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Abstract

Background: Tuberculosis (TB) remains a major public health problem globally, even 

compared to COVID-19.  Genome-wide studies have failed to discover genes that explain a large 

proportion of genetic risk for adult pulmonary TB, and even fewer have examined genetic factors 

underlying TB severity, an intermediate trait impacting disease experience, quality of life, and 

risk of mortality. No prior severity analyses used a genome-wide approach.  

Methods and Findings: As part of our ongoing household contact study in Kampala, Uganda, 

we conducted a genome-wide association study (GWAS) of TB severity measured by TBScore, 

in two independent cohorts of culture-confirmed adult TB cases (n=149 and n=179).  We 

identified 3 SNPs (P<1.0 x 10-7) including one on chromosome 5, rs1848553, that was GWAS 

significant (meta-analysis p=2.97x10-8).  All three SNPs are in introns of RGS7BP and have 

effect sizes corresponding to clinically meaningful reductions in disease severity.  RGS7BP is 

highly expressed in blood vessels and plays a role in infectious disease pathogenesis. Other 

genes with suggestive associations defined gene sets involved in platelet homeostasis and 

transport of organic anions.  To explore functional implications of the TB severity-associated 

variants, we conducted eQTL analyses using expression data from Mtb-stimulated monocyte-

derived macrophages. A single variant (rs2976562) associated with monocyte SLA expression 

(p=0.03) and subsequent analyses indicated that SLA downregulation following MTB 

stimulation associated with increased TB severity.  Src Like Adaptor (SLAP-1), encoded by 

SLA, is highly expressed in immune cells and negatively regulates T cell receptor signaling, 

providing a potential mechanistic link to TB severity.

Conclusions: These analyses reveal new insights into the genetics of TB severity with regulation 

of platelet homeostasis and vascular biology being central to consequences for active TB 
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patients.  This analysis also reveals genes that regulate inflammation can lead to differences in 

severity.  Our findings provide an important step in improving TB patient outcomes.
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Introduction

Pulmonary tuberculosis (TB) caused more deaths per year than any other pathogen prior 

to the COVID-19 pandemic [1]. It is the leading cause of death among people infected with 

human immunodeficiency virus (HIV)[2]. Although incidence is decreasing globally, TB is re-

emerging in Sub-Saharan Africa and Southeast Asia[3]. The bacterium, Mycobacterium 

tuberculosis (MTB), causes most TB and is transmitted via airborne droplets from coughing and 

sneezing by people with active disease. Therefore, it can be a very mobile pathogen in the age of 

frequent global travel, making global exposure high; between one fourth and one third of the 

entire global population is latently (asymptomatically) infected. However, far fewer people 

develop active disease than are infected. In 2020, only 10 million people had active disease with 

1.5 million people dying of it [1]. 

As compared to studies of disease susceptibility or resistance, few studies have focused 

on TB severity, an important determinant of transmission, morbidity, mortality, as well as 

disease experience and quality of life [4, 5]. Determinants of TB severity remain uncertain due to 

heterogeneous definitions. Measures of severity include the TBscore (a validated outcome based 

on 11 clinically relevant symptoms, Supplemental Table 1), bacillary load, and radiologic 

findings (e.g. enumeration of pulmonary lesions or area, presence of cavitation) [6-17]. In this 

study, we chose to use TBscore as it is: 1) based on simple measures of relevant and meaningful 

clinical parameters that can be ascertained in the resource-limited environments where TB is 

most prevalent; 2) has previously been validated through comparisons to other measures of TB 

disease progression and severity [18-20]; and 3) at presentation, it is predictive of mortality in 

TB patients receiving treatment, associated with quality of life, and even a one point increase is 

clinically meaningful in some contexts [18-22]. As such, TBscore presents several advantages in 
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terms of ease of measurement and prediction of clinical outcomes. Earlier genetic studies of 

severity phenotypes focused on candidate genes and not genome-wide analyses, making it likely 

additional genetic variants elsewhere in the genome associate with TB severity. Notably, some of 

the severity associating genes (i.e., IFNG, SLC11A1, MCP1, TLR variants, and HLA variants) are 

similar or identical to those implicated in previous studies of susceptibility or resistance to 

TB[23]. However, the overlap in genes for risk and severity may simply be due to the fact that 

candidate gene studies tended to choose the same genes for the two phenotypes.  In contrast, 

genome-wide analyses may better define how the genetics of TB risk or progression do or do not 

correlate across severity definitions and may inform distinct functional aspects of TB host 

genetics. 

Understanding the link between DNA variants and RNA expression can inform an 

understanding of immunological responses and TB pathogenesis. Directly linking genetic 

variation to immunological function is critical in identifying valid targets for new therapeutics 

and vaccines[24-28]. This understanding can be partially achieved using bioinformatic databases 

that annotate function of specific genotypes by connecting tissue specific gene expression or 

aggregating SNPs from analyses into functional pathways (e.g., GSEA) and can also be achieved 

by eQTL studies [27, 29-32]. We identified nine studies that have tied gene expression to 

tuberculosis phenotypes, but only four of them assessed the role of DNA variants in the 

regulation of gene expression, and none examined the regulation of gene expression in the 

context of clinical TB severity (Supplemental Table 2). While bioinformatic databases can 

provide valuable information, they are limited because the cells and tissues available are not 

always the most relevant to a given phenotype (e.g. TB severity) and they are not under 

conditions that recapitulate disease related exposures (e.g. active TB) [32]. Further, some 
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eQTL’s are only associated with gene expression in specific contexts, such as an active MTB 

infection. In the case of MTB infection, resident alveolar macrophages and recruited monocyte-

derived macrophages are early targets of MTB in the lung, making these cells informative with 

respect to the regulation of gene expression in the context of active infection[33]. This situation 

has, however, yet to be explored[34, 35]. Thus, datasets containing MTB stimulated 

macrophages can provide functionally relevant information on how variants associated with 

severity affect RNA expression during MTB infection in vitro. 

  In the present study, we first conducted a case-only genome-wide association study of 

TBscore to identify variants associated with TB severity. We then followed-up these associated 

loci in a different set of subjects without active TB disease, utilizing data from monocyte-derived 

macrophages before and after in vitro stimulation with MTB to observe how severity associated 

variants from our GWAS analysis associated with changes in gene expression in the context of 

active infection. This study addresses the aforementioned gaps in the current literature on active 

TB severity by 1) studying the genomic underpinnings of TB severity using a meaningful, 

replicable, and validated clinical phenotype; and 2) bridging the gap between genetic variants 

and immunological function by studying gene expression in the macrophage response, as well as 

that of other immune cells. Our underlying hypothesis is that genomic variation in humans 

affects the immunological response to active TB disease, as measured by gene expression, and 

that this correlates with clinical severity.

Results
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Study Population

To discover the major genetic variants associated with TB severity, we examined 328 

subjects with pulmonary TB (Table 1, 149 subjects in Cohort 1 and 179 in Cohort 2). There were 

statistically significant differences between the cohorts with respect to HIV status and TBscore, 

with Cohort 2 having more HIV+ subjects and a lower average TBscore. Both cohorts included 

more males than females, most subjects were HIV-, and the average age was just under 29 in 

both cohorts. 

Table 1. Cohort Characteristics 

Differences in age and TBscore were analyzed using a Student’s t-test and differences in the percentage of males 
and HIV+ subjects were analyzed using Z-statistics. For both tests, P<0.05 was considered a significant difference.

Genome-Wide Association Results

Individually, the two cohorts showed no sign of genome-wide inflation (Supplemental 

Figures 5, 6) in their Q-Q plots or genomic control statistics (λ<1.0). PCA analysis revealed that 

none of the top 10 PC’s were associated with TBscore in either cohort. Based on this and the low 

amount of variation explained by the PC’s, we decided not to include them in the initial 

regression equation (Supplemental Figures 2, 3). The Q-Q plot for the full range of meta-analytic 

Cohort 1 Cohort 2 Total P
Patients 149 179 328
Age ± SD 28.7 ± 9.8 28.8 ± 8.2 28.7 ± 8.9 0.91
Males (%) 81 (54.4%) 103 (57.5%) 184 (56.1%) 0.64
HIV+ (%) 15 (10.1%) 43 (24%) 58 (17.7%) 0.001*

TBscore ± SD 6.2 ± 2.1 5.5 ± 2.2 5.8 ± 2.2 0.002*
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P-values appears to deviate from the line but the genomic control parameter (λ) was 0.98, 

indicating little to no genome-wide inflation (Figure 1). Neither cohort showed any SNPs that 

were GWAS significant when considered individually (Supplemental Figures 7, 8). There were a 

total of 11,323 SNPs showing an association with P<0.05 in both cohorts and beta values with 

the same direction of effect (i.e. both negative or both positive) (Supplemental Tables 3 and 4). 

Of these, 10,750 SNPs passed the I2 threshold for heterogeneity. Out of the 10,750, there was 

one SNP on chromosome 5 (rs1848553) that was GWAS significant with a meta-analytic P-

value of 2.97x10-8 and a beta of -0.97 (Table 2, Figure 2). Two other SNPs in this gene are close 

to genome wide significant as well (p = 7.78x10-8 for both, Table 2). We conducted sensitivity 

analysis to evaluate the impact of PCs, and this analysis demonstrated that the association of 

rs1848553 at a GWAS significant level is not sensitive to the PC’s being in the regression 

equation in the analyses (Supplemental Figures 2,3, Supplemental Methods). 
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Figure 1. Quantile-Quantile Plot for Meta-Analytic P-values of Association Between SNPs 
and TBscore

The quantile-quantile (Q-Q) plot shows the inverse log(10) of the observed p-values on the Y-axis 
relative to what is expected if there was no association on the x-axis. Deviations above the line indicate an 
association with the outcome. If the line deviates at the low quantiles, then this is considered evidence to 
suggest genome-wide inflation of the test statistics, which typically indicates unmeasured confounding 
(λ=0.98).
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Figure 2. Manhattan Plot for Meta-Analytic P-Values of Association Between SNPs and 
TBscore

The Manhattan plot shows the inverse log(10) of the p-values for the association between each SNP and 
TBscore on the y-axis and the x-axis represent the physical location of each SNP on the chromosomes, 
which are in order from 1-22.

Annotation for GWAS Significant SNP: rs1848553

SNP rs1848553 is a C to T allele change, the MAF in the two cohorts combined was 

24.7%, and did not vary much between cohorts (Supplemental Table 5). The T allele is generally 

very rare in 1000G reference populations. However, in African populations, the T allele is much 

more common (21%) than in other continental populations, where the T allele ranged from 0-

2.6% (Supplemental Table 6). The beta value indicates each copy of the minor allele is 

associated with just under a 1-point decrease in the TBscore in the additive model. This 

represents a clinically meaningful reduction in severity [18], as well as an important reduction in 

the risk of mortality. Considering each T allele is associated with nearly a 1-point reduction in 

TBscore, T/T homozygotes have nearly a 2 point reduction in TBscore relative to C/C 

homozygotes (Figure 4). The beta and P-values did not vary across cohorts and the I2 for this 

SNP was <1%, indicating little to no heterogeneity. The GWAS significant SNP, rs1848553, is 
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located within an intron of the protein-coding RGS7BP gene [36]. There are 18 other SNPs in the 

same area (63.6Mb to 64.0Mb) on chromosome 5 that show an association with TBscore with 

P<1x10-5, including the 2 SNPs that had a P<1x10-7 (Figure 3; Table 2). RGS7BP codes for a 

protein that regulates trafficking of G-proteins between the nucleus and the plasma membrane 

[37]. 
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Table 2. Annotation for Top 10 SNPs for Association with TBscore, Sorted by P-Value 

SNP CHR:BP Ref/Alt Gene Location

Meta-

analytic P-

Value

Meta-

analytic β

MAF in 

Cohort 1

MAF in 

Cohort 2

rs1848553 5:63805731 C/T RGS7BP Intron 2.97x10-8 -0.97 23.7% 25.1%

rs6870654 5:63831964 T/C RGS7BP Intron 7.78 x10-8 -0.83 41.7% 37.1%

rs6894580 5:63832264 G/A RGS7BP Intron 7.78 x10-8 -0.83 41.7% 37.1%

rs2829189 21:25966515 A/T None CTCF Binding Site 1.30 x10-7 1.23 12.5% 13.3%

rs60496505 5:63840208 A/C RGS7BP Intron 1.83 x10-7 -0.80 43.0% 38.3%

rs11210569 1:38805929 T/C LOC105378657 Intron 1.89 x10-7 0.89 26.3% 26.2%

rs6873254 5:63823469 A/G RGS7BP Intron 1.98 x10-7 -0.79 37.5% 37.9%

rs4816976 21:25967403 C/T None Intergenic 2.04 x10-7 1.19 12.8% 13.3%

rs2829200 21:25978459 G/C None Intergenic 2.58 x10-7 1.23 10.2% 13.0%
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rs11208579 1:65534491 A/G JAK1 Promoter 2.91 x10-7 1.33 8.6% 13.8%

Location and minor allele frequency in the 1000G project were ascertained from Ensembl Genome Browser v104. Ref/Alt refer to the reference and alternative 
alleles (which were the major and minor alleles, respectively). Copies of the alternative allele are what the beta value is showing in the regression equation.
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Figure 3. LocusZoom Plot for Region Surrounding rs1848553

The LocusZoom plot shows the region surrounding rs1848553 on chromosome 5, using an LD panel and 
reference genome from the AFR super-population in the 1000G project. Yellow and orange indicate 
higher levels of LD.
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Figure 4. Boxplot of TBscore by rs1848553 (GWAS significant SNP) Genotype

Distribution of TBscore by genotype

Chest X-Ray Analysis

Of the 169 SNPs showing an association with TBscore at P<1 x10-5, 165 of these showed 

the same direction of effect in the CXR analyses: i.e., the beta value for association with TBscore 

was <0 and the OR for association with CXR extent was <1, or the TBscore association beta was 

>0 and the CXR OR was >1 (Supplemental Figures 9 and 10, Supplemental Table 3). While the 

direction of effect was consistent in 97.6% of the SNPs that showed an association with TBscore 

at the P<1 x10-5 threshold, 20 of those 165 SNPs showed an association with CXR extent with 
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P<1 x10-5. Thus, the consistency in the direction of effects provides evidence that the TBscore is 

a similar and valid measure for quantifying clinical severity. 

Decile Regression Analyses

The decile regression for rs1848553 and TBscore was consistent with a negative or zero 

beta value for the whole range of the TBscore (Supplemental Figure 11). This analysis shows 

that for effect of rs1848553 genotype, there is a stronger effect at the highest end of the TBscore 

deciles than anywhere else but the effect never reverses direction. Thus, it appears that genetics 

has the greatest influence on severity among the subset of active TB patients who have most 

severe or most mild disease, and it makes the least impact on those with TBscores close to the 

mean.

Examination of Prior Published Results Related to Susceptibility and Severity

We examined our genome-wide TBscore association results for 12 previously identified 

TB susceptibility SNPs and 3 SNPs in our data showed association with TBscore gene regions 

associated with disease (P<0.05) (Supplemental Table 7)[38]. IFNG, TLR4, and VDR all showed 

P<0.05 for the association with TBscore, and SLC11A1 had P=0.053. Most of the gene regions 

examined did not show a statistically significant association, indicating that there are likely 

unique sets of genes that drive severity versus susceptibility. To follow-up our previously 

identified association with  IL12B variants [17], we examined the association between any SNPs 

+/- 50kb from IL12B with P<0.05 for association with TBscore in Cohort 1, and identified three 

SNPs with P<0.05 in this region (Supplemental Table 8). These findings add further evidence 

that there are likely distinct sets of genes associated with susceptibility to and severity of TB 

disease. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.22279140doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.23.22279140
http://creativecommons.org/licenses/by-nd/4.0/


18

Enrichment Analyses

A total of 169 SNP associations had  P<1 x10-5 and were used for annotation and 

enrichment analysis [39-41]. The analyses showed enrichment for two Reactome pathways: 

platelet homeostasis and organic anion transport (Table 5). The MAGMA analysis of gene-level 

associations with TBscore did not show any significant single gene results at the genome-wide 

level; the most significant association (P=2.1x10-3) was in the PSORS1C2 gene, also known as 

the psoriasis susceptibility 1 candidate 2 gene that is thought to confer susceptibility to psoriasis. 

There were 19,220 genes represented in the summary statistics and the resulting p-value 

threshold for genome-wide significance at the gene-level was P<2.6x10-6. While no individual 

genes or gene sets were found to be significant, the MAGMA gene level analysis of tissue 

specificity showed that the genes represented in the data are significantly differentially 

expressed, and specifically up-regulated, in blood vessels based on tissue specificity data from 

GTEx v8 (Figure 5). 
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Table 5. Reactome Gene Set Enrichment Results for SNPs P<1x10-5

GeneSet N n P-value FDR Genes

Transport of Organic Anions 12 3 1.94E-05 2.90x10-2 SLCO1C1, SLCO1B3, SLCO1A2

Platelet Homeostasis 85 5 4.26E-05 3.19x10-2 LRP8, PRKG1, KCNMB3, GNB4, PPP2R5D

N indicates the number of genes included in the entire set while n shows the number of genes that SNPs mapped to 
in our data that were a part of the whole set. The FDR is the P-value for enrichment that has been corrected for the 
number of databases examined

Figure 5.  Gene-level tissue Specificity from MAGMA Analysis and GTEx Database

FUMA GWAS uses MAGMA gene-level analyses and differential gene expression data from GTEx v8 to 
determine if the genes to which the SNPs are mapped are significantly differentially expressed in any 
tissues. This analysis showed that the mapped genes were significantly upregulated in blood vessels 
(indicated by the red color).
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Using  FUMA to determine if any of the 169 SNPs from our GWAS analysis were 

eQTL’s, we found that 25 of the SNPs were eQTL’s that associate with expression of 28 genes;  

some of the eQTL’s showed an association with more than one gene. There were a total of 150 

eQTL effects across different tissues and databases, as many of the 25 eQTL’s associated with 

expression in multiple tissues and/or databases (Supplemental Figure 12 shows the 28 genes). 

Interestingly, 5 of the SNPs with P<1x10-5 were cis eQTL’s for RGS7BP in the same region on 

chromosome 5 as the top GWAS hit. This is consistent with the annotations that showed it is a 

known regulatory variant. The STRING database analysis of protein-protein interactions (PPIs) 

did not show significant enrichment for interactions or for any pathways (Supplemental Figure 

12).

eQTL Analysis of Severity Associated Variants

We next examined whether these suggestive TB severity SNPs were eQTLs in Mtb-

stimulated monocytes (cohort characteristics in Supplemental Table 9).  There were four SNPs 

that showed significant SNP by stimulation interactions that were significant with FDR corrected 

P<0.1, and all of these were cis-eQTL’s (Table 6, Supplemental Table 11). Upon examining the 

marginal effects (no interaction term in model) for these four significant SNPs, only rs2976562 

at the Src-like adaptor (SLA) gene was significantly associated with expression in the MTB-

stimulated stratum (Table 7). This eQTL did not have a significant effect in media-only. Thus, 

rs2976562 meets the definition of a stimulation dependent eQTL, as it is active only within the 

context of MTB infection. In the analyses that were stratified by RSTR or LTBI status, this SNP 

showed a similar Beta (-0.71), but were not statistically significant (FDR=0.15), likely due to the 

decreased sample size. This indicates that the relationship between rs2976562 and SLA is similar 

between RSTR and LTBI, and thus, robust to differences in patients’ clinical characteristics, 
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despite only being significant when the data are combined. Notably, rs2976562 showed 

interaction with MTB stimulation that associated with both SLA and NDRG1 expression, but the 

association with NDRG1 was not significant after FDR correction (Table 6).  However, 

rs2976562 was also found to be an eQTL for NDRG1 in the eQTLGen cis eQTL’s database 

during our interrogation of publicly available eQTL databases described above (Supplemental 

Figure 12, Supplemental Table 10). 

Table 6. Severity Associated cis-eQTL’s with P<0.05 for Effect of Interaction Between 
Stimulation and Genotype on Expression

SNP Gene P FDR Beta

rs58648494 ANKRD33B 0.004 0.063 0.95

rs8100115 ICAM1 0.0041 0.065 0.81

rs8100115 DNMT1 0.0044 0.065 -0.44

*rs2976562 SLA 0.0049 0.068 -0.67

rs8100115 P2RY11 0.025 0.27 -0.79

rs2976562 NDRG1 0.029 0.28 0.63

rs4459669 KLF16 0.032 0.28 -0.25

rs11210569 MTF1 0.037 0.29 0.38

The p-value and beta is for the interaction between SNP and MTB stimulation and the gene column shows the gene 
for which the interaction is associated with expression
*Indicates eQTL that was also significantly associated (P<0.05 after FDR correction) with expression in MTB-
stimulated cells (Figure 6)

MTB stimulation increases the expression of SLA for individuals with CC and CT 

genotypes (Figure 6). The T allele for rs2976562 is associated with lower expression of SLA after 

stimulation with MTB, but is associated with a relative increase in SLA expression prior to MTB 
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stimulation (p=0.03). Hence, the effect of rs2976562 is dependent on MTB infection status of the 

cells. Comparing this to the boxplot of the relationship between rs2976562 and severity shows 

that this same allele is associated with increased severity, especially among homozygotes, who 

appear to have very severe disease on average (Figure 7). Thus, there appears to be a relationship 

between downregulation of SLA upon MTB stimulation and more severe TB disease among T/T 

homozygotes. 

Figure 6. Relationship between rs2976562 alleles and SLA Expression Before and After 
Stimulation with MTB

rs2976562 Genotype Distribution: 96 subjects CC, 44 CT, and 4 TT.  P value in media=0.41, β in 
media=0.6, P-value in MTB stimulated=0.03, β in MTB stimulated=-0.32
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Figure 7. Relationship between rs2976562 alleles and TBscore (severity)

The data show that a statistically significant relationship between SLA expression and 

rs2976562 genotype only becomes apparent in the context of MTB stimulation, though the T/T 

homozygotes do appear to have higher expression of SLA prior to stimulation but the relationship 

was not statistically significant. An examination of population genetic data shows that the T 

allele is found at lowest frequency (11%) in African populations, but it is actually the major 

allele in Asian and American populations (60-70%) and common in European populations [42] 

(Supplemental Table 12).

Discussion

Overall, our results show that human genetic variation is associated with TB severity. We 

found a single SNP that was GWAS significant, but enrichment analyses and tissue specificity 
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both revealed variation in several processes related to vascular biology that have been previously 

implicated in the inflammatory response to infectious disease. Our eQTL analysis results 

suggested that human genetic variation in an important aspect of antigen presentation may affect 

the host response to infection with MTB. A better understanding of these mechanisms, and how 

they relate to severity and mortality in active TB patients, may lead to greater therapeutic insight 

that can reduce the negative impact of active TB disease on human health.

While the MAGMA analysis did not show any statistically significant single-gene effects, 

the tissue expression analysis of our MAGMA results showed that, collectively, the genes 

represented in our severity-associated results are significantly up-regulated in blood vessels in 

response to MTB infection. The vascular endothelium plays an important role in thrombosis and 

inflammation, and the vasculature is responsible for enabling the extravasation of immune 

effector cells in the response to infection[43, 44]. Acute changes in blood pressure during active 

infection can lead to organ failure and death in COVID-19 (hypertension) and acute sepsis 

(hypotension) [45, 46]. Further, vasculitis and stroke (particularly in the context of TB 

meningitis) have been posited as complications of TB disease as a result of inflammation and 

dysregulation of vascular function[47-49]. If differences in inflammation, coagulation, and 

regulation of vascular function lead to more severe outcomes and/or death, then an understanding 

of this phenomenon, and how to address it, could drive an improvement in outcomes and 

reduction in mortality for active TB patients. 

Previous studies of TB susceptibility identified genes that are primarily involved in the 

host immune response. However, the genetics of  severity appears to incorporate a different 

biological process, namely platelet homeostasis. Specifically, platelet homeostasis was found to 

be enriched in the GSEA analyses using FUMA, and platelets are an important part of the 
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response to both inflammation and infection[50, 51]. Platelets are involved in crosstalk between 

immune effector cells and aid in the body’s ability to sense pathogens and enable infection-

induced inflammation[50-53]. This inflammation often leads to a state that boosts coagulation in 

humans and a previous study showed that TB patients are in a pro-coagulatory state[54, 55]. The 

damage that dysregulation of platelet homeostasis and coagulation can cause has also been 

demonstrated in acute sepsis and septic shock [56]. Notably, septic shock has been` previously 

reported as a common cause of death in pulmonary TB patients[57].That most genes previously 

associated with susceptibility did not significantly associate with TB severity emphasizes that 

although the two phenotypes have some overlap thet are likely genetically and biologically 

distinct.

Our eQTL results help clarify the effect that some of the severity associated DNA 

variants exert on gene expression. While the GWAS significant SNP was not shown to be an 

eQTL, multiple SNPs within the same region as the GWAS significant SNP (rs1848553) appear 

to be eQTL’s for RGS7BP, implying that there may be a functional role for this gene in active 

TB. The stimulation-dependent eQTL, rs2976562, was an important regulator of SLA in the 

context of in vitro stimulation in monocytes and resides in a flanking promoter region[58]. While 

this region does not contain the promoter for the SLA gene, it has been associated with 

expression of other genes and may be an enhancer for SLA. 

The SLA (Src-like adaptor) gene codes for the SLAP-1 protein. The DICE database 

indicates that SLA is expressed in a number of immune cells, including monocytes, but that its 

expression is highest in T-cells (Supplemental Figure 13)[59]. SLAP-1 is an adapter protein that 

negatively regulates T-cell receptor signaling, inhibits T-cell antigen-receptor induced activation 

of nuclear factor of activated T-cells, and is involved in the negative regulation of positive 
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selection and mitosis of T-cells[37, 60, 61].  SLAP has a role in activation and maturation of 

monocyte and dendritic cells through downregulation of granulocyte macrophage colony-

stimulating factor receptor (GM-CSFR) [35]. SLAP deficient bone marrow-derived dendritic 

cells produce less TNF-α and IL12 in response to LPS, fail to stimulate T-cells in mixed 

lymphocyte reactions, and are less effective at inducing IFN-γ secretion from T cells[62]. Thus, a 

deficiency of SLAP-1 likely impairs a robust immune response, and reduces ability to generate 

cytokines (IL12, IFN-γ, and TNF-α) that are important drivers of the host immune response to 

active TB infection[63-65]. Further, variants that code for these proteins have previously been 

implicated in TB severity and/or susceptibility. Our results in conjunction with prior literature on 

the role of SLA indicate that decreased SLA expression may be associated with more severe 

disease and this may be explained by dysregulation in the maturation of monocytes and dendritic 

cells. 

This study is not without limitations: 1) our sample size is small by the standards of many 

modern GWAS studies; and 2) there were differences between the two cohorts, namely in 

TBscore and in the proportion of HIV+ individuals. The analyses controlled for the latter factor 

by adjusting for HIV status. That said, the genomic control parameter was below 1, so it does not 

appear that there was significant genome-wide inflation. Furthermore, we used a stringent I2 

threshold to exclude SNPs showing heterogeneity of effects. Thus, it is unlikely that differences 

between the two cohorts substantially affected the associations. For our eQTL analyses, a more 

directly related phenotype would have been cells harvested from patients with active TB, as this 

was the patient population from our GWAS analysis. However, the stratified analysis indicated 

that the association we observed was similar in LTBI patients, and thus unlikely to be sensitive 

to the inclusion of RSTR subjects in the data. The small sample size also affected our eQTL 
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analysis; the strongest association between rs2976562 genotype and SLA expression was among 

TT homozygotes, of which there were only 4.

In conclusion, this study demonstrates that TB severity associates with genetic variation 

and indicates that variation in both the regulation of platelet homeostasis and vascular function 

may be driving outcomes for active TB patients. Our eQTL results indicated that regulation of 

SLA may be an important driver of variation in active TB severity due to an impact on a 

fundamental aspect of the host immune response to TB disease. Further study of the impact of 

SLA may yield insight into a more effective host immune response that is associated with less 

severity and mortality.  Future studies should consider the role that infection-induced 

inflammation plays in active TB severity, in the hope that mortality and other severe outcomes 

might be mitigated or avoided through a better understanding of these processes.

Methods

Ethics statement

The study protocol was approved by the National HIV/AIDS Research Committee and 

the institutional review board at University Hospitals Cleveland Medical Center. Final clearance 

was given by the Uganda National Council for Science and Technology.  All participants 

provided written informed consent.

Study participants

TB cases and extensive clinical data were ascertained as part of the Kawempe 

Community Health Study (KC Study) [66], a longitudinal household contact study conducted in 

Kampala, Uganda from 2002-2017 through the Uganda-CWRU Research Collaboration. The KC 

Study enrolled 3,818 total participants, of which there were 872 adult active TB index cases. In 
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the present case-only analysis of severity, a subset, for whom available genotype data and the 

information necessary for assigning the TBscore exists, were identified from these 872 index 

cases (Supplemental Table 1). The TBscore developed for adults may not appropriate for 

individuals under 15. Thus, our sample was limited to TB cases 15 years old and older. We 

examined two subsets, as described in our past publications, that will be referred to as Cohort 1 

and Cohort 2 (N=149 and N=179, respectively) according to different genotyping platforms 

available at different times during the study (described below).  The Bandim TBscore was 

constructed as described previously [19, 67]; further details are provided in the Supplemental 

Methods.  

All TB cases were culture-confirmed based on isolation of MTB from sputum and 

clinical characteristics were assessed during the visit at which subjects were diagnosed with 

active TB. X-rays were performed at the Uganda Cancer Institute. Additional details about the 

original study protocol are described elsewhere [66]. The two subsets differed in percentage of 

HIV positive individuals (Table 1); therefore, HIV status was used as a covariate in all regression 

models. Previous analyses of microsatellite data from these cohorts indicated no substantial 

population substructure, as confirmed by previous principal components (PC) analyses [17, 68]. 

Monocyte Transcriptional Profiles

A follow-up cohort including 72 Ugandan subjects without active TB infection was 

included in a transcriptome-wide study to assess the association between gene expression and 

variants we identified in our GWAS. These subjects were ascertained from the KC Study but 

included only subjects without active TB because this cohort had both genotype and RNA 

expression data available. The follow-up cohort, without active TB infection, was part of an 

analysis that examined whole blood and monocytes isolated from highly MTB-exposed, HIV-
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negative donors in Uganda[69, 70]. Some of these subjects (n=34) showed resistance (classified 

using TST and IGRA) to infection by MTB after repeated exposure, and are referred to as 

resisters (RSTR), as previously described [71, 72]. In addition to the RSTR subjects, there were 

donors with latent tuberculosis (LTBI) defined by concordant positive TST/IGRA. For this 

study, monocytes were isolated from PBMCs and then stimulated with MTB for 6 hours. RNA 

expression levels were assessed in these samples using RNA-seq with and without stimulation by 

MTB[73].

Genotyping and QC

Cohort 1 was genotyped on the Illumina Infinium MegaEX chip, comprising 2.1M 

markers genome-wide. For Cohort 2, we used the Illumina HumanOmni5 microarray comprising 

4.3M markers genome-wide, offering high genome wide coverage of common genetic variation 

within African populations[74]. Prior to imputation, only SNPs that had a call rate greater than 

0.98, minor allele frequency (MAF) > 0.05, and did not show deviation from Hardy-Weinberg 

equilibrium (p<10-6) before and after imputation in both samples were used in the analysis. The 

total number of SNPs that overlapped between the two cohorts after imputation quality control 

(see Supplemental Methods) was 6,421,278. Principal components were computed using Plink 

v1.9 (Supplemental Figures 2,3).

Our follow-up cohort without active TB used for the analysis of monocyte derived 

macrophages was genotyped separately from TB cases in Cohorts 1 and 2. The genotyping for 

this cohort was done on the Illumina MegaEx Chip and had 1,042,921 SNPs prior to imputation. 

To maximize the overlap between the list of SNPs associated with TBscore and those included in 

the genotype data for the 72 subjects with RNA-seq data, we imputed SNP calls on the follow-up 

cohort with the Michigan Imputation Server (Minimac4) with a Minimac R2 >0.3 on the whole 
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MegaEx chip[75]. The 1000G Phase 3 v5 AFR panel was used as the reference population and 

Eagle2 was used for phasing[76]. After imputation, we restricted the analysis to SNPs with MAF 

> 0.05, genotyping rate > 98%, and those that did not violate Hardy-Weinberg equilibrium (at 

p<10-6). Gene expression was measured using RNA-seq in monocyte-derived macrophages, as 

previously described (Supplemental Methods)[70, 73]. 

Genome-wide association analysis

To assess the association between genetic variants and TBscore, we utilized a linear 

regression model with sex and HIV status as covariates in Plink v1.9 software. We then 

combined the summary statistics from the two cohorts to generate meta-analysis derived p-

values. To determine meta-analysis p-values and beta coefficients across the two cohorts, we 

utilized random effects meta-analysis with inverse variance weighting. Based on the Cochrane 

handbook recommendations, all variants with an I2 > 40% were excluded from the analysis to 

reduce heterogeneity between the cohorts [77]. To be considered GWAS significant, the 

association between a variant and TBscore had to have a p<0.05 in both cohorts, the sign of the 

beta value had to be the same in both cohorts, and the meta-analysis needed to meet the 

canonical GWAS threshold (P <10-8). A power calculation showed that, with our sample size and 

mean TBscore, we had 48% power to detect a difference of 1 point on the TBscore at p=5x10-8 

and at a minor allele frequency of 0.25, using an additive model.  To be included in further 

enrichment and annotation analyses, the meta-analytic P-value had to be below 1x10-5. We chose 

this latter threshold because previous studies have shown that some variants that do not meet the 

GWAS threshold may still have important regulatory or biological functions, and may be worthy 

of further study and follow-up, especially in the context of gene regulation [39-41]. We used 

FUMA GWAS to annotate and enrich our SNPs below this threshold. Analyses performed with 
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FUMA included gene mapping, regulatory annotation, tissue specificity, MAGMA analysis 

(gene-based analysis), gene set enrichment, and pathway analyses (Supplemental Methods) [78]. 

In addition to FUMA, we utilized GeneCards, Ensembl, DICE, and STRING DB to annotate and 

enrich our results with respect to function, expression, and downstream protein interactions [36, 

37, 59, 79].

To look more closely at SNPs that showed GWAS significance, we performed decile 

regression on all significant SNPs to determine if and how their relationship with TBscore varied 

across the distribution. Decile regression, performed using QuantReg Software in R 3.6.3, shows 

how the beta values for the SNPs in the linear regression differ by deciles of the TBscore. The 

decile regression utilized the same covariates in the regression equation as the GWAS analysis 

(HIV status and sex). 

To validate our GWAS summary statistics showing association with TBscore, we also 

examined the association between the genetic variants of interest and radiological severity, as 

determined by extent of disease using chest X-ray (CXR) data. Extent of lung involvement was 

measured using the US National Tuberculosis and Respiratory Disease Association (US 

NTRDA) grading system from radiographs taken at the Uganda Cancer Institute and performed 

on the same patients as the analysis of TBscore (i.e. they were identical to Cohorts 1 and 2) [80]. 

The US NTRDA grading system includes categories 0-3 based on extent of disease upon 

radiological examination (Supplemental Figure 4). The categories ranged from 0 as the least 

extensive disease (i.e. least severe) to 3 with the most extensive. For these analyses, we 

combined categories 0 and 1 and categories 2 and 3 from the US NTRDA grading system. This 

was operationalized as a binary variable and the analysis was done using a logistic regression 
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model that adjusted for sex and HIV status. We tested all SNPs with P<1x10-5 for the association 

with TBscore for association with CXR severity. 

eQTL analysis

For our eQTL analysis in the follow-up cohort of 72 subjects without active TB, we first 

generated a list of genes that were differentially expressed in response to MTB infection, so we 

could narrow the list to genes that are regulated in response to active infection. We first analyzed 

eQTL’s using the cross linear model that tests for interactions between genotype (coded 

additively) and MTB stimulation status and its association with expression in a linear regression 

model. For our cross-linear model, if Y=expression, X1=SNP(additive coding), X2=Age, 

X3=Sex, and X4 = MTB stimulation status, then the regression equation for this analysis was: Y= 

β0 +β1X1 + β2X2 + β3X3 + β4 (X4) + β5 (X1X4) + ε. We followed up eQTL’s that showed an FDR 

< 0.1 for the interaction term by testing them for association with gene expression in an analysis 

that stratified by MTB stimulation. All models were adjusted for age and sex. To meet the 

definition of a stimulation dependent eQTL, a SNP had to show a statistically significant effect 

(an FDR < 0.1) in the MTB stimulated samples and a non-significant effect in the unstimulated 

samples (i.e., it had to be active specifically within the context of active MTB infection). We 

examined our list of severity-associated SNPs (i.e. those with P<1x10-5 for association with 

TBscore) within this list of genes that were differentially expressed in response to MTB 

stimulation (e.g., genes with significant interaction terms in the model above).  All eQTL 

analysis was performed using the Matrix eQTL package in R v3.6.3[81]. Additional details about 

the eQTL analysis are found in the Supplemental Methods.  Thus, the primary goal was to 

identify eQTL’s solely active after MTB stimulation, so we could narrow our results down to 

variants that play a role within the context of active TB that influenced severity.  To determine if 
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the eQTL effects observed in the whole cohort differ between those who are RSTR or LTBI, we 

performed a stratified analysis among only LTBI subjects and observed how this affected the 

associations we identified (eg. first order term). 

In addition to the eQTL analysis using the data from our monocyte derived macrophage 

samples, we used FUMA GWAS to query a number of publicly available eQTL databases with 

the severity associated SNPs [78]. FUMA simultaneously queried several databases to see if 

these SNPs are eQTL’s for any of the genes and in any of the tissues included in the eQTL 

catalogue, eQTLgen, BIOSQTL, Blood eQTL Browser, DICE, xQTL Server, and GTEx v8 

databases [59, 82-87]. In order to enrich these results and look for common biological functions, 

we uploaded the list of genes for which these SNPs were eQTL’s into the STRING database[88]. 

This database can implicate protein-protein interactions (PPIs) between the proteins downstream 

of the genes of interest as well as look for pathway enrichment such as KEGG or Gene 

Ontologies. PPIs among genes for which the SNPs from our GWAS analysis showed evidence of 

regulation can link their changes in expression to potential functional roles for their associated 

proteins and help explain why SNPS associated with severity are regulating these genes.
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Figure legends

Figure 1.  The quantile-quantile (Q-Q) plot shows the inverse log(10) of the observed p-values 
on the Y-axis relative to what is expected if there was no association on the x-axis. Deviations 
above the line indicate an association with the outcome. If the line deviates at the low quantiles, 
then this is considered evidence to suggest genome-wide inflation of the test statistics, which 
typically indicates unmeasured confounding (λ=0.98).
Figure 2. The Manhattan plot shows the inverse log(10) of the p-values for the association 
between each SNP and TBscore on the y-axis and the x-axis represent the physical location of 
each SNP on the chromosomes, which are in order from 1-22.
Figure 3. The LocusZoom plot shows the region surrounding rs1848553 on chromosome 5, 
using an LD panel and reference genome from the AFR super-population in the 1000G project. 
Yellow and orange indicate higher levels of LD.
Figure 4. Distribution of TBscore by genotype
Figure 5. FUMA GWAS uses MAGMA gene-level analyses and differential gene expression 
data from GTEx v8 to determine if the genes to which the SNPs are mapped are significantly 
differentially expressed in any tissues. This analysis showed that the mapped genes were 
significantly upregulated in blood vessels (indicated by the red color).
Figure 6. rs2976562 Genotype Distribution: 96 subjects CC, 44 CT, and 4 TT.  P value in 
media=0.41, β in media=0.6, P-value in MTB stimulated=0.03, β in MTB stimulated=-0.32
Figure 7. Distribution of TBscore by genotype

Appendices

Supplemental Methods

Supplemental Data File: 

Supplemental Table 1. Components of the TBscore and Points Contributed to Final Score

Supplemental Table 2. Studies of eQTL’s and Gene Expression
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Supplemental Table 3. Table of all SNPs showing significant association with TBscore, 

accompanied by Summary Statistics from CXR GWAS Analysis (excel file)

Supplemental Table 4. Table of all SNPs showing P<0.05 and Same Direction of Effect for 

Association with TBscore in Both Cohorts, accompanied by Meta-Analytic Statistics (excel 

file)

Supplemental Table 5. MAF, P-value, and β value for rs1848553 Across Cohorts 1 and 2

Supplemental Table 6. Allele Frequencies for rs1848553 in 1000G Project in African 

Populations and Non-African Super-Populations 

Supplemental Table 7. Association with TBscore for SNPs near Genes Previously 

Associated with TB Susceptibility

Supplemental Table 8. Association with TBscore for SNPs within +/- 50Kb of IL12B (excel 

file)

Supplemental Table 9. Cohort Characteristics for Ugandan Subjects in Matrix eQTL 
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Supplemental Table 10. Table of all Differentially Expressed Genes (excel file)

Supplemental Table 11. Table of all eQTL’s from SNPs Associated with TBscore at P<1e-

05 (excel file)

Supplemental Table 12. rs2976562 Allele Frequencies in 1000G Project

Supplemental Figure 1. Imputation and QC of SNPs in Cohorts 1 and 2

Supplemental Figure 2. Plot of PC1 vs. PC2 in Cohort 1

Supplemental Figure 3. Plot of PC1 vs. PC2 in Cohort 2
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Supplemental Figure 4. Categories for X-Ray severity

Supplemental Figure 5. Quantile-Quantile Plot for P-values for Association between SNPs 

and TBscore in Cohort 1

Supplemental Figure 6. Quantile-Quantile Plot for P-Values for Association Between SNPs 

and TBscore in Cohort 2

Supplemental Figure 7. Manhattan Plot of P-values for association between SNPs and 

TBscore in Cohort 1

Supplemental Figure 8. Manhattan Plot of P-values for association between SNPs and 

TBscore in Cohort 2

Supplemental Figure 9. Manhattan Plot for Meta-Analytic P-values for association between 

SNPs and CXR Extent

Supplemental Figure 10. Q-Q Plot for Meta-Analytic P-Values for association between 

SNPs and CXR Extent

Supplemental Figure 11. Decile Regression between rs184553 and TBscore, adjusted for 

Sex and HIV

Supplemental Figure 12. Supplemental Figure 12.  STRING Network for PPI’s from eQTL 

Response Genes

Supplemental Figure 13. Expression of SLA in Immune Cells from DICE Database
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