significantly associated with MD after Bonferroni correction for the 15 

number of genes tested (P < 2.8 x 10-6). A total of 314 significant genes were located in 141 16 

of the 242 identified GWAS loci, while the remaining 97 significant genes were located 17 

outside these loci (Supplementary Table S9D). The most significant gene within each of the 18 

141 genomic risk loci are labeled in Figure 1B. 19 

To investigate enrichment of biological pathways we analyzed 8,664 gene-sets derived from 20 

GO Biological Process (N = 7,658) and GO Cellular Components (N = 1,006) ontology in the 21 

MSigDB database, identifying 479 significant gene-sets after correction for multiple testing 22 

(FDR < 0.05, Supplementary Table S10B), including several gene-sets that have not 23 

previously shown significant enrichment14,23. The majority of the top-ranking sets related to 24 

neuronal development and function including the five most significant gene-sets (Padj < 25 
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 9 

10−14): GO_SYNAPSE, GO_NEURON_PART, GO_SYNAPSE_ORGANIZATION, 1 

GO_SYNAPSE_ASSEMBLY and GO_NEURON_DIFFERENTIATION. 2 

 3 

Transcriptome-wide association and GWAS-eQTL prioritisation 4 

To identify and prioritize putative causal genes, we performed a transcriptome-wide 5 

association study (TWAS), imputing the genetically regulated gene expression using 6 

EpiXcan53 and models trained on expression data from the PsychENCODE Consortium54,55 7 

for genes and isoforms detected in the dorsolateral prefrontal cortex (DLPFC). Among 8 

34,646 transcripts (genes and isoforms) tested, we identified 2,541 transcripts at FDR < 0.05 9 

and, after Bonferroni correction of all transcripts tested, 324 transcripts from 201 genes 10 

showing significant differential imputed gene expression in DLPFC between MD cases and 11 

controls (Supplementary Table S11). The Bonferroni significant transcripts were located in 12 

88 independent56 regions. The top gene/isoform is labeled in Figure 1A and regional 13 

TWAS/GWAS Miami-plots for each of the 88 regions are shown in Figure S9. In 38 of the 14 

88 regions, the top transcript was > 100 times more significant than the second-most 15 

associated gene/isoform in the region (Supplementary Table S11B), appointing those as 16 

plausible causal candidates. 17 

To further prioritize likely causal genes and variants, we performed co-localization analyses 18 

integrating fine-mapped GWAS results, using the CAUSALdb pipeline (Methods), and eQTL 19 

data from a meta-analysis of three brain datasets57 applying a fixed-effect model. First, we 20 

adopted the Coloc method58,59, which revealed 13 genes with strong evidence for both 21 

GWAS-association, eQTL-association and co-localization (i.e., with a posterior probability of 22 

PPH4 > 0.8; Supplementary Table S12). The three top-ranked genes were: FURIN, NEGR1 23 

and CKS2. Secondly, we conducted the eQTL and GWAS CAusal Variants Identification in 24 

Associated Regions (eCAVIAR) approach60, in which both eQTL and GWAS were fine-25 
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 10 

mapped and the product of posterior probability (CLPP) was calculated, prioritizing variants 1 

with at least a single variant with CLPP >= 0.01. The eCAVIAR approach revealed five 2 

prioritized variants located in three genes: FURIN, GPR27 and TCTA (Supplementary Table 3 

S13 and Figure S10). 4 

 5 

Tissue and cell type enrichment 6 

We next tested whether the GWAS results were enriched with respect to the transcriptomic 7 

profiles of human tissues. At the specific tissue level, we found significant enrichment 8 

exclusively in brain tissues, including all the brain tissues analyzed (Supplementary Figure 9 

S11). Cell-type enrichment analyses revealed experiment-wide significant association (across 10 

all 13 datasets tested) of primarily neuronal cell-types, including dopaminergic and 11 

GABAergic neurons (Supplementary Figure S12 and S13). Interestingly, both GABAergic 12 

neurons and oligodendrocyte progenitor cells of the human prefrontal cortex were enriched 13 

already at prenatal stages.  14 

To further evaluate cell-type enrichment, we intersected the GWAS results with two recent 15 

epigenomic maps of cell-specific open chromatin61,62 using an LD score partitioned heritability 16 

approach63. Again, we observed a clear contrast between the enrichments in the brain and non-17 

brain tissue (Supplementary Figure S14). Consistent with our FUMA-based results and prior 18 

reports12,14, the strongest associations were measured for neuronal cell types, phenotypically 19 

manifested by severe synaptic loss and deficits in functional connectivity64,65. Conversely, to 20 

our knowledge, the reported association of MD with astrocytes and oligodendrocyte lineages 21 

have not yet been described by genetic data, albeit having support in behavioral and 22 

postmortem studies66-68. 23 

 24 

Polygenic architecture and co-morbidity rates for single-episode and recurrent depression 25 
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To dissect the polygenic architecture of single-episode and recurrent depression, we used 1 

dates of diagnosis in the Danish Psychiatric Central Research Register to group the 30,618 2 

iPSYCH MD cases into 24,101 cases with single-episode and 6,517 with recurrent depression 3 

(see Methods and Supplementary Table S14 for details). We conducted three GWASs: 1) 4 

single-episode vs controls, 2) recurrent depression vs. controls and 3) recurrent vs. single-5 

episode depression (excluding all controls). SNP-heritability estimates were similar for 6 

recurrent and single-episode depression and, for the case-only analysis, not significantly 7 

different from zero (Supplementary Table S5 and Figure S7). Likewise, the genetic 8 

correlations with other phenotypes showed similar patterns for single-episode and recurrent 9 

depression (Supplementary Figure S15 and Table S15).  10 

We next investigated the polygenic load for MD in the recurrent and single-episode case 11 

groups, using a multivariate polygenic risk score (mvPRS) approach15 and the MD GWAS 12 

meta-analysis14,23 without iPSYCH samples for training. This analysis showed significant 13 

association of single-episode (𝛽 = 0.36, SE = 0.0081, P < 10−7) and recurrent (𝛽 =14 

0.43, SE = 0.014, P < 10−7) subgroups with PRS for MD (MD-PRS), but with a 15 

significantly larger effect size for recurrent than for single-episode depression (P = 4.8 x 10-6, 16 

Supplementary Table S16A and Figure S16A). This increased polygenic load among 17 

recurrent cases reinforces previous observations11,12,69,70. 18 

To further dissect the genetic architecture of the two subgroups we investigated the PRS load 19 

for psychiatric disorders and traits showing strong genetic correlation with MD (Figure 20 

S16B-I, Table S16A) including ANX, BD, SZ, ASD, ADHD, SUD, substance use (SU) and 21 

neuroticism. The results showed an overall pattern of increased PRS among recurrent cases 22 

compared to single-episode cases (P = 0.00075), primarily driven by significantly different 23 

burdens of MD, ANX, BP and neuroticism PRS (Figure S16 and Table S16A).   24 

 25 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.24.22279149doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.24.22279149


 12 

To complement these analyses, we compared the rates of comorbid psychiatric disorders 1 

between single-episode and recurrent cases, using data from the Danish Psychiatric Central 2 

Research Register, and found highly significant increase in comorbidity among recurrent 3 

cases (Supplementary Table S17). This is consistent with well-established correlations 4 

between MD symptom severity, recurrence, chronicity and comorbidities (e.g.10,71) and, to 5 

our knowledge, it is the first quantification of differences in psychiatric comorbidity rates 6 

between single-episode and recurrent case groups. The most compelling differences were 7 

observed for ANX, BP and SZ. 8 

Summarizing, compared to single-episode cases, recurrent cases showed significantly 9 

increased polygenic load of particularly MD-, BP- and neuroticism-PRS as well as increased 10 

rates of comorbid psychiatric disorders.      11 

 12 

Hazard rate ratio and absolute risk of recurrent depression 13 

To investigate whether PRS can prospectively predict recurrence among individuals with 14 

first-onset depression, we performed Cox regression analyses estimating hazard rate ratio 15 

(HRR) and absolute risk of developing a second episode of depression over time among 16 

individuals having a first diagnosis of MD. This was done for groups of increasing polygenic 17 

load, in PRS deciles. We found that the HRR of developing a second-episode generally 18 

increased with increasing MD-PRS, most significantly for the 10th MD-PRS decile compared 19 

to the first decile (𝐻𝑅𝑅10 = 1.33, SE = 0.06, P = 2.5 × 10−6; Supplementary Figure S18A 20 

and Table S18). Similarly, the absolute risk of a second diagnosis of depression increased 21 

with time since first diagnosis for all MD-PRS deciles, with the trajectories for the 10th decile 22 

reaching an absolute risk of 0.35 compared to 0.24 for the lowest decile (Supplementary 23 

Figure S18A).  24 
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 13 

Prompted by the results of the mvPRS analysis, we performed the same analysis for PRSs 1 

from other psychiatric disorders, but without yielding significant results (Figure S18, Table 2 

S18).  The HRR for developing single-episode and recurrent MD in the general population 3 

can be found in Supplementary Figure S17. 4 

 5 

Dissecting the polygenic architecture of psychiatric comorbidity among MD cases  6 

Individuals diagnosed with MD are at an increased risk of developing other mental disorders 7 

as documented in Supplementary Table S17 and a large body of studies (e.g.9,10,72), but little 8 

is known about the genetic constitution of those that develop these conditions. We examined 9 

the polygenic architecture of MD cases who have developed ANX, BP, SZ and SUD, using 10 

mvPRS analysis and PRSs from MD and eight psychiatric phenotypes genetically correlated 11 

with MD (ANX, BD, SZ, ASD, ADHD, SUD, SU and neuroticism; Supplementary Table 12 

S6A and Figure S8). This analysis showed that the subgroup of MD cases who had 13 

transitioned to BP, had a significantly increased PRS for three out of the eight psychiatric 14 

phenotypes tested compared to MD cases without a later BP diagnosis, including BP-PRS (P 15 

= 5.2 x 10-17), SZ-PRS (P = 3.2 x 10-12) and MD-PRS (P = 8.3 x 10-5) (Figure S19 (B), Table 16 

S19B). MD cases with a co-diagnosis of SZ showed increased PRS load for all eight 17 

psychiatric phenotypes except ASD (Figure S19 (C), Table S19C), most significantly for SZ-18 

PRS (P = 2.9 x 10-14), BP-PRS (P = 5.5 x 10-8), substance use (SU) PRS (P = 2.4 x 10-5) and 19 

MD-PRS (P = 2.5 x 10-5). The most compelling results were revealed for SUD comorbidity, 20 

showing highly increased PRS loads for most of the psychiatric phenotypes (Figure S19 (D), 21 

Table S19D), most significantly for SU-PRS (P = 2.3 x 10-84), ADHD-PRS (P = 1.2 x 10-31) 22 

and SUD-PRS (P = 2.4 x 10-30).  23 

Overall, we demonstrated that all three comorbid subgroups (MD-BP, MD-SZ, MD-SUD) 24 

have increased polygenic burdens of common risk variants for several psychiatric phenotypes 25 
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 14 

compared to the non-comorbid MD (MD-only) case groups (overall mvPRS p-values: PMD-1 

ANX = 1.2 x 10-21, PMD-BP = 3.7 x 10-16, PMD-SZ = 3.2 x 10-14, PMD-SUD = 1 x 10-93), revealing an 2 

overall PRS pattern that distinguishes the comorbid case groups from their non-comorbid 3 

counterparts. We also note that all three comorbid subgroups showed an increased load of 4 

MD-PRS compared to the MD-only case groups. 5 

 6 

Hazard rate ratio and absolute risk of comorbidity among MD cases 7 

To assess the use of PRS in prediction of developing comorbid disorders, we performed Cox 8 

regression analysis on MD cases with and without additional diagnosis of ANX, BP, SZ and 9 

SUD, using the same eight PRSs as in the above-mentioned mvPRS analysis. In addition, we 10 

included four aggregate scores combining all PRSs into a single score weighted by their 11 

association with ANX, BP, SZ and SUD respectively (see Methods). 12 

We found that the HRR for developing BP increased with increasing polygenic loads 13 

(Supplementary Figure S21 and Table S20B), most significantly for BP-PRS (HRR10 = 1.84, 14 

SE = 0.12, P = 9.3 x 10-7) and the aggregate score (BP-SUM-PRS; HRR10 = 2.32, SE = 0.14, 15 

P = 7.5 x 10-10) with the absolute risk trajectory reaching 0.11 for the 10th BP-SUM-PRS 16 

decile compared to 0.04 for the 1st decile as shown in Figure 4. 17 

A similar pattern was observed for MD cases developing SZ (Supplementary Figure S22, 18 

Table S20C) where the highest HRR was seen for the aggregate SZ-SUM-PRS (HRR10 = 19 

1.82, SE = 0.11, P = 1 x 10-7), with the absolute risk curve for the 10th decile reaching 0.14, 20 

well separated from the 1st decile trajectory approaching 0.067 (Figure 4).   21 

 22 

The most striking results were obtained for SUD showing substantial differences in HHR and 23 

absolute risk estimates across PRS deciles for several phenotypes (Supplementary Figure 24 

S23, Table S20D). Again, the most significant prediction was obtained for the aggregate 25 
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SUD-SUM-PRS (HRR10= 3.92, SE = 0.13, P = 3.6 x 10-27) with the absolute risk trajectory 1 

reaching 0.17 at 15 years after first episode for the 10th decile in contrast to the first decile 2 

reaching a maximum risk of 0.03 (Figure 4), indicating that the absolute risk for developing 3 

SUD is almost 6 times higher for the most genetically burdened (top decile) MD case group 4 

compared to the least burdened group in the lowest decile at 15 years after first episode. 5 

 6 

 7 

Discussion 8 

We performed an MD GWAS meta-analysis of more than 1.3 million individuals, identifying 9 

251 independent risk variants in 243 genomic loci, of which 64 are novel. Among the novel 10 

loci, we highlight GRIA1 and GABRA1, encoding a glutamate AMPA receptor subunit 11 

(GluA1) and a GABA receptor subunit (α1), respectively. Neither of these two loci have 12 

previously been identified in GWAS of MD or other mental disorders (Supplementary Table 13 

S2). The two genes showed also significant imputed differential expression in the DLPFC (at 14 

Bonferroni and FDR<0.05 significance, respectively; Supplementary Table S11) in our 15 

TWAS. We note that another GABA receptor subunit gene, GABRB1, was also significant (at 16 

FDR < 0.05) in the TWAS (Supplementary Table S11). GABRB1, although not significantly 17 

associated with MD in the current GWAS, has previously been implicated in schizoaffective 18 

disorder73 and SZ74,75. Our pathway analysis reinforced previous reports12,14,23 and extended 19 

the enrichment of glutamatergic and GABAergic synapses and functions, further indicating 20 

that glutamatergic and GABAergic dysfunctions are key etiologic components in MD. Along 21 

with the observed enrichment of GABAergic cell-types present already prenatally, this 22 

supports the accumulating multidisciplinary evidence that implicate excitatory/inhibitory 23 

(E/I) imbalance with MD76 as well as other psychiatric disorders77-80. 24 

 25 
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Our TWAS found that GRIA1 expression in DLPFC was decreased in cases compared to 1 

controls. This is consistent with findings in preclinical pharmacological studies of mood 2 

disorders showing promising results of AMPA receptor potentiators34, as well as the 3 

convergent rapid and sustained increase in GluA1 and other synaptic proteins associated with 4 

most fast-acting antidepressants33. Thus, our results provide human genetic evidence that 5 

emphasizes positive modulation of the AMPA receptor as an interesting pharmacological 6 

approach.  7 

In contrast to a reported decrease in GABRA1 expression in the DLFPC of depressed suicide 8 

cases81,82, our TWAS pointed to an increased expression in MD cases. GABAA receptors 9 

provide critical inhibitory control of the firing of glutamatergic excitatory neurons and they 10 

are the binding partner of several drugs in mood disorders and potential drug targets for other 11 

mental disorders83-85. Inhibitory synapse formation depends on the expression and selective 12 

postsynaptic clustering of GABAA receptor subunits, which is a combinatorial process in 13 

which pentamers are assembled from nineteen different subunits (α1-6, β1-3, γ1-3, δ, ε, π, 14 

and θ). The subunit composition varies according to brain region and neuronal subtype, and 15 

confers unique physiological and pharmacological properties. Cortical expression of 16 

GABRA1 increases drastically in the first few years of postnatal human development86, and in 17 

the adult brain, α1 contributes to the majority of both synaptic and extra-synaptic GABAA 18 

receptors complexes. Antidepressant effects have been associated with pharmacological 19 

modulation of both synaptic87 and, more promising, extra-synaptic GABAA receptors88. 20 

Although a recent study indicated that reversing the E/I imbalance alone only induces short-21 

term antidepressant effects, but not long-term clinical response89, our findings support the use 22 

of pharmacological modulators of the α1βxδ subset of extra-synaptic GABAA complexes. 23 

 24 
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The MiXeR bivariate Gaussian mixture modeling revealed compelling genetic overlap 1 

between MD and other traits when considering both concordant and discordant variants, 2 

suggesting that psychiatric disorders and correlated traits are substantially more intertwined 3 

than indicated by their genetic correlations. Perhaps the most surprising results were seen for 4 

educational attainment (EA), showing that 98% of the MD risk variants are also influencing 5 

EA and, vice-versa, 88% of EA variants are influencing MD. This almost complete overlap in 6 

influencing variants, with concordant (42% of the shared variants) and discordant effects, is 7 

consistent with the traits’ overall negative genetic correlation (rG = -0.23) and refines the 8 

understanding of their polygenic architecture appreciably.  Although generally less 9 

pronounced, a similar picture was observed for the other mental and behavioural traits 10 

examined. Furthermore, the notable overlap suggests that future fine-mapping efforts to 11 

pinpoint the causal variants could increase power by combining data from traits with 12 

overlapping influencing variants when accounting for the directional effects. 13 

 14 

In the Danish iPSYCH cohort, we assessed PRS-based predictions for developing recurrent 15 

depression and psychiatric comorbidity over time and found significant differences in hazard 16 

rates and absolute risks between MD cases in the highest and lowest PRS deciles. The 17 

iPSYCH cohort includes relatively young individuals (mean age 23.37 years, SE = 6.9, at 18 

follow-up December 31st 2016) and thus, a substantial number of the MD cases will develop 19 

recurrent MD and/or comorbid disorders later in life. This indicates that the observed risks, 20 

and likely also the differences across PRS deciles, will increase further over time. Moreover, 21 

the prediction could probably be improved by including other risk factors such as e.g. family 22 

history90 and clinical/phenotypic variables, as it has been shown in other complex disorders91. 23 

In clinical settings, a targeted effort could be envisaged that offer intensified monitoring for 24 

development of e.g. BP, SZ or ANX among MD cases with the highest PRS burden (or 25 
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combined genetic and clinical risk) to obtain early diagnosis and initiate early treatment, 1 

which may have beneficial effects92,93. Similarly, identifying high risk for developing SUD 2 

could potentially be an informative point of attention for both the physician and the patient94. 3 

However, assessment of the clinical utility at the individual level of such potential 4 

applications is warranted95. 5 

 6 

 7 

Methods 8 

Samples 9 

The iPSYCH2015 sample is a nation-wide population sample extracted from a baseline 10 

cohort consisting of all children born in Denmark between May 1, 1981, and December 31, 11 

2008, who were alive and resided in Denmark on their one-year birthday, and who have a 12 

known mother24,25. Individuals diagnosed with one (or more) of six major psychiatric 13 

disorders (ADHD, ASD, MDD, BP, SZ, Anorexia) were identified via the Danish Psychiatric 14 

Central Research Register26, which includes data on all individuals treated in Denmark at 15 

psychiatric hospitals (from 1969 onward) as well as at outpatient psychiatric clinics (from 16 

1995 onward). A random sample from the same birth cohort were chosen as control group. 17 

The iPSYCH2015 cohort consists of the initial case-cohort sample iPSYCH201225 and the 18 

recent extension iPSYCH2015i24.  19 

Individuals with a ICD10 F32-F33 diagnosis in 2016 or earlier were considered as MD cases 20 

and the random population-based sample excluding individuals with an MD diagnosis were 21 

used as controls. All individuals diagnosed with BP were excluded, except for the analyses 22 

involving co-occurrence of MD and BP diagnosis. MD cases were divided into two groups; 23 

1) individuals diagnosed with a single episode of depression, and 2) those fulfilling the 24 

criteria for recurrent depression. The date of the first depression episode for each individual 25 
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was defined as the start date of the first contact in the Danish Psychiatric Central Research 1 

Register with an ICD-10 code of F32-F33 diagnoses at an age of 10 years or older. When 2 

defining later depression episodes only contacts with the ICD-10 codes: F32, F33.0-F33.3, 3 

F33.8-F33.9 were considered. Individuals with the ICD-10 code F33.4 “Major depressive 4 

disorder, recurrent, in remission” were omitted because these contacts are unlikely to indicate 5 

a new episode of depression. Only ICD-10: F32, F33.0-F33.3, F33.8-F33.9 diagnosis at dates 6 

later than 60 days after the end date for all previous ICD10: F32-F33 diagnosis were 7 

considered as new episodes of depression, thus categorizing that particular individual as 8 

having recurrent depression. 9 

In addition to depression phenotypes, individuals with the following diagnoses were recorded 10 

in the iPSYCH sample: BP (F30-F31), SZ (F20), SUD (F10-F19, excluding F1X.0 acute 11 

intoxication), ANX (F40-F43), ASD (F84.0, F84.1, F84.5, F84.8 or F84), ADHD (F90.0). 12 

In the iPSYCH2015 cohort24, we have added 11,710 MD cases and 18,410 controls to the 13 

iPSYCH2012 sample12,25, summarizing to a total of 34,095 cases and 45,393 controls prior to 14 

relatedness pruning and removal of ancestry outliers (Supplementary Table S14). A total of 15 

30,618 cases and 38,200 controls were retained after relatedness pruning and removal of 16 

ancestry outliers (Supplementary Table S14). Of these, 6,517 had recurrent episodes of 17 

depression (see definition in Methods), while 24,101 were classified as single-episode 18 

depression cases (Supplementary Table S14).  19 

The number of cases with an additional psychiatric diagnosis (BP, SZ, ANX, ASD, ADHD, 20 

SUD) are shown in Supplementary Table S17. Individuals with a diagnosis of BP were 21 

excluded from all subsequent analyses except for analyses involving BP. 22 

Whether recurrent depression was associated with increased comorbidity compared to single-23 

episode depression was tested using logistic regression for each additional diagnosis while 24 
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adjusting for age. Individuals were grouped in five-year age bins in order to construct dummy 1 

variables for the age adjustment (Supplementary Table S17). 2 

 3 

All analyses of the iPSYCH sample were performed at the secured national GenomeDK high-4 

performance computing cluster in Denmark. The study was approved by the Scientific Ethics 5 

Committee in the Central Denmark Region and the Danish Data Protection Agency. The study was 6 

approved by the appropriate local scientific ethics committees and IRBs. 7 

 8 

 9 

Genotyping, QC and imputation 10 

iPSYCH2015 samples were linked via the unique national personal identification number to 11 

the Danish Neonatal Screening Biobank (DNSB) at Statens Serum Institute (SSI), where 12 

DNA was extracted from Guthrie cards, and whole-genome amplification was performed in 13 

triplicate, as described previously96,97.  14 

Genotyping in iPSYCH2012 was performed using the PsychArray V1.0 (Illumina, San 15 

Diego, California), while genotyping of iPSYCH2015i was done using the Global Screening 16 

Array v2 (Illumina, San Diego, California). Since the two samples were genotyped on 17 

different platforms, they were QCed and imputed separately. 18 

Genotyping of the iPSYCH2012 sample was performed at the Broad Institute of Harvard and 19 

MIT (Cambridge, MA, USA) with PsychChip arrays from Illumina according to the 20 

manufacturer’s instructions. Genotype calling of markers with MAF ≥ 0.01 was performed 21 

by merging call sets from GenCall98 and Birdseed99, and less frequent variants (MAF < 0.01) 22 

were called with zCall100. Genotyping and data processing were carried out in 23 waves. 23 

Genotyping of the iPSYCH2015i sample was performed at Statens Serum Institut (SSI, 24 

Copenhagen, Denmark) using the Global Screening Array v2 with a Multi disease drop in 25 
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(Illumina, San Diego, California) according to the manufacturer’s instructions. Genotype 1 

calling of markers was performed using GenTrain V3. Preimputation quality control was 2 

performed using the Ricopili101 pipeline with the specified parameters in the following order. 3 

Initially SNPs with a call rate < 0.95 were removed, and subsequently all individuals with a 4 

call rate in cases or controls of < 0.95 or an autosomal heterozygosity deviation FHET outside 5 

the interval [-0.2;0.2] were removed. Individuals where stated sex was not consistent with sex 6 

derived from genotypes were flagged. Subsequently QC was conducted at the marker level, 7 

keeping markers with call rate ≥ 0.98, missing difference ≤ 0.02 between cases and controls, 8 

with MAF ≥ 0.01, Hardy-Weinberg equilibrium (HWE) in controls p value ≥ 1 x 10-06 and 9 

Hardy-Weinberg equilibrium (HWE) in cases p value ≥ 1 x 10-10 (See 10 

https://sites.google.com/a/broadinstitute.org/ricopili/preimputation-qc for further details). 11 

The effects of three batch variables on marker genotypes were tested in iPSYCH2012 12 

(ArrayPlate.ID, PreProc.Plate and wave) and iPSYCH2015i separately (Array.Batch, 13 

ArrayPlate.ID and PreProc.Plate). This was done using relatedness-pruned dataset with 14 

ancestry outliers removed in order to avoid removal of markers where batch effects were 15 

caused by population structure or cryptic relatedness rather than genotype artefacts. 16 

Pairwise relatedness coefficients (𝜋̂) were estimated with plink using a LD pruned and MAF 17 

filtered set of SNPs (snps-only, window size = 5,000, step size = 300, r2 < 0.05, MAF > 18 

0.05). Principal Component Analysis was conducted using the same set of LD pruned and 19 

MAF filtered SNPs, with random removal of one member of each pair with a relatedness 20 

coefficient (𝜋̂) higher than 0.2. Eigenvectors were inferred using EIGENSOFT version 6.1.4 21 

on the relatedness-pruned set of individuals, and subsequently projecting all individuals onto 22 

those eigenvectors based on their genotypes. Individuals with all four grandparents born in 23 

Denmark were used as a reference for constructing a 3-dimensional ellipsoid using principal 24 
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components 1, 2 and 3 with a radius of 5 standard deviations from the mean. Individuals 1 

located outside this ellipsoid were removed prior to the testing for batch effects. 2 

Each genotyped marker was tested for association with each batch versus 3 

the remaining batches pooled. This was done for the following batch-variables: 4 

ArrayPlate.ID, PreProc.Plate and wave for iPSYCH2012 and Array.Batch, ArrayPlate.ID and 5 

PreProc.Plate for iPSYCH2015i. Batch-association testing was conducted using plink 6 

v1.90b4.  7 

The exclusion of SNPs strongly associated with any of the batch-variables were based on 8 

their minimum P-value across all associations per variable. The cut-off for the wave and 9 

Array.Batch was min(p) < 2 x 10-10 and for PreProc.Plate and ArrayPlate.ID min(p) < 2 x 10-10 

12, based on a Bonferroni correction for the number of markers tested and the number of 11 

associations done per batch-variable trying to incorporate the degree of nestedness of these.  12 

After removing SNPs falling for any of the above cut-off the remaining distribution was 13 

evaluated using QQ-plots. The expected minimum p-distribution was calculated using the 14 

inverse cumulative distribution of N independent distributions as suggested in supplementary 15 

of Schork et al.102, N being the number batch-variable values. Reviewing these QQ-plots it is 16 

evident that despite filtering by p-value some signal from the batch-variable remains in the 17 

dataset.  18 

iPSYCH2012 and iPSYCH2015i were imputed using the ricopili pipeline101. Prephasing was 19 

done using Eagle v2.3.5103 and the subsequent imputation was conducted using Minimac3104, 20 

using the downloadable version of the Haplotype Reference Consortium (HRC) (accession 21 

number: EGAD00001002729)105 as reference. 22 

 23 

Relatedness pruning and removal of ancestry outliers 24 
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Best guest genotypes from iPSYCH2012 and iPSYCH2015i were merged, filtered and LD-1 

pruned down to a set of roughly 30K markers, with imputation INFO score > 0.8, r2 < 0.075, 2 

located outside regions of long-range LD as defined by Price et al.106, minor allele frequency 3 

> 0.05 and no deviation from Hardy-Weinberg proportions (P > 1 x 10-4). Relatedness 4 

coefficients, based on “identity-by-state”, were estimated using plink v1.9, in order to 5 

identify related (and duplicated samples), with 𝜋̂ > 0.2 and one individual of each such pair 6 

was subsequently excluded at random. PCA was carried out using the same set of filtered and 7 

LD-pruned SNPs as implemented in the ricopili pipeline101. A subsample of European 8 

ancestry was selected as an ellipsoid in the space of PC1-3 centred and scaled using the mean 9 

and 8 standard deviation of the subsample whose grandparents were all known to be born in 10 

Denmark.  11 

 12 

FinnGen 13 

The FinnGen (https://www.finngen.fi/en) study combines genotype data with longitudinal 14 

health register data of Finland, including the causes of death, inpatient, outpatient, and drug 15 

reimbursement registers.   16 

A GWAS for depression was conducted in FinnGen release 6 samples containing 28098 17 

cases (ICD-10/9: F32 or F33) and 228817 controls without manic episodes (ICD10 F30), 18 

bipolar affective disorder (ICD-10: F31, ICD-9: 296[2-7], ICD8: 296), persistent mood 19 

disorders (ICD10:  F34) or other or unspecified mood disorder (ICD10: F38,F39, ICD-8: 20 

29699). Variants with an imputation info score < 0.6 were excluded. GWAS was run with 21 

SAIGE logistic mixed model (version 0.39.1 ) using age, sex, 10 PCs and genotyping batch 22 

as covariates. 23 

A GWAS for anxiety disorders was conducted in the FinnGen release 6 sample consisting of 24 

7,671 cases with a generalized anxiety disorder (ICD-10: F41.1, ICD-9: 3000C, ICD-8: 25 
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300,00), panic disorder (ICD-10: F41.0; ICD-9: 3000B, 3002B) or phobic anxiety (ICD-10: 1 

F40, ICD-9: 3002C, 3002D, 3002X) diagnoses and 161,438 controls without a history of any 2 

psychiatric diagnoses (ICD-10: F00-F99, ICD-9: 290-319, ICD-8: 290-315). With ICD-9 3 

codes the first three digits signify numerical value (e.g., the code 3002B is included in the 4 

code range 290-319). Cases with psychotic disorders (ICD-10: F2; ICD-9: 295, 297, 298; 5 

ICD-8: 295, 297, 298), autism spectrum disorders (ICD-10: F84.0, F84.1, F84.5; ICD-9: 6 

2990; ICD-8: 299,99) or intellectual disability (ICD-10: F7, ICD-9: 317-319; ICD-8: 311-7 

315) were excluded. Additionally, the age range of controls was adjusted to match to that of 8 

cases.   9 

Subjects were genotyped with Illumina and Affymetrix arrays (Illumina Inc., San Diego, and 10 

Thermo Fisher Scientific, Santa Clara, CA, USA) as described 11 

(https://www.finngen.fi/en/researchers/genotyping). Genotyping and imputation with the 12 

Finnish population-specific SISu v3 reference panel were conducted, as described 13 

(https://www.protocols.io/view/genotype-imputation-workflow-v3-0-xbgfijw). SNPs were 14 

pruned for minor allele frequency (MAF) ≥ 0.01 and imputation info score > 0.8. GWAS was 15 

performed using the Scalable and Accurate Implementation of GEneralized mixed model 16 

(SAIGE) v0.20107 with a kinship matrix as a random effect and age, sex, the first 10 principal 17 

components (PCs), and genotyping batch as fixed effects.   18 

 19 

GWAS analyses 20 

Genome-wide-association analyses within iPSYCH were conducted using the RICOPILI 21 

pipline101, applying an additive logistic regression model using dosages of the imputed 22 

genotypes. Analyses were adjusted for PC 1-10 from a PCA using the remaining subsample 23 

after removal of ancestry outliers and pruning for relatedness. In addition, MD cases with a 24 

diagnosis of bipolar disorder were excluded. 25 
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Summary statistics from iPSYCH2015 and the following external samples were included in a 1 

fixed-effects variance-weighted meta-analysis in METAL27: 1) 230,118 broadly defined MD 2 

cases and 545,339 controls from Howard et al. 201914, including self-reported MD of 3 

23andMe22 and the broadly defined MD phenotype of UKB; 2) 35,077 narrowly defined MD 4 

cases and 95,406 controls from Wray et al. 201812, excluding 23andMe22; 3) depression 5 

phenotypes from the Million Veteran Program (MVP)23 based on ICD codes derived from 6 

electronic health records (83,810 cases and 166,405 controls); 4) 28,098 cases with ICD-10 7 

F32 and/or F33 diagnoses and 228,817 controls from FinnGen. 8 

For comparison, we also conducted a GWAS and several downstream analyses using a 9 

narrower definition of MD that excluded self-reported MD of 23andMe12,22 and the broadly 10 

defined MD phenotype of UKB14,21 (Supplementary Figure S5, Table S3). The results were 11 

very similar to the primary analyses without noteworthy differences. 12 

 13 

SNP-heritability, genetic correlations and overlap with other phenotypes  14 

We estimated SNP-heritability (ℎ𝑆𝑁𝑃
2 ) for iPSYCH2015 cases with MD, single episode and 15 

recurrent depression and for the external GWAS summary statistics outlined above using LD 16 

score regression35. Genetic correlations within iPSYCH and between iPSYCH and external 17 

GWAS summary statistics was estimated using LD score regression35.  18 

In addition, the genetic correlations of MD meta-analysis, single-episode and recurrent 19 

depression with other phenotypes were, evaluated using LD score regression108 at the LD 20 

Hub36 website. We used all available phenotypes on LD Hub, but we performed analyses for 21 

the UKB traits (N = 597) and the remaining individual phenotypes (N = 258) separately. 22 

Levels of experiment-wide significance (Bonferroni correction for number of tests applied) 23 

were also established separately within the two groups, i.e. in the UKB traits (P < 8.38 x 10-24 

5) and the remaining individual phenotypes (p < 0.00019), respectively. LD Hub traits were 25 
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supplemented with LD score regression35 analyses performed locally using updated or in-1 

house GWAS summary statistics for traits not available at LD-hub. These include ADHD, 2 

ASD15, cannabis use disorder37, cannabis use109, alcohol dependence110, drinks per week, 3 

smoking ever111, age of initiation as a regular smoker, current versus a former smoker 4 

(smoking cessation), number of cigarettes per day, smoking initiation112 5 

 6 

We applied MiXeR43 on our MD GWAS summary statistics and a selection of additional traits 7 

(Supplementary Table S7 and Figure 3) to estimate (i) the number of variants explaining 90% 8 

of the SNP heritability of each trait and (ii) the genetic overlap between MD and each trait. 9 

MiXeR analysis were conducted with default settings (https://github.com/precimed/mixer) in 10 

a two-step process: 1) a univariate model for each trait to produce estimates of the proportion 11 

of variants with non-zero additive genetic effect on the trait (i.e. “polygenicity”) and the 12 

variance of effect sizes of these non-zero variants (i.e. “discoverability’”). 2) the variance 13 

estimates obtained in the univariate analysis were applied in the bivariate model (i.e. MD vs. 14 

each of the additional traits) to obtain four estimates representing (i) zero-effect SNPs in both 15 

traits; (ii) SNPs with a specific non-zero effect on one of the two traits; and (iii) SNPs with a 16 

non-zero effect on both traits. Estimates of polygenic overlap and genetic correlation between 17 

pairs of traits were obtained by combining these four parameters. 18 

 19 

Conditional analysis and finemapping 20 

We identified potential independent genome-wide significant lead variants for each of the 21 

broadly defined genome-wide-significant locus identified pipeline from our GWAS meta-22 

analysis results101: Neighboring index SNPs were considered independent when r2 < 0.1 in a 23 

sliding 3 Mb window. For each index SNP we defined the associated LD-region by recording 24 

the left and rightmost variant with r2 < 0.1. To define GWAS loci, a 50kb window was added 25 
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on each side of the LD-region and overlapping LD-regions were combined into a single locus. 1 

Only a single SNP was kept from within the MHC region, due to extended linkage 2 

disequilibrium and a strong association signal of the MHC region (chr 6:25-35 Mb). 3 

In order to identify additional independent index variants, we performed a stepwise model 4 

selection procedure to select independently associated SNPs also implemented in GCTA-5 

COJO28,29.  6 

We assigned posterior probabilities (PP) of being causal to SNPs and constructed credible 7 

sets of SNPs that cumulatively capture 95% of the regional posterior probability113 using 8 

PAINTOR114-116, CAVIARBF and FINEMAP117, using the CUASALdb pipeline 9 

(https://github.com/mulinlab/CAUSALdb-finemapping-pip). We applied a conservative 10 

approach and assumed one causal variant for each locus. 11 

Co-localization analyses were performed in order to evaluate the extent of overlap between 12 

eQTL and GWAS signatures in MD and to identify putative causal genes from GWAS 13 

associations. Considering only the 95% credible SNPs from the fine-mapped MD-meta-14 

analysis, we integrated GWAS results and eQTL data from a previous meta-analysis 15 

integrating signals among three brain datasets57 applying a fixed-effect model. The eQTL 16 

data originates from eQTL meta-analysis on RNA-sequenced gene expression data from the 17 

dorsolateral prefrontal cortex from PsychENCODE54 and ROSMAP118, and from 13 brain 18 

regions from GTEx119. 19 

Using the Coloc method58,59, we extraced eQTL signals of genes within 200 kb distance to 20 

significant GWAS variants (P < 5 x 10-8) using effect sizes (𝛽-values) and standard errors 21 

from eQTL and GWAS as input. Four hierarchical hypotheses59 were tested: H0, no 22 

association; H1, GWAS association only; H2, eQTL association only; H3, both GWAS and 23 

eQTL association but no co-localization; H4, both GWAS and eQTL association and co-24 

localization, considering PPH4 > 0.8 as strong evidence from both GWAS, eQTL and co-25 
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localization. In addition, we conducted the eQTL and GWAS CAusal Variants Identification 1 

in Associated Regions (eCAVIAR) approach60, in which, both eQTL and GWAS were fine-2 

mapped, and the product of posterior probability (CLPP) was calculated, prioritizing genes 3 

with at least a single variant with CLPP >= 0.01. 4 

 5 

Gene-wise and pathway analysis 6 

We used a number of different approaches and data including those available via the FUMA 7 

v1.3.6a52 website (http://fuma.ctglab.nl) for downstream annotation and functional 8 

characterization of significant loci.  9 

We performed a genome-wide gene-based association study using the Multi-Marker Analysis 10 

of GenoMic Annotation (MAGMA) tool, as implemented in FUMA version 1.3.6a52. Using 11 

this we mapped SNPs from the MD GWAS meta-analysis to 17,840 protein coding genes, and 12 

performed Bonferroni correction for the total number of protein-coding genes (P < 2.8 x 10-6, 13 

Supplementary Table S9D).  14 

Protein coding genes were mapped if they were located with a distance of 10Kb up- or 15 

downstream index variants or if a credible variant was annotated to the gene based on eQTL 16 

data or chromatin interaction data from human brain (data sets used in the mapping can be 17 

found in the Supplementary Note). No additional variant filtering by functional annotation was 18 

applied in the eQTL and chromatin interaction mapping. This analysis identified 411 MD risk 19 

genes, which were used in a gene-set enrichment analysis within the GENE2FUNC module of 20 

FUMA, where we analyzed 8,664 gene-sets derived from GO Biological Process (N = 7,658; 21 

393 gene-sets) and GO Cellular Components (N = 1,006; 86 gene-sets) ontology in the 22 

MSigDB database.  23 

 24 

Tissue and cell type enrichment 25 
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We also used FUMA to perform tissue expression analyses on data available through their 1 

website, by tested whether the identified genetic associations for both the primary and narrow 2 

MD phenotype definitions were enriched regarding transcriptome profiles of human tissues 3 

using summary statistics based on all SNPs. Finally, we used FUMA to perform cell-type 4 

enrichment analyses52 based the MD GWAS summary statistics. We use MAGMA gene-5 

property analysis to test cell type specificity of phenotype with GWAS summary statistics. 6 

MAGMA gene-property analysis with scRNA-seq: The gene-property analysis aims to test 7 

relationships between cell specific gene expression profiles and disease-gene associations.  8 

In all above-mentioned analyses implemented in FUMA default settings were applied.  9 

To further evaluate whether the genomic loci implicated in MD are enriched in any particular 10 

cell type, we intersected common MD risk variants with two recent epigenomic maps of cell-11 

specific open chromatin61,62 using LD score partitioned heritability approach63(Supplementary 12 

Figure S14). 13 

 14 

Transcriptome-wide association study  15 

In addition, we performed a transcriptome-wide association study (TWAS), imputing the 16 

genetically regulated gene expression using EpiXcan53 and using models trained on 17 

PsychENCODE Consortium (PEC)54,55 expression data for genes and transcripts detected in 18 

the dorsolateral prefrontal cortex (DLPFC), with the aim of identifying and prioritizing 19 

putative causal loci for the broad MD phenotype definition. A total of 34,646 20 

genes/transcripts were tested (transcripts with prediction performance R2 > 0.01 and 21 

prediction performance q value < 0.05 with the Benjamini-Hochberg method were retained), 22 

and applying a significance threshold of P < 1.44 x 10-6 (corresponding to Bonferroni 23 

correction of all genes and isoforms tested; Figure 1A, S9 and Table S11), using information 24 

on approximately independent linkage disequilibrium blocks in human populations56 to 25 
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identify independent genomic regions with genes/transcripts showing significant differential 1 

gene expression between MD cases and controls.  2 

 3 

Polygenic risk scores 4 

Using available summary statistics form published GWAS as training datasets, we calculated 5 

polygenic risk scores (PRS) for individuals in the iPSYCH2015 sample using LDpred2120. Summary 6 

statistics were filtered for an imputation info score INFO ≥ 0.9 if available. When using external 7 

summary stats not processed using RICOPILI or imputed using different imputation references, we 8 

excluded all ambiguous markers to avoid potential strand conflicts. To improve performance of the 9 

scores and avoid including artefacts from batch effects, we restricted the summary stats to include 10 

only SNPs known to be present in both the iPSYCH2012 and iPSYCH2015i data at a reasonable 11 

quality (info score 0.6 and MAF 0.01). This step also checked for allele flips. 12 

To derive a PRS for MD within the iPSYCH2015 sample we used the MD meta-analysis12,14,22,23 13 

excluding all iPSYCH samples as training. We also calculated PRS based on GWAS summary 14 

statistics from BP121, SZ122, ADHD13 and ASD15. The PRSs for ADHD and ASD were based on a 15 

combination of external GWAS sumstats and internal training. A meta-analysis of two GWAS for 16 

anxiety, one based on self-report of physician diagnosis of ANX in the MVP123 and the other being 17 

core anxiety in the FinnGen cohort (see FinnGen description above), served as weights for 18 

generating an ANX-PRS summarizing genetic risk of anxiety. To derive a PRS for neuroticism we 19 

used GWAS summary stats of a weighted neuroticism sum-score, constructed by adding up ten 20 

individual item responses (Fed-up, Guilt, Irr, Miss, Mood, Tense, Nerv feel, Suf Nerv, worry emb 21 

and worry) by Nagel et al.124. In addition, we calculated PRSs using the following GWAS summary 22 

stats for traits related to substance-use and substance-use-disorder as training datasets. These include 23 

cannabis use disorder37(excluding iPSYCH samples, i.e., training only based on data from PGC and 24 

data from decode genetics), cannabis use109, alcohol dependence110, drinks per week, smoking 25 
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ever111, age of initiation as a regular smoker, current versus a former smoker (smoking cessation), 1 

number of cigarettes per day, smoking initiation112. All summary statistics were combined in a 2 

pseudo-meta-analysis, subsequently used for generating a SU-PRS summarizing genetic liability for 3 

substance use while summary stats for alcohol dependence110 and cannabis use disorder37 were 4 

pseudo-meta-analyzed to generate a SUD-PRS summarizing genetic liability of substance use 5 

disorder. 6 

 7 

With the aim at improving the PRS prediction we attempted to exploit the genetic overlap of MD 8 

with other phenotypes. We therefore combined all of the above PRSs into a single score as a  9 

weighted sum15. We chose here to use the log(OR) for the logistic regression of sub-phenotype of 10 

interest on each score as a continuous factor as a measure of ‘importance’ in context of the sub-11 

phenotype of interest (either recurrent vs. single-episode or MD with additional diagnosis of BP, SZ 12 

or SUD) and adjusting for PCs. We added a PRS weighted by its log(OR) and the standardized one 13 

PRS at the time, starting with the phenotype with highest abs(log(OR)) and ending with the lowest. 14 

This way we ended up with a sequence of scores  15 

starting with S0 and continuing with: 16 

𝑆𝑘 =
∑ log(𝑂𝑅𝑃𝑖

) 𝑆𝑃𝑖

𝑘
𝑖=1 − 𝜇(∑ log(𝑂𝑅𝑃𝑖

) 𝑆𝑃𝑖

𝑘
𝑖=1 )

𝜎(∑ log(𝑂𝑅𝑃𝑖
) 𝑆𝑃𝑖

𝑘
𝑖=1 )

 17 

Where 𝑆𝑃𝑖
 is the score for phenotype Pi, ORPi the odds ratio from the logistic regression of sub-18 

phenotype of interest on SPi as a continuous factor adjusting for PCs, and  is the mean and  the 19 

standard deviation. 20 

To examine potential polygenic heterogeneity across MD sub-phenotypes, we investigated how PRS 21 

trained on the different phenotypes described above were distributed across MD sub-phenotypes in 22 

iPSYCH using a multivariate PRS approach. The method is described in detail in Grove et al.15, and 23 

is a regression of multiple outcome variables, and in principle a linear regression for each PRS on the 24 
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MD sub-phenotypes allowing for comparisons on the average PRS across sub-phenotypes for PRS 1 

from a number of phenotypes while accounting for the inherent correlation between scores and 2 

adjusting for necessary covariates. MD-BP cases were excluded from the analyses not involving BP. 3 

In addition, we applied a Cox proportional hazard model to estimate hazard rate ratios and absolute 4 

risk of developing 1) a second episode of MD, 2) BP, 3) SZ and 4) SUD, among individuals already 5 

being diagnosed with their first episode of MD. Analyses were stratified by PRS deciles of the 6 

phenotypes described above and using functions from the R-packages survival (https://CRAN.R-7 

project.org/package=survival)125,126 and survminer (https://CRAN.R-8 

project.org/package=survminer), while correcting for batch (iPSYCH2012 and iPSYCH2015i) and 9 

PCs using an in-house pipeline. 10 

 11 

MD-PRS in the Philadelphia Neurodevelopmental Cohort (PNC) 12 

MD-PRS were calculated for 4,973 individuals of European ancestry from the Philadelphia 13 

Neurodevelopmental Cohort (PNC)45,46 using the primary MD GWAS meta-analysis of the current 14 

study as training. Genotypes from the first PNC release (dbGaP phs000607.v1.p1) and 15 

neurocognitive phenotypes from the third release (dbGaP phs000607.v3.p2) were utilized. 16 

Individuals whose genotypically inferred and phenotypically reported sex did not match, those who 17 

did not meet the identity by descent (IBD) filter (𝜋̂ > 0.185), those who did not meet the individual-18 

level missingness filter of 0.05, and those with heterozygosity rates +/- three standard deviations 19 

from the mean were removed. SNPs that failed to meet the Hardy-Weinberg proportions (HWP), 20 

minor allele frequency (MAF), and SNP-level missingness filters of 0.00001, 0.01, and 0.05, 21 

respectively, were also removed. Genotype imputation was performed using the reference panel 22 

HRC r1.1 2016 on the Michigan Imputation Server 23 

(https://imputationserver.sph.umich.edu/index.html#!), selecting the "Mixed population" option. 24 

Imputed SNPs with an imputation R2 of < 0.03 and those who failed to meet the missingness, MAF, 25 
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and HWP thresholds stated above were removed. The first two Multi-Dimensional Scaling (MDS) 1 

dimensions were plotted to identify and remove outlier genotypes. The GemTools package in R 2 

(http://www.compgen.pitt.edu/GemTools/GEM%20Documentation.pdf) and Ward's hierarchical 3 

clustering methods were used to identify individuals of European ancestry.  4 

PRS-CS127 was used to assign per-allele posterior SNP effect sizes to MD GWAS summary 5 

statistics. A European LD reference panel provided by the developers of PRS-CS was utilized 6 

(https://github.com/getian107/PRScs), which draws from the 1000 Genomes Project data. The 7 

following PRS-CS default settings were used: parameter a in the γ-γ prior = 1, parameter b in the γ-γ 8 

prior = 0.5, MCMC iterations = 1,000, number of burn-in iterations = 500, and thinning of the 9 

Markov chain factor = 5. The global shrinkage parameter phi was set using a fully Bayesian 10 

determination method. Individual-level MD-PRS were calculated using Plink v2.0128. The 11 

associations between scaled (mean = 0, SD = 1) MD-PRS and 15 scaled neurocognitive phenotypes 12 

in the PNC were assessed using linear regression. Covariates included in the analysis were age at 13 

neurocognitive testing, age squared, the first 10 MDS dimensions, sex, and genotyping batch. 14 

Adjusted R2 was used to report the total variance explained by MD-PRS and model covariates for the 15 

15 tested neurocognitive phenotypes. Additionally, a variance partitioning tool 16 

(https://github.com/GabrielHoffman/misc_vp/blob/master/calcVarPart.R) was used to determine the 17 

variance explained by MD-PRS and each covariate individually. FDR-adjusted p-values were 18 

reported.  19 

 20 

Data availability  21 

Summary statistics from this publication are available at http://ipsych.au.dk/downloads/. All 22 

relevant iPSYCH data are available from the authors after approval by the iPSYCH Data 23 

Access Committee and can only be accessed on the secured Danish server (GenomeDK, 24 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.24.22279149doi: medRxiv preprint 

http://www.compgen.pitt.edu/GemTools/GEM%20Documentation.pdf
https://github.com/getian107/PRScs
https://github.com/GabrielHoffman/misc_vp/blob/master/calcVarPart.R
https://doi.org/10.1101/2022.08.24.22279149


 34 

https://genome.au.dk) as the data are protected by Danish legislation. For data access please 1 

contact: Anders D. Børglum. 2 

Data used for brain transcriptome model generation are available from PsychENCODE 3 

(overview of available data sets at http://resource.psychencode.org/); genotypes are 4 

controlled data and access instructions are provided at 5 

https://www.synapse.org/#!Synapse:syn4921369/wiki/477467. Note that some datasets have 6 

been indirectly accessed at the respective analytical websites (through the FUMA website). 7 

Please refer to these websites (e.g., for FUMA https://fuma.ctglab.nl/links and 8 

https://fuma.ctglab.nl/tutorial#datasets) for availability of datasets used in the respective 9 

follow-up analyses / lookups. 10 

 11 

Code availability 12 

Please refer to individual sections of the methods above for published code (e.g., Ricopili, 13 

LDpred2, MiXeR). Because the in-house scripts used for data processing and analysis of the 14 

iPSYCH data on the GenomeDK HPC infrastructure is highly dependent on that context, they 15 

can only be obtained from the authors upon request. This way we can ensure the proper 16 

context is explained in dialogue with the interested parties. 17 

 18 

Inclusion and ethics 19 

The research has included local researchers throughout the research process, including study design, 20 

study implementation, data ownership, intellectual property and authorship of publications. Roles 21 

and responsibilities were agreed amongst collaborators ahead of the research. 22 

This research does not result in stigmatization, incrimination, discrimination or any personal risk of 23 

the participants. Local and regional research relevant to the study have been considered in the listed 24 

citations. 25 
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Table 1: Top 5 index SNPs for previous and top 15 index SNPs for novel MD GWAS loci. Results for the
top 5 among previously identified loci and top 15 novel genome-wide significant index variants identified in the
GWAS meta-analysis of 371,184 cases with Major Depression and 978,703 controls. The location (chromosome
(Chr)) base position (BP)), alleles (A1/A2), odds ratio (OR) of the effect with respect to A1, standard error
(SE) and association P-values (P) from inverse-variance weighted fixed effects model of the index variants are
given. “Novel” indicates if the locus is a novel MD risk locus i.e. not identified previously. Genes located within
50 kb from index variants are listed (See supplementary table 2 for details on all 303 index SNPs)

Loc Chr indexSNP BP A1/A2 cases ctrls OR SE P Nearby genes Novel

8 1 rs7531118 72837239 T/C 0.473 0.461 0.97 0.0029 1.5e-27 NEGR1 no
9 1 rs10890020 73668836 A/G 0.508 0.510 0.97 0.0029 1.7e-21 LINC01360 no
38 2 rs1320138 144158287 T/C 0.428 0.435 1.02 0.0028 4.8e-09 ARHGAP15 yes
45 2 rs6715105 198445601 T/C 0.326 0.341 1.02 0.0030 1.3e-09 ANKRD44, ANKRD44-IT1, SF3B1, COQ10B, HSPD1, SNORA105A,

SNORA105B, HSPE1, HSPE1-MOB4, MOB4, RFTN2, MARS2,
BOLL, PLCL1

yes

53 3 rs56029819 43478295 T/C 0.853 0.849 0.98 0.0040 2.5e-09 SNRK, SNRK-AS1, ANO10 yes
80 5 rs4262121 31078958 G/C 0.528 0.546 0.98 0.0029 4.3e-09 - yes
89 5 rs62379847 120109119 A/C 0.655 0.652 0.98 0.0030 1.8e-09 PRR16 yes
93 5 rs2964003 153216733 A/G 0.829 0.820 1.02 0.0038 8.1e-10 GRIA1, LINC01861 yes
94 5 rs4596421 161269895 C/T 0.708 0.693 0.98 0.0031 2.4e-09 GABRA1 yes
98 6 rs35883476 28368508 G/C 0.910 0.918 1.05 0.0052 1.3e-21 HIST1 histone cluster, BTN3A2, BTN2A2, BTN3A1, BTN2A3P,

BTN3A3, BTN2A1, LOC285819, BTN1A1, HCG11, HMGN4,
LOC105374988, ABT1, ZNF322, GUSBP2, LINC00240,
LOC100270746, MIR3143, PRSS16, POM121L2, VN1R10P,
ZNF204P, ZNF391, ZNF184, LINC01012, LOC100131289, OR2B2,
OR2B6, ZNF165, ZSCAN12P1, ZSCAN16-AS1, ZSCAN16,
ZKSCAN8, ZNF192P1, TOB2P1, ZSCAN9, ZKSCAN4, NKAPL,
ZSCAN26, PGBD1, ZSCAN31, ZKSCAN3, ZSCAN12, ZSCAN23

no

99 6 rs10947690 37631768 A/G 0.751 0.756 0.98 0.0033 6.3e-09 MDGA1 yes
114 7 rs957360 3660918 C/G 0.714 0.702 1.02 0.0031 1.3e-09 SDK1 yes
124 7 rs1986692 133743393 A/G 0.612 0.610 1.02 0.0029 2.8e-09 EXOC4 yes
156 10 rs1909696 77582203 G/T 0.337 0.328 0.98 0.0030 3.3e-09 LRMDA, LOC105378367 yes
158 10 rs1021363 106610839 A/G 0.349 0.335 1.03 0.0029 5.3e-25 SORCS3 no
191 13 rs9561331 94017476 G/A 0.869 0.873 0.98 0.0042 3.7e-09 GPC6 yes
199 14 rs7141014 98667928 T/C 0.796 0.806 0.98 0.0035 3.3e-09 - yes
210 15 rs4886915 78075023 A/G 0.421 0.423 0.98 0.0028 6.1e-10 LINGO1 yes
225 17 rs60856912 65892343 G/T 0.825 0.817 0.97 0.0038 1.8e-11 BPTF, C17orf58, KPNA2 yes
233 18 rs12967143 53099012 G/C 0.301 0.292 1.03 0.0031 2.0e-21 TCF4, TCF4-AS1, MIR4529 no
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Figure 1: Miami plots... (A) TWAS, genes are represented by both gene expression and isoform expression (=
features, represented by the dots). A red line indicates Bonferroni corrected genome-wide significance within
analyses; p < 1.44×10−6; corresponding to Bonferroni correction of all the 34,646 features. The top transcript
is labeled for each independent linkage disequilibrium block as previously described (PMID: 26395773). (B)
Gene-based MAGMA analysis: A total of 268 significant genes were located in 93 of the 238 genomic risk loci
identified using FUMA, while the remaining 143 significant genes were located outside these loci (table S7). The
most significant gene within each of the 93 genomic risk loci are labeled in this plot. Gene names are labelled
red if they overlap with the top gene within each independent locus of the TWAS in (A). (C) Manhattanplot
of the meta-analysis GWAS of major depression (broad definition). Neighbouring index SNPs were considered
independent when r2 < 0.1 in a sliding 3 Mb window. For each index SNP we defined the associated LD-region
by recording the left and rightmost variant with r2 < 0.1. To define GWAS loci, a 50kb window was added on
each side of the LD-region and overlapping LD-regions were combined into a single locus. Only a single SNP
was kept from within the MHC region, due to extended linkage disequilibrium and a strong association signal of
the MHC region (chr 6:25-35 Mb). (D) Joint p-values as implemented in GCTA-COJO ingreen, while original
p-values are in shades of grey.
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Figure 2: Association of MD-PGS with measures of cognitive abilities in the PNC cohort (N=4,973). Beta values
(and 95% confidence intervals indicated as horizontal bars) from linear regression testing for the association of
MD-PGS with the 15 neurocognitive measures listed on the y-axis. β values and FDR adjusted p-values are
indicated.
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Figure 3: MiXeR bivariate analysis. Venn diagrams showing MiXeR results of the estimated number of variants
shared between MD and psychiatric disorders (with significant genetic correlations with MD) and phenotypes
representing other domains with high genetic correlation with MD. Circles represent loci unique to MD (green)
and unique to the phenotype of interest (blue) and corresponding overlapping (shared) loci. The number of
shared variants (and standard errors) are shown in thousands. The size of the circles reflects the polygenicity of
each phenotype, with larger circles corresponding to greater polygenicity. The estimated genetic correlation (rg
and 95% confidence intervals) between MD and each phenotype from LDSC is shown below the corresponding
Venn diagram, with an accompanying scale (−1 to +1) with blue and orange representing negative and posi-
tive genetic correlations, respectively. Bivariate results for the following comparisons are shown: BIPxMDD ,
SCZxMDD , ADHDxMDD , ASDxMDD , ALDCUDxMDD , neuroxMDD , SmoInixMDD , EAxMDD , (see also
Supplemenatry Table XXX).
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Figure 4: Absolute risk and HRR of developing a second episode of depression stratified by MD-PRS deciles
(A) and MD-SUM-PRS (B). Absolute risk and HRR of transitioning into bipolar disorder stratified by BP-
PRS deciles (C) and BP-SUM-PRS (D). Absolute risk and HRR of transitioning into schizophrenia stratified by
SZ-PRS deciles (C) and SZ-SUM-PRS (D). Absolute risk and HRR of transitioning into substance-use-disorder
stratified by SU-PRS deciles (C) and SUD-SUM-PRS (D). MD-SUM-PRS, BP-SUM-PRS, SZ-SUM-PRS and
SUD-SUM-PRS were calculated by adding PRSs for multiple phenotypes weighted by log(OR) with the aim of
optimising prediction (see methods for details). See supplementary figures S15, S17, S18 and S19 for results
based on all PRSs analysed in the current study.

49

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.24.22279149doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.24.22279149



