
Brust and Brust

RESEARCH

Effective Matrix Designs for COVID-19 Group
Testing
David Brust1 and Johannes J. Brust2*

*Correspondence: jjbrust@ucsd.edu
2Department of Mathematics,

University of California, San

Diego, San Diego, USA

Full list of author information is

available at the end of the article

Abstract

Background: Grouping samples with low prevalence of positives into pools and
testing these pools can achieve considerable savings in testing resources
compared with individual testing in the context of COVID-19. We review
published pooling matrices, which encode the assignment of samples into pools
and describe decoding algorithms, which decode individual samples from pools.
Based on the findings we propose new one-round pooling designs with high
compression that can efficiently be decoded by combinatorial algorithms. This
expands the admissible parameter space for the construction of pooling matrices
compared to current methods.

Results: By arranging samples in a grid and using polynomials to construct
pools, we develop direct formulas for an Algorithm (Polynomial Pools (PP)) to
generate assignments of samples into tests. Designs from PP guarantee to
correctly decode all samples with up to a specified number of positive samples.
PP includes recent combinatorial methods for COVID-19, and enables new
constructions that can result in more effective designs.

Conclusion: For low prevalences of COVID-19, group tests can save resources
when compared to individual testing. Constructions from the recent literature on
combinatorial methods have gaps with respect to the possibilities of designs. We
develop a method (PP), which includes previous constructions and enables new
designs that can be advantageous in various situations.

Keywords: Group testing; COVID-19; Combinatorial Design; Affine Plane

Background

The development of vaccines for COVID-19 has constituted a major breakthrough

for the return to pre-pandemic life. However, while vaccines are becoming glob-

ally widespread, levels of caution prevail. Even with vaccines, monitoring for the

evolution of mutations or detecting new outbreaks calls for continued vigilance.

Therefore, testing is likely to prevail as a vital mechanism to inform decision mak-

ing in the near future. In order to conserve scarce testing resources, the Centers

for Disease Control and Prevention (CDC) in the United States have endorsed so-

called group/pooling test methods (likewise, group testing is also being deployed

in Central Europe, China, India, Israel and more nations). Such methods date to

Dorfman’s early work in 1943 [1], and can be expressed using linear systems. The

basic principle underlying pooling tests is the observation that to efficiently detect

positive cases among a population with a relatively low occurrence prevalence, it can

be advantageous to test groups of samples instead of testing all individual samples.

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:jjbrust@ucsd.edu
https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 2 of 22

One-round Methods

For a set of N samples S = {v0, v1, v2, . . . , vN−1}, a basic pooling test pools (mixes)

all samples into one group, and subsequently uses one test on this group. If the pool

is negative then it can be concluded that each individual sample must be negative. If

the pool tests positive at least one sample is positive, and all individuals are retested.

This strategy is an example of a 2-round pooling test (in general multi-stage). Based

on information from previous testing rounds multi-stage tests update the samples

to be tested in the next round. Such methods enable desirable reductions in the

number of total needed tests, however they come at the expense of longer times to

receive results (since each round adds approximately the same amount of time). An

approach that overcomes potentially long wait times is a one-round method [2].

The simultaneous identification of the samples can be represented by a linear

system. Since being positive (having the disease) or being negative (not having the

disease) are binary states, binary digits i.e., v ∈ {0, 1} will be used throughout.

Additions and multiplications with v are defined by bit-wise OR (+) and AND (∗)
operations. Most of the arithmetic carries over expectedly, with the exception that

1 = 1 + 1 in binary form. Suppose now that for certain integers q ≥ 2 and d ≥ 2 the

samples S = {v0, v1, v2, . . . , vN−1} with N = qd have been collected. We would like

to infer the states of the elements of vector v ∈ {0, 1}N based on M < N observed

test results, encoded in vector w ∈ {0, 1}M . Which elements of v are included in

which test of w is determined by the binary matrix M ∈ {0, 1}M×N . Specifically,

if test i contains sample c then Mi,c = 1. The Polymerase Chain Reaction (PCR)

technology is used to generate the test outcomes in w (by amplifying the detectable

viral load in each pool). All essential information about the pooling tests is therefore

encoded in the linear system

Mv = w (1)

In such schemes pools of size m < N are formed and simultaneously tested. The

distinct composition of pools with respect to their individual samples is essential

for one-round methods to exactly identify the true positive samples.

Pooling Matrix M

The distribution of nonzeros in the pooling matrix is equivalent to the design of

pooling tests. Importantly, meaningful constructions of M enable one to exactly

identify up to a certain number of positive samples using only the matrix and the

observed values in w. Two properties that ensure that up to k ≥ 1 positive samples

are guaranteed to be identified are:

P.1. Each pair of different samples (vi, vj) occurs at most (d − 1) times (i.e., any

column pair has at most (d− 1) common nonzeros),

P.2. Each sample is contained in k(d− 1) + 1 tests.

To see the role of these properties we describe the main processes for decoding the

observed outcomes to the desired sample values (cf. [3, Corollary 1], too).

Decoding

Suppose that there are up to k positives among all samples. Select and consider an

arbitrary sample. If any of the first k(d− 1) tests with this sample are negative the

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 3 of 22

sample must be negative. Otherwise there are two possible cases. In case one, the

sample was misfortunately always paired with one of the k positives, even though

it is negative. The second case is that the sample is indeed positive. Hence, based

on property P.2., if the next test with this sample (i.e., test k(d−1) + 1) is negative

the sample must be negative. If the test is positive the sample must be positive. By

P.2., each sample is contained in k(d − 1) + 1 tests and therefore all samples can

be identified. Even though not absolutely necessary for the decoding of samples, an

additional desirable property may be to have uniform pool sizes, since equipment

and PCR setups typically have uniform layouts. An effective and fast algorithm

to decode the observed w into v is Combinatorial Orthogonal Matching Pursuit

(COMP) [4]. This algorithm declares vj = 1 if all tests in which vj is contained are

positive and correctly detects up to k positives when M has properties P.1. and P.2.

A straightforward representation of the COMP decoding algorithm is, with “.*”

meaning element-wise multiplication:

vj = 1 if M:,j .* w: = M:,j 1 ≤ j ≤ N.

Illustration

In an example scheme with d = 2, q = m = 4, N = qd = 16 and M = 8 the linear

system for doing M simultaneous tests (where rows are labeled [`1-`8] and columns

[0-15]) is given by:

`1

`2

`3

`4

`5

`6

`7

`8

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


= M

Here, the first row of M corresponds to pooling samples (v0, v1, v2, v3) in test 1

(labeled `1). Observe that d − 1 = 1 and that the matrix satisfies property P.1.,

since each pair of columns has at most one common nonzero. Moreover, note that

each sample occurs in k(d− 1) + 1 = 2 tests since each column has 2 nonzeros (also

here k = 1). Based on P.1. and P.2., M can therefore be used to exactly identify

v in (1) when v contains up to one nonzero element. This design consequently

uses 8 tests to identify up to one positive among 16 samples. The “Gain” (G)

in using M, when compared to testing all samples individually, is the ratio: G =

N/(Number of tests) = 16/8 = 2.

For the special case that d = 2 and when each test has the same number of

m samples, M is called a multipool matrix, and k + 1 represents the multiplicity

of the matrix [5]. Moreover, multipool matrices are a specific block design from

combinatorial designs [6, Part II]. Concretely, a balanced incomplete block design

(BIBD) is a pair (S,B) where S is a set of N elements and B is a collection of b

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 4 of 22

m-subsets of S (called blocks) such that each element of S is contained in exactly r

blocks and any 2-subset of S is contained in exactly λ blocks. Therefore, a mulitpool

matrix corresponds to a BIBD with λ = 1 and r = k + 1.

Recent pooling methods applied to COVID-19

In the following, we review published pooling methods used in infectious disease

detection and high-throughput screening. Emphasis is placed on the state of the art

literature on pooling methods applied in the context of COVID-19 testing.

The “square array” and related “grid” methods are commonly used for the gener-

ation of pooling designs and their evaluation in the presence of testing error [7, 8, 9].

These designs are characterized by arranging the samples in the form of a grid that

can be square. Samples are then grouped together by pooling along rows, columns

or sloped lines of the grid.

An early study in the context of COVID-19 disease detection proposes a non-

adaptive, one round grid design termed “multipool” [5]. The notation (N ,n,k)-

multipool is introduced to help distinguish the notation. N is the number of samples

in the pooling scheme, n is the order and k is the “multiplicity”, the number of pools

each sample appears in that bounds the maximum number of positives the method

guarantees to detect with the COMP algorithm [5]. The multipool design yields

pools of size n, a prime number, capable to test up to n2 samples in one round of

testing. Summarizing, the samples are arranged in an n× n square grid. Pools are

formed by pooling along rows, columns or sloped lines of the grid. Thus all samples

are covered once by a parallel class [6, I.1.6] of n pools corresponding to one pooling

direction. The resulting “multipool” consists of the collection of k ≤ m+ 1 parallel

classes, capable of detecting up to k − 1 positive samples.

For certain situations, an important parameter in the construction of pooling

designs is the pool size m which determines the number of tests needed in order to

detect the expected amount of positives and hence the pooling efficiency [10, 11].

The authors of [10] first describe the dependency of pooling efficiency on the pool

size and prevalence of positive samples in the context of two-stage pooling tests.

The argument is based on the calculation of the expected value of analyses (tests)

per sample as a function of pool size required to identify the anticipated number of

positive samples. Derivation of this expected value with respect to the pool size and

target prevalence yields a formula for the optimal pool size in their model. Tables

with optimum pool sizes for a wide range of expected prevalences are provided

for referencing. A pooling design method that is flexible and whose pool size can

be tailored to match the optimum at given prevalence is expected to yield higher

pooling efficiency.

Pooling designs whose set of pools can be partitioned into subsets which each par-

tition all samples are called resolvable [6, I.1.6]. The so called “Shifted Transversal

Design” (STD) [3] is a non-adaptive, combinatorial pool testing method designed

for the application in binary high throughput screening and is an example of re-

solvable designs. A variation of STD, adapted and applied to high-throughput drug

screening is presented in [12]. The STD pooling scheme is centered around the pa-

rameter q, which must be prime. STD yields a set of pools which are grouped into

q+1 “layers”, each of which in turn partitions all samples thus making it resolvable.

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 5 of 22

The first q layers share a regular structure and are therefore called homogeneous.

The last remaining layer has a specific construction that differs from the homoge-

neous layers and is hence called singular. A central characteristic of STD is that

pairs of samples should occur together in the same pool only a limited number of

times (co-occurrence of samples). In [3] the co-occurrence is denoted by Γ and the

relationship for the maximum number of t positives that are guaranteed to be dis-

covered by a pooling scheme for a fixed value of q is given by Γt + 1 ≤ k where k

is the number of layers. Since STD based on q generates up to q + 1 layers it holds

that Γt ≤ q.
A recent study [13] proposes a new algorithm “packing the pencil of lines” (PPoL)

for the construction of pooling tests in the context of COVID-19 infection detection.

Its conception relies on bipartite graphs and properties of finite projective planes.

The construction starts with a bipartite graph whose nodes are connected according

to the incidence structure of points and lines prescribed by a finite projective plane

of prime power order m. The initial graph consists of m2 + m + 1 sample and

m2 + m + 1 pool nodes, which correspond to the points and lines of the finite

projective plane respectively. Specifically, there is an edge between a sample node

and a pool node in the graph, if the corresponding points and lines in the finite

projective plane are incident. Trimming the graph by removing nodes and associated

edges according to the PPoL algorithm results in a pooling scheme for testing m2

samples with characteristic parameters (d1, d2). It can be represented as a d1m×m2

binary pooling matrix where the parameters d1 and d2 are the number of non-zero

elements in each column and row of the pooling matrix, respectively. d1 corresponds

to the number of pools that each sample occurs in and d2 = m is the pool size.

The compression gain of this pooling matrix is G = m2

md1
= d2

d1
and the number of

positives that can be detected is d1 − 1.

In the same study, the authors also compare the performance of pooling designs

generated with PPoL with published approaches from the literature in a proba-

bilistic analysis. Samples are assumed as independent and identically distributed

Bernoulli random variables, with a probability of being positive r1 (prevalence) and

negative r0, respectively. Simulated pooling test results are decoded according to the

different pooling matrices using the “two-stage definite defective decoding” (DD2)

algorithm [14]. Performance is measured by “expected relative cost” (ERC) which

is the expected value of required tests for the detection of positive samples with the

DD2 algorithm, divided by the total number of samples in the pooling scheme. In

terms of DD2, the ERC is expressed as 1
G + r0p0 + r1p1, where p0 and p1 are the

conditional probabilites that a sample cannot be decoded given it is negative and

positive, respectively.

PPoL pooling matrices share a common structure and properties with the newly

proposed pooling methods from this article, and the performance assessment de-

scribed above should carry over to the proposed methods in this work.

PPoL [13], P-BEST [15], Tapestry [16, 17] and 2D pooling matrices [18] are com-

pared, where 2D pooling [18] is a particularly simple example of grid designs, which

considers pooling along the 8 rows and 12 columns of a standard 96-well plate to

form 20 pools in total. The pooling designs in [15, 16, 17] are decoded by compressed

sensing algorithms.

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 6 of 22

It was revealed that pooling schemes that offered the highest performance at low

prevalence rates (P-BEST and PPoL-(31,3)) yielded lower performance for increas-

ing prevalence rates. The opposite was also observed where pooling schemes with

comparatively lower performance (Tapestry, 2D pooling) did not suffer from higher

expected relative cost at higher rates of prevalence. Overall it was revealed that

no single design can achieve the highest compression gain for all considered values

of prevalence when evaluated with the DD2 algorithm. Instead, the best pooling

scheme should be selected depending on the expected prevalence rate of positives.

Summarizing, most of the reviewed pooling designs rely on selecting suitable pa-

rameters for the construction. From our observation, limitations in admissible con-

struction parameters for published pooling designs are common. Methods have been

proposed, that center around the order parameter q and that can test N = qd sam-

ples with either d = 2 or d ≥ 2. Often the order q is limited to prime numbers.

In cases were q was permitted to assume values of prime powers, the constructions

were restricted to d = 2. This limits the total amount of samples N = q2 that can be

tested in one round and thus the maximum achievable compression gain. Published

methods often rely on affine planes in the construction of pooling designs restricting

the value of the pool size parameter which for affine planes is the same as the order

m = q. As has been demonstrated, the optimal pool size for use in pooling designs

depends on the prevalence of positive samples. Designs relying only on fixed values

of m therefore cannot be adapted to best match the expected prevalence rate.

Contributions

Addressing the observed limitations in the published methods, we propose novel

constructions for one-round combinatorial pooling tests that expand the state of

the art methods in three ways. First, the proposed method permits prime power

values for the order of the design q = pn, which makes the method more flexible

with regard to input parameters. Second, it includes pooling matrices based on

projective geometries, where the pool size assumes values of m = q + 1. Because

optimal pool size depends on the prevalence of positives [10, 11], projective geome-

tries extend the range of available pool sizes and facilitate matching the design to

the expected prevalence ratio. Third, it introduces pooling designs based on prime

power order q = pn with dimension d ≥ 2 which expands the available parame-

ter space for methods delivering high compression gains for large N compared to

current methods.

Results
We organize our results into two parts. In the first part of the results we describe

our new algorithm for generating pooling tests. In the second part of the results,

we compare our algorithm to existing state-of-the-art pooling methods (Tables 2 -

5).

Results 1

We propose a novel algorithm called PP (Polynomial Pools), which is based on

arranging samples in a grid and generating pools using polynomials. The degree

of the polynomial is d − 1 and a sample is represented with a pair of coordinates

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 7 of 22

v = (x, y). When d = 2 our method is analogous to the incidence matrix of an

affine plane [6, VII.2.2], [19] and the polynomials reduce to lines. For p = q a prime

number the computations can be done using modulus arithmetic. Specifically, a

finite field of order p is defined by Fp = {0, 1, 2, . . .}mod p and has the important

property that arithmetic calculations remain within the field. We label pools by `

and group samples through the linear relation

y = a x+ b, a, b, x ∈ Fp. (2)

The total number of samples in the affine plane (i.e., d = 2) is the square N = p2.

For fixed a, b in Fq and the interval of integers 0 ≤ i ≤ p − 1 we compute pools

using the formulas

xi = i

yi = (axi + b)mod p

vpxi+yi = (xi, yi) (3)

A line/pool containing p samples is then the set {vpxi+yi
}p−1
i=0 . We generalize this

method further in three ways. First, for d = 2, we include the option of constructing

a projective plane [20, VII.2.1]. The projective plane is based on N = p2 + p + 1

samples with each pool containing p + 1 samples. This makes extended designs

possible that use pool sizes, which are not primes. Second, we exploit the fact that

affine and projective planes can be generated from prime powers q = pn with n ≥ 1.

The finite field of order q (also known by Galois field) then defines computations.

Note that when p = q (i.e., n = 1) and the order of the finite field is prime, then

modulus arithmetic similar like in (3) is applicable. However, for prime powers

q = pn(n > 1) the computations in the Galois field use sophisticated techniques.

Specifically, the integer elements in the finite field are mapped to polynomials with

which arithmetic operations are performed (e.g., addition and multiplication) before

being mapped back to integers. Moreover, we include a dimension parameter d ≥ 2

which enables designs with high compression gains by generating matrices that grow

fast with regard to the total number of samples N = (pn)
d
.

Algorithm

To generalize (3), we denote the finite field by Fq with order q = pn, n ≥ 1. Defining

indices 1 ≤ l ≤ d − 1, 0 ≤ xil ≤ q − 1 we compute the coordinates of a sample

v = (x, y) using polynomials

y = ad−1 xid−1
+ · · ·+ a xi1 + b, a, b, xil ∈ Fq. (4)

Note that when d = 2 and p = q this reduces to the linear equations from (2).

We represent the combination of looping through the xil values by a set with qd−1

elements of a sequence of d− 1 integers xi1 × · · · × xid−1
= {(i1, . . . , id−1)}, where

0 ≤ il ≤ q − 1. Without loss of generality, the combination is such that id−1 cycles

every q times, id−2 cycles every q2 times until i1 cycles only once. Formulas that

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 8 of 22

(d = 3; q = 3; a = 1; b = 0)

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

v21

v22

v23

v24

v25

v26

`1

v0

v1

v2

v3

`1

v4

v5

v6

v7

`1

v8

v9

`1

v10

v11

v12

v13

`1

v14

`1

v15

v16

v17

v18

v19

`1

v20

`1

v21

v22

v23

v24

`1

v25

v26

Figure 1 For given parameters, samples are pooled using the polynomial relations from (5).
Computation of the indices for samples from the pool is shown in Table 1.

Table 1 Computing a pool ` using formula (5) for d = 3, q = 3, a = 1, b = 0

i1 i2 xi yxi qxi + yxi `
0 0 0 0 0 v0
0 1 1 1 4 v4
0 2 2 2 8 v8
1 0 3 1 10 v10
1 1 4 2 14 v14
1 2 5 0 15 v15
2 0 6 2 20 v20
2 1 7 0 21 v21
2 2 8 1 25 v25

compute the sample indices, and thus the corresponding pools, for fixed a and b,

are given by

xi =

d−1∑
l=1

qd−1−l il

yxi
=

d−1∑
l=1

al il + b (computed in Fq)

vqxi+yxi
= (xi, yxi

) (5)

Similar like in (3) computing yxi
in (5), when p = q (i.e., prime), can be done

using the modulus yxi = (
∑d−1

l=1 al il + b)mod q. Otherwise the additions and

multiplications in the expression for yxi
are defined by the operations in the finite

field. To illustrate the use of (5) we generate one pool ` when the slope and intercept

are fixed at a = 1, b = 0 and the parameters are d = 3 and q = p = 3. Table 1

describes the calculations which correspond to the set of samples highlighted in

Figure 1.

An algorithm that computes sample pools according to polynomial pooling for a

desired set of input parameters is given in Algorithm 1. The inputs include q = pn, d

and k. The meaning of the parameters is: order (q) a prime power q = pn, n ≥
1, p (prime), which includes and extends prime number constructions; dimension

(d) enables scaling to large sample sizes N = qd; characteristic (k) is the limit of

positive samples up to which the design exactly decodes all samples. An additional

“if else” statement is included, which can be used to generate q extra pools when

a = q, i.e., the polynomials have slope of infinity in Fq. The pools in this situation

are formed by grouping qd−1 consecutive samples together. Note that this part of

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 9 of 22

the algorithm is only invoked when the maximum number of positives for the design

is requested k =
⌊

q
d−1

⌋
. In this case we compute the sample index and define the

corresponding point by a different formula.

Algorithm 1: (PP (PolynomialPools))

Inputs: q = pn, 2 ≤ d, 1 ≤ k ≤
⌊

q

d− 1

⌋

for 0 ≤ a ≤ (k − 1)(d− 1), 0 ≤ b ≤ q − 1

0 ≤ i1 ≤ q − 1, · · · , 0 ≤ id−1 ≤ q − 1

if a < q

xi =
d−1∑
l=1

qd−1−l il

yxi
=
(d−1∑

l=1

al il
)

+ b % Sum in Fq

vqxi+yxi
= (xi, yxi

)

else % Slope at Infinity

xi =
d−1∑
l=1

qd−1−l il

y∞i = id−1, x∞i =
d−1∑
l=2

qd−1−l il + qd−2b

vqd−1b+xi
= (x∞i , y

∞
i)

end if

Algorithm 1 generates designs that satisfy properties P.1. and P.2. of a pooling

matrix, which guarantee to correctly decode all samples up to k positives. A design

based on the algorithm is denoted PP(q, d, k). Lemmas 1 and 2 relate Algorithm

1 to the relevant properties P.1. and P.2. We prove the Lemmas in the Section

“Methods”.

Lemma 1 Any pair of samples vi, vj, for i 6= j from a design of Algorithm 1

occurs at most d− 1 times.

Lemma 2 Each sample vi is contained in up to k(d− 1) + 1 tests.

By satisfying properties P.1. and P.2. the designs from Algorithm 1 guarantee to

identify all samples with up to 1 ≤ k positives. The size of a pool is the number

of elements generated by one polynomial pool ` = {vqxi+yxi
}, which is qd−1 =

“# elements(`)” (i.e., the number of combinations of d − 1 integers 0 ≤ il ≤ q − 1

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 10 of 22

with 1 ≤ l ≤ d − 1). One can also see that designs from PP are resolvable. Figure

2 depicts the q − 1 pools that are generated by (5) for a fixed slope a, when the

intercept ranges through 0 ≤ b ≤ q − 1. Note that in Figure 2 all N samples

are pooled into exactly one of the pools, thus forming a resolution. This property

comes from the observation that for a fixed slope, changing the intercept results in

“parallel” polynomials and leads to “parallel” pools. Furthermore, by varying the

parameters q and d many constructions are feasible, which include the possibility

of designs with pool sizes that are for instance not prime.

Projective Geometry

Furthermore, for a construction from a projective geometry, we modify a design

from PP(q, 2, k). Specifically, we first construct pools from an affine plane of order

q for 1 ≤ k ≤ q by invoking PP(q, 2, k). Then, depending on whether k = q or

k < q the design is obtained differently. For k = q, each pool of the affine plane is

augmented with one variable. Denote by `aff
qj+i for 1 ≤ i ≤ q and 0 ≤ j ≤ q the pools

from the affine plane. The projective plane is then obtained by generating the pools

`proj
qj+i = {`aff

qj+i, vq2+j+1} and adding one extra pool `proj
q2+q+1 = {vq2+j+1}qj=0. The

full projective plane (k = q) results in a square matrix, which is not advantageous for

group testing. Therefore, we next develop an approach for k < q which is practically

more relevant. In particular, the first q(k + 1) pools are extended with one sample

like before, `proj
qj+i = {`aff

qj+i, vq2+j+1} for 1 ≤ i ≤ q and 0 ≤ j ≤ k. Then we add q−k
“singleton” pools each containing only one sample so that `proj

q(k+1)+s = vq2+k+s+1

with 1 ≤ s ≤ q−k. A projective geometry enables designs with pool sizes m = q+1

(and individual tests), and thus opens up new constructions. We denote designs

from projective geometries by PPPG(q, 2, k).

Results 2

In the following we highlight characteristics of the PP method proposed in this

work by comparing it to previously published methods presented in Section “Recent

pooling methods applied to COVID-19”.

Prime power order

We first compare PP to (N ,n,k)-multipool designs [5], where overline notation was

introduced in the leading paragraph of Section “Recent pooling methods applied to

COVID-19”. The construction of multipools is restricted to prime orders n = p. The

remaining design parameters follow as N = n2 and k ≤ n+1. In the particular case

of non-prime orders n, the method is restricted to k ≤ 3. This limits the number

of detectable positives to k − 1 = k = 2 when non-prime orders are chosen. Table

2 compares the pooling designs that can be generated with the (N ,n,k)-multipool

method and with PP of non-prime order n = 8 and N = 64 for the detection of k

positives (this set of parameters was proposed in [5, Section 4])

For the case considered in Table 2 the multipool method can generate designs for

the detection of at most 2 positives whereas PP allows the construction of designs

with k ≤ q. Here we took advantage of the fact that PP can generate designs

with prime power orders q = pn, n ≥ 1, in this case q = 23 = 8. We note that

designs PP(8,2,k), k ∈ {7, 8} are listed for completeness and do not have practical

significance since the compression gain of these designs is not higher than individual

testing.

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 11 of 22

(a)

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

v21

v22

v23

v24

v25

v26

v27

v28

v29

v30

v31

v32

v33

v34

v35

v36

v37

v38

v39

v40

v41

v42

v43

v44

v45

v46

v47

v48

v49

v50

v51

v52

v53

v54

v55

v56

v57

v58

v59

v60

v61

v62

v63

`1

v0

v1

v2

v3

v4

`1

v5

v6

v7

v8

v9

`1

v10

v11

v12

v13

v14

`1

v15

v16

`1

v17

v18

v19

`1

v20

v21

v22

v23

v24

v25

v26

`1

v27

v28

v29

`1

v30

v31

v32

v33

`1

v34

v35

v36

v37

v38

`1

v39

`1

v40

v41

v42

v43

v44

`1

v45

v46

v47

v48

v49

v50

`1

v51

v52

v53

`1

v54

v55

v56

`1

v57

v58

v59

`1

v60

v61

v62

v63

(b)

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

v21

v22

v23

v24

v25

v26

v27

v28

v29

v30

v31

v32

v33

v34

v35

v36

v37

v38

v39

v40

v41

v42

v43

v44

v45

v46

v47

v48

v49

v50

v51

v52

v53

v54

v55

v56

v57

v58

v59

v60

v61

v62

v63

`1

v0

v1

v2

v3

v4

`1

v5

v6

v7

v8

v9

`1

v10

v11

v12

v13

v14

`1

v15

v16

`1

v17

v18

v19

`1

v20

v21

v22

v23

v24

v25

v26

`1

v27

v28

v29

`1

v30

v31

v32

v33

`1

v34

v35

v36

v37

v38

`1

v39

`1

v40

v41

v42

v43

v44

`1

v45

v46

v47

v48

v49

v50

`1

v51

v52

v53

`1

v54

v55

v56

`1

v57

v58

v59

`1

v60

v61

v62

v63

v0

`2

v1

v2

v3

`2

v4

v5

v6

v7

v8

v9

v10

`2

v11

v12

v13

`2

v14

v15

`2

v16

v17

v18

v19

v20

`2

v21

v22

v23

v24

v25

`2

v26

v27

v28

v29

v30

`2

v31

v32

v33

v34

`2

v35

v36

v37

`2

v38

v39

v40

`2

v41

v42

v43

`2

v44

v45

v46

v47

v48

v49

`2

v50

v51

v52

v53

v54

`2

v55

`2

v56

v57

v58

v59

v60

`2

v61

v62

v63

(c)

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

v21

v22

v23

v24

v25

v26

v27

v28

v29

v30

v31

v32

v33

v34

v35

v36

v37

v38

v39

v40

v41

v42

v43

v44

v45

v46

v47

v48

v49

v50

v51

v52

v53

v54

v55

v56

v57

v58

v59

v60

v61

v62

v63

`1

v0

v1

v2

v3

v4

`1

v5

v6

v7

v8

v9

`1

v10

v11

v12

v13

v14

`1

v15

v16

`1

v17

v18

v19

`1

v20

v21

v22

v23

v24

v25

v26

`1

v27

v28

v29

`1

v30

v31

v32

v33

`1

v34

v35

v36

v37

v38

`1

v39

`1

v40

v41

v42

v43

v44

`1

v45

v46

v47

v48

v49

v50

`1

v51

v52

v53

`1

v54

v55

v56

`1

v57

v58

v59

`1

v60

v61

v62

v63

v0

`2

v1

v2

v3

`2

v4

v5

v6

v7

v8

v9

v10

`2

v11

v12

v13

`2

v14

v15

`2

v16

v17

v18

v19

v20

`2

v21

v22

v23

v24

v25

`2

v26

v27

v28

v29

v30

`2

v31

v32

v33

v34

`2

v35

v36

v37

`2

v38

v39

v40

`2

v41

v42

v43

`2

v44

v45

v46

v47

v48

v49

`2

v50

v51

v52

v53

v54

`2

v55

`2

v56

v57

v58

v59

v60

`2

v61

v62

v63

v0

v1

`3

v2

v3

v4

v5

v6

`3

v7

`3

v8

v9

v10

v11

v12

`3

v13

v14

v15

v16

v17

v18

`3

v19

v20

v21

`3

v22

v23

v24

`3

v25

v26

v27

`3

v28

v29

v30

v31

`3

v32

v33

v34

v35

v36

`3

v37

v38

v39

v40

v41

`3

v42

v43

v44

v45

v46

`3

v47

v48

`3

v49

v50

v51

`3

v52

v53

v54

v55

v56

v57

v58

`3

v59

v60

v61

`3

v62

v63

(d)

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

v21

v22

v23

v24

v25

v26

v27

v28

v29

v30

v31

v32

v33

v34

v35

v36

v37

v38

v39

v40

v41

v42

v43

v44

v45

v46

v47

v48

v49

v50

v51

v52

v53

v54

v55

v56

v57

v58

v59

v60

v61

v62

v63

`1

v0

v1

v2

v3

v4

`1

v5

v6

v7

v8

v9

`1

v10

v11

v12

v13

v14

`1

v15

v16

`1

v17

v18

v19

`1

v20

v21

v22

v23

v24

v25

v26

`1

v27

v28

v29

`1

v30

v31

v32

v33

`1

v34

v35

v36

v37

v38

`1

v39

`1

v40

v41

v42

v43

v44

`1

v45

v46

v47

v48

v49

v50

`1

v51

v52

v53

`1

v54

v55

v56

`1

v57

v58

v59

`1

v60

v61

v62

v63

v0

`2

v1

v2

v3

`2

v4

v5

v6

v7

v8

v9

v10

`2

v11

v12

v13

`2

v14

v15

`2

v16

v17

v18

v19

v20

`2

v21

v22

v23

v24

v25

`2

v26

v27

v28

v29

v30

`2

v31

v32

v33

v34

`2

v35

v36

v37

`2

v38

v39

v40

`2

v41

v42

v43

`2

v44

v45

v46

v47

v48

v49

`2

v50

v51

v52

v53

v54

`2

v55

`2

v56

v57

v58

v59

v60

`2

v61

v62

v63

v0

v1

`3

v2

v3

v4

v5

v6

`3

v7

`3

v8

v9

v10

v11

v12

`3

v13

v14

v15

v16

v17

v18

`3

v19

v20

v21

`3

v22

v23

v24

`3

v25

v26

v27

`3

v28

v29

v30

v31

`3

v32

v33

v34

v35

v36

`3

v37

v38

v39

v40

v41

`3

v42

v43

v44

v45

v46

`3

v47

v48

`3

v49

v50

v51

`3

v52

v53

v54

v55

v56

v57

v58

`3

v59

v60

v61

`3

v62

v63

v0

v1

v2

`4

v3

v4

v5

`4

v6

v7

v8

`4

v9

v10

v11

`4

v12

v13

v14

v15

v16

v17

`4

v18

v19

v20

v21

v22

`4

v23

`4

v24

v25

v26

v27

v28

`4

v29

v30

v31

v32

`4

v33

v34

v35

`4

v36

v37

v38

v39

v40

v41

v42

`4

v43

v44

v45

`4

v46

v47

`4

v48

v49

v50

v51

v52

`4

v53

v54

v55

v56

v57

`4

v58

v59

v60

v61

v62

`4

v63

Figure 2 Generating four pools using PP with order q = 22 = 4 and slope a = 1 when the
intercept b varies between {0, 1, 2, 3 = q − 1} in panels (a),(b),(c),(d).

Table 2 Pooling desings of non-prime order

multipools [5] PP (this work)
k desc. M desc. M
1 (64,8,2)-multipool 16 PP(8,2,1) 16
2 (64,8,3)-multipool 24 PP(8,2,2) 24
3 n.a. n.a. PP(8,2,3) 32
4 n.a. n.a. PP(8,2,4) 40
5 n.a. n.a. PP(8,2,5) 48
6 n.a. n.a. PP(8,2,6) 56
7 n.a. n.a. PP(8,2,7) 64
8 n.a. n.a. PP(8,2,8) 72

Comparison of pooling designs with order q = n = 8 from multipool [5] and PP methods to test

N = N = 64 samples. The designs from the multipool method can detect up to k = 2 positives,
whereas PP can detect up to k = 8 positives.

Pool sizes and projective planes

Published methods often rely on the affine plane with pool size equivalent to the

order of the affine plane m = q [5, 13]. In the context of pool testing with two-

stage decoding algorithms it has been suggested that pool size for optimal pooling

efficiency depends on the prevalence [10, 11]. Table 3 shows pool size and corre-

sponding prevalence values in the first two columns as obtained in [10]. Prevalences

are defined by maximum detectable positives k divided by total samples N . Due to

the discrete nature of pooling designs and their parameters, it is not always possible

to match prescribed values of prevalence exactly, therefore the values of prevalence

shown in Table 3 are within ±5% of the reported values. Designs based on projec-

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 12 of 22

Table 3 Designs with optimal pool size for various prevalences

m prev. N M G desc.

3 0.14 7 5 1.4 PPPG(2,2,1) (1 singl.)†

4 0.071 14 8 1.8 PP(4,2,1)
5 0.043 23 10 2.3 PP(5,2,1)
6 0.031 32 15 2.1 PPPG(5,2,1) (5 singl.)†

7 0.024 42 14 3 PP(7,2,1)
8 0.017 58 16 3.6 PP(8,2,1)
9 0.015 66 16 4.1 PPPG(8,2,1)

10 0.01 96 31 3.1 PPPG(9,2,1) (13 singl.)†

11 0.0083 121 22 5.5 PP(11,2,1)
12 0.0073 137 36 3.8 PPPG(11,2,1) (14 singl.)†

13 0.0059 169 26 6.5 PP(13,2,1)
16 0.0039 256 32 8 PP(16,2,1)
18 0.0031 318 61 5.2 PPPG(17,2,1) (27 singl.)†

32 0.00098 1024 64 16 PP(32,2,1)
†Number of singleton pools added to projective geometry. This ensures that each sample is tested
in the case k < q as described in section “Projective Geometry”. Optimal pool sizes and prevalences
are from [10].

tive geometries PPPG(q,2,k) exhibit pool size m = q+ 1. As is apparent from Table

3 the projective geometries complement the PP designs with respect to the covered

pool sizes. To the best of our knowledge, the combination of PP and PPPG methods

can yield a set of new designs not covered by previously published methods.

Prime power orders and higher dimensions

We refer to the paragraph of Algorithm 1 in Section “Algorithm”, where we describe

the dimension parameter d. There we highlight that designs with d ≥ 2 yield high

compression gains by generating matrices that grow fast with regard to the total

number of samples N = qd. Of the recently published methods, only STD [3] as

well as PP, proposed in this work, take advantage of the exponential growth in total

sample number with dimension. Thus STD and PP are able to achieve significantly

larger compression gains, especially at low rates of prevalence, than methods that

have a fixed dimension of d = 2 e.g. PPoL [13] and “multipools” [5]. The significance

of the dimension d ≥ 2 is illustrated in Table 4 showing design parameters and

achieved compression gains of different pooling designs for the detection of 2 positive

among 961 samples. These values were proposed for the PPoL-(31,3) design in [13]

for prevalences below 2%.

Table 4 Pooling designs from published methods

q d M G desc.
7 4 49 20 PP(7,4,2)
7 4 49 20 STD(961,4,7) [3]

31 2 93 10 PPoL-(31,3) [13]
31 2 93 10 (961,31,3)-multipools [5]

Parameters of pooling designs from published methods and from PP (this work) for guaranteed
detection of k = 2 positives among N = 961 samples.

Table 4 lists the designs from PP (this work), STD [3], PPoL [13] and multipools

[5] with the highest compression gain for these parameters. In this setting, designs

generated by PP and STD are equivalent, the same applies to the designs generated

by PPoL and multipools. The main difference to note is the fact that PPoL and

multipools are restricted to dimension d = 2 and consequently achieve lower com-

pression gains that are, for this set of paramters, half of the compressions achieved

with STD and PP respectively.

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 13 of 22

Higher dimensions d ≥ 2 allow the construction of designs with very large N . As

has been discussed before, the only recently published method that takes advantage

of variable dimension is STD [3]. However, STD is restricted to prime orders q = p.

The PP method presented in this work permits construction based on prime order

as well as prime power order. Therefore all designs that can be constructed by STD

also can be constructed by PP. In the following, examples of designs for large values

of N are given where application of variable dimension yields large compression

gains, especially for low prevalences. Table 5 shows designs for numbers of samples

1000 ≤ N ≤ 25000 for the detection of 1 ≤ k ≤ 50 positives. Prime power orders

q = pn, n ≥ 1 are highlighted with an asterisk, marking designs that are now

available through the PP method proposed in this work.

Table 5 Parameters of large PP designs

q N k d M G

4* 1000 1 5 20 50.0
11 1000 5 3 121 8.3
32* 1000 10 2 352 2.8
32* 1000 25 2 832 1.2
53 1000 50 2 2703 0.4
5 5000 1 6 30 166.7

19 5000 5 3 209 23.9
23 5000 10 3 483 10.4
71 5000 25 2 1846 2.7
71 5000 50 2 3621 1.4
5 15000 1 6 30 500.0

16* 15000 5 4 256 58.6
25* 15000 10 3 525 28.6
53 15000 25 3 2703 5.5

125* 15000 50 2 6375 2.4

8* 25000 1 5 40 625.0
16* 25000 5 4 256 97.7
31 25000 10 3 651 38.4
53 25000 25 3 2703 9.2

163 25000 50 2 8313 3.0

Designs and parameters for increasing sample numbers N for the detection of up to k ∈
{1, 5, 10, 25, 50} positives.
*Design based on prime power order q = pn.

For each set of parameters in Table 5 the design with the largest compression gain

is shown. In general, large compression gains can be observed, especially when few

positives are to be detected. Designs with prime power order q = pn are highlighted.

We want to emphasize that these achieve the highest compression gain for this

parameter set, surpassing designs based on prime order q = p.

Discussion
We next describe practical aspects when applying our method.

Benefits

From the previous section (“Results”) it is evident that PP enables designs that

have not been possible with existing methods. For instance, multipool matrices for

up to 2 positive samples with pool size m = 8 and N = 64 were suggested in

[5]. However, when e.g., up to 3 positives are needed, multipool matrices are not

applicable. Nevertheless, with the same pool and sample size PP enables designs

for situations with up to 8 positive samples (cf. Table 2). This is reminiscent of the

fact that PP permits prime number or prime power orders q.

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 14 of 22

Even though prime power orders are in principle also possible in [13], the methods

therein are restricted to d = 2 and to affine geometries. PP enables constructions

with d ≥ 2, which can be useful for large scale testing because of very high com-

pression gains.

For smaller, specifically targeted pool sizes, the option of using projective geome-

tries, PPPG, makes it possible to find one-round designs for optimal pool sizes from

a two-round method [10] (cf. Table 3)

Finally, PP enables the combination of prime power orders with 2 ≤ d and extends

high throughput methods with 2 ≤ d, but which are constrained to prime number

orders [3] (cf. Table 5).

We describe some additional practical considerations. When a certain fixed num-

ber of samples N̂ are to be tested, designs may not exist that exactly match N̂ . It

is then common to construct pooling tests that exceed this number, i.e., N̂ ≤ N ,

and to “use/tag” the excess samples 0 ≤ N − N̂ to be known negatives.

Another special situation arises with projective geometries. Since PPPG is ob-

tained by augmenting a subset of qk+ 1 pools from an affine plane with one sample

and by adding a selection of “singleton” tests, the number of samples in tests is

twofold: There are q(k+1) tests with q+1 samples and q−k tests with one sample.

Moreover, the PP designs are analyzed in the setting of one-round tests. Embed-

ding pooling matrices with d = 2 in a two round setting results in different properties

and trade-offs [13]. Future work can be based on the larger class of matrix designs

from PP in two-stage pooling test settings.

For finite field computations with prime power order we use the libraries [21, 22].

Changing conditions and setup

When epidemiological conditions are changing, and the prevalence is difficult to

estimate we suggest in a first approach to increase the parameter k (characteristic),

when possible. This will increase the number of tests, however it enables the correct

identification of more positive samples with the current design. When switching to

a different design is straightforward (e.g., because testing is automated by a robot

arm), we suggest a discrete search for a new design based on the updated preva-

lence (i.e., enumerately searching for the highest gain among admissible PP(q, d, k)

designs given an updated value of k and subject to N ≤ qd). Our method is directly

applicable in most laboratory settings with a q-PCR assay. Standard well numbers

on q-PCR machines are 24, 48, 96, 384 and 1,536. Therefore, so long the number

of suggested tests of PP(q, d, k) is below the number of wells our method is directly

applicable (e.g., all designs from Table 2 would fit on plates with 96 ≤ wells).

Pool sizes

Generating designs with large pools dilutes the concentration of each sample. The

article in [15] suggests that pooling 8 samples results in a reduction of ∼ 3 PCR

cycles (a factor of 23), pooling 16 samples results in a reduction of ∼ 4 cycles (a

factor of 24) and, thus in general, that pools of 8n samples result in a reduction

of ∼ (2 + n) cycles. The work in [15] further investigates pools of sizes 48 and

concludes that this number is feasible for identifying positive samples in a PCR

test. The comparisons from Table 2(to the multipool matrices from [5]) are based

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 15 of 22

on pool sizes of 8 samples, and are therefore well within pool sizes that have been

experimentally confirmed. In addition, all designs in Table 3 have pools with upto

32 samples, while 6 out of 9 PP designs from Table 6 have pools with ≤ 48 samples.

Setting k too low

The value of the characteristic k determines how many positives can be correctly

decoded. In the following we describe an approach for the situation that the value

of k is below the actual observed number of positives. In particular, when there

are more positive samples than can be correctly identified (a design with a value

of k that is too low), then the decoding process may introduce false positives.

Importantly, the process does not generate false negatives. Therefore, a practical

strategy is to count the number of positive samples identified during decoding. If

this number is greater than k, then more samples were positive than expected.

Since in this case false positives have been identified, all samples that are labeled as

positive are to be retested. Furthermore, if the tests are mainly performed to confirm

suspected infections then the prevalence for the test may be significantly higher

than the population one. Depending on the actual observed difference individual

testing may be preferable in this situation. However, when testing is performed as

a screening mechanism then it is probable that the samples are independent and

that the prevalence in the tested samples approaches the population prevalence.

Additional applications

In principle, PP can be used for population-wide testing of other diseases with

low prevalences, such as HIV. Other situations where it may become useful is in

genome sequencing, when large numbers of samples are being processed [3] or in

cryptography [23], among many more applications.

Moreover, we describe a detailed example in the Appendix, which lays out the

steps in our group testing strategy. Note that our software implementations

https://github.com/johannesbrust/PP

automate the relevant matrix designs and decoding steps. The example further

describes our method when the prevalence of positive samples is changing, as may

be expected in realistic scenarios.

Conclusions
Since prevalences or testing settings may change with respect to COVID-19 it is

important to have improved options for appropriate test designs. We propose a com-

binatorial method, Polynomial Pools (PP), that includes constructions from existing

approaches and enables new designs. Because of this, PP is at least as effective as

existing approaches, but additionally enables designs with more advantages.

Methods
To motivate the proof for Algorithm 1 (i.e., Lemmas 1,2) we use two basic principles:

• Each (xi, yxi) represents one sample

• Each sample and therefore pairs of samples {(xi, yxi); (xj , yxj)} are computed

using different polynomial slopes and intercepts (adapted for the “infinity”

slope)

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://github.com/johannesbrust/PP
https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 16 of 22

Suppose that 1 ≤ k < p and let j 6= i. Select an arbitrary pair of samples

{(xi, yxi); (xj , yxj)}, computed using, say, a and b. Consider the different slope

a 6= a and intercept b 6= b. There are four possibilities to generate pools in PP, and

consequently pairs of samples other than a base pair

Base: Slope and intercept given a, b with {(xi, yxi); (xj , yxj)}
Case 1: Slope differs a, b with {(xi, yxi

); (xj , yxj
)}

Case 2: Intercept differs a, b with {(xi, yxi
); (xj , yxj

)}
Case 3: Slope and intercept differ a, b with {(xi, yi); (xj , yj)}
Case 4: Slope at infinity a = q with {(x∞i , y∞i); (x∞j , y

∞
j)}

Let y+ ∈ {y, y, y} represent a y value from one of the Cases 1–3. Note that the

conditions for having up to d− 1 occurrences of a pair are for k ∈ {i, j}, t ∈ {i, j},
k 6= t

if yxk
= y+

xk
then yxt

= y+
xt

at most d− 2 times. (6)

Recall the statement for Lemma 1: Any pair of samples vi, vj, for i 6= j from a

design of Algorithm 1 occurs at most d− 1 times.

Proof Using the four cases with 2 ≤ d and q = pn, 1 ≤ n, points (and thus sample

indices) are computed by polynomials over the finite field Fq. In the first three cases

the slopes are not “infinite” in Fq and points are computed using

xk =
d−1∑
l=1

qd−1−lkl, yxk
= (

d−1∑
l=1

alkl + b)Fq
, 0 ≤ kl ≤ q − 1, k ∈ {i, j}

In the fourth case we describe the pools with slope of “infinity”. Suppose that i 6= j.

Case 1: In this case the slopes differ only. Therefore, a 6= a and there is an integer g

such that a+g = a. Similarly, there are integers k 6= t ∈ {i, j} and “subindices” kl, tl

for 1 ≤ l ≤ d− 1 so that kl + gl = tl. Condition (6) is in this case for k 6= t ∈ {i, j}

if yxk
= yxk

then yxt = yxt
at most d− 2 times.

The difference yxk
− yxk

= 0 for k ∈ {i, j} and kl + gl = tl yields

yxk
−yxk

=
(d−1∑

l=1

(al−al)kl
)
Fq

= 0 and
(d−1∑

l=1

(al−al)tl
)
Fq

=
(d−1∑

l=1

(al−al)gl
)
Fq

Note that from a = a + g it holds that al − al = al − (a + g)l. Thus, al − al is

a polynomial of degree at most l − 1 with respect to a since the first term in the

binomial expansion of (a− g)l is al. Then

yxt
− yxt

=
(d−1∑

l=1

(al − al)tl
)
Fq

=
(d−1∑

l=1

(al − al)gl
)
Fq

=
(d−1∑

l=1

(al − (a+ g)l)gl
)
Fq

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 17 of 22

The last equality is a polynomial with degree up to d − 2 in Fq in terms of a.

Therefore, for k 6= t when yxk
= yxk

then yxt = yxt
up to d− 2 times (at the roots

of a polynomial). We subsequently conclude that pairs of samples, including the

“base pair” {(xi, yxi
); (xj , yxj

)} occur up to d− 1 times.

Case 2: The intercept differs and with k 6= t ∈ {i, j}

yxk
− y

xk
= (b− b)Fq 6= 0

Therefore yxi
6= y

xi
and yxj

6= y
xj

and all samples and corresponding pairs are

different in this case.

Case 3: In this case both; slope and intercept differ. Therefore, a 6= a, b 6= b and

there is an integer g such that a+g = a. As in Case 1 there are integers k 6= t ∈ {i, j}
and “subindices” kl, tl for 1 ≤ l ≤ d− 1 so that kl + gl = tl. The relevant condition

for k 6= t ∈ {i, j} is

if yxk
= yxk

then yxt
= yxt

at most d− 2 times.

The difference yxk
− yxk

= 0 for k ∈ {i, j} and kl + gl = tl yields

yxk
− yxk

=
(d−1∑

l=1

(al − al)kl + (b− b)
)
Fq

= 0 and

(d−1∑
l=1

(al − al)gl
)
Fq

=
(d−1∑

l=1

(al − al)tl + (b− b)
)
Fq

Similar like before note that from a = a+ g it holds that al − al = al − (a+ g)l.

Thus, al − al is a polynomial of degree at most l − 1 since the first term in the

binomial expansion of (a− g)l is al. Then

yxt − yxt =
(d−1∑

l=1

(al − al)tl + (b− b)
)
Fq

=
(d−1∑

l=1

(al − (a+ g)l)gl
)
Fq
.

The right hand side in the last equality is a polynomial of degree up to d− 2 with

respect to a in Fq. Therefore, for k 6= t when yxk
= yxk

then yxt
= yxt

up to

d− 2 times (at the roots of a polynomial). We subsequently conclude that pairs of

samples, including the “base pair” {(xi, yxi); (xj , yxj)} occur up to d− 1 times.

Case 4: With the slope at “infinity” in Fq the formula for computing points is

adapted. Recall that for k ∈ {i, j}, xk =
∑d−1

l=1 p
d−l−1kl so that the formula for x∞k

becomes

x∞k =
d−1∑
l=2

pd−l−1il + bqd−2 = xk − qd−2(b− xkd−2
), k ∈ {i, j}

Therefore one sees that for k ∈ {i, j}

x∞k = xk implies xkd−1
= b

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 18 of 22

To investigate the condition in (6) we note that

yxk
= y∞k yields (

d−1∑
l=1

alkl + b)Fq − kd−1 = 0.

Therefore, for k 6= t ∈ {i, j} (and with kd−1 = td−1),

if yxk
= y∞xk

then yxt
− y∞xt

= (
d−1∑
l=1

altl + b)Fq
− td−1

= (
d−1∑
l=1

al(tl − kl))Fq
− (td−1 − kd−1) = (

d−2∑
l=1

al(tl − kl))Fq

The final equality is a polynomial of degree up to d − 2 with respect to a and it

has up to d − 2 roots. Therefore we conclude that a pair of samples occurs up to

d− 1 times in Case 4. In summary, in all cases with 2 ≤ d and q = pn, 1 ≤ n pairs

of samples occur at most d− 1 times according with the result of Lemma 1.

Lemma 2 follows from the previous analysis. Recall the statement of Lemma 2:

Each sample vi is contained in up to k(d− 1) + 1 tests.

Proof First note that one pool corresponds to one combination of slope and intercept

a and b (including the infinity slope). When only the intercept b differs (and a is

fixed), each sample occurs exactly once for a combination of a and all possible values

of b. Since 0 ≤ a ≤ k(d− 1) there are k(d− 1) + 1 different a values and thus each

sample occurs in k(d− 1) + 1 tests.

For d = 2 and q being a prime number the formulas in PP can be represented

using modulus arithmetic and lines. In this situation a further proof of Lemma 1 is

given in the “Additional file 1”.

Appendix
Comparing with published designs

Table 6 contrasts a broader range of published pooling designs with designs using

PP. In [13] the PPoL method was compared to the methods from Table 6 excluding

PP for varying rates of prevalence up to 5 % in terms of the two-stage decoding

algorithm DD2. Performance was measured by expected relative cost (ERC). It was

concluded, that there was no single design with the lowest expected relative cost

for all rates of prevalence and hence the design should be chosen to match expected

prevalence rate. However, according to Figure 11 from [13] the PPoL-(31,3) design

has advantages over other published methods as it showed lower ERC at low values

of prevalence. At the same time its ERC stayed below competing designs for larger

prevalences. Because all PPoL designs are included in PP(q,2,k) designs with q = p

and further ones are possible with PP we extrapolate that the arguments made in

[13] also apply to PP designs. Table 6 illustrates possible advantages with PPoL

designs.

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 19 of 22

Table 6 Overview of published methods and corresponing PP designs

published methods PP (this work)
N k M G desc. M G desc.

961 2 93 10.3 PPoL-(31,3) [13] 49 20 PP(7,4,2)
529 3 92 5.75 PPoL-(23,4) [13] 63 8.4 PP(9*,3,3)
169 2 39 4.33 PPoL-(13,3) [13] 35 4.8 PP(7,3,2)
49 1 14 3.5 PPol-(7,2) [13] 12 4.1 PP(3,4,1)

348 5 48 8 P-BEST Matrix [15] 114 3.1 PP(19,2,5)
35 2 15 2.3 Kirkman Matrix 20 1.8 PP(4*,3,2)
40 2 16 2.5 Tapestry Matrix [16] 20 2 PP(4*,3,2)
60 2 24 2.5 Tapestry Matrix [16] 20 3 PP(4*,3,2)
96 1 20 4.8 2D-pooling Matrix [18] 15 6.4 PP(5,3,1)

Comparison of various published designs presented in [13] is extended to include PP designs.
*Design based on prime power order q = pn.

A detailed example

For a demonstration of how to apply our pooling test method, which consists of the

construction of a pooling design and subsequent decoding, we consider a pooling

design with the following parameters for simplicity: N = 9, k = 1, q = p = 3, d = 2.

The detection of up to k = 1 positives requires (d−1)k+1 = 2 layers with qd−1 = 3

pools per layer. Therefore the chosen parameters lead to a pooling design capable of

detecting up to one positive among nine samples denoted by v0 . . . v8 with six pools

denoted by `0 . . . `5 of three samples each. The table below shows the assignment

of samples into pools according to (3):

i x y qx+ y v `

0 0 0 0 v0 `0

1 1 0 3 v3 `0

2 2 0 6 v6 `0

0 0 1 1 v1 `1

1 1 1 4 v4 `1

2 2 1 7 v7 `1

0 0 2 2 v2 `2

1 1 2 5 v5 `2

2 2 2 8 v8 `2

0 0 0 0 v0 `3

1 1 1 4 v4 `3

2 2 2 8 v8 `3

0 0 1 1 v1 `4

1 1 2 5 v5 `4

2 2 0 6 v6 `4

0 0 2 2 v2 `5

1 1 0 3 v3 `5

2 2 1 7 v7 `5

The assignment of samples into pools can be written as binary matrix M where

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 20 of 22

rows correspond to pools and columns to samples:

`0

`1

`2

`3

`4

`5

v0 v1 v2 v3 v4 v5 v6 v7 v8

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1


= M

When denoting the vectors of samples and pool test results as v and w respectively,

the decoding step corresponds to the solution of the binary linear system

Mv = w.

v0 + v3 + v6 = w0

v1 + v4 + v7 = w1

v2 + v5 + v8 = w2

v0 + v4 + v8 = w3

v1 + v5 + v6 = w4

v2 + v3 + v7 = w5

In the following demonstration we assume that sample v1 = 1 is positive. After

evaluation, all pools containing v1 are positive. All samples that are included in

pools that test negative, must be negative.

v0 + v3 + v6 = w0 = 0

v1 + v4 + v7 = w1 = 1

v2 + v5 + v8 = w2 = 0

v0 + v4 + v8 = w3 = 0

v1 + v5 + v6 = w4 = 1

v2 + v3 + v7 = w5 = 0

Because pool w0 = 0 tested negative, we can deduce that all samples contained

therein also must be negative v0 = v3 = v6 = 0. Analogously from pool w2 = 0,

we decode v2 = v5 = v8 = 0, from pool w3 = 0, we decode v4 = 0 and finally from

w5 = 0, we decode v7 = 0.

v0 + v3 + v6 = w0 = 0

v1 + v4 + v7 = w1 = 1

v2 + v5 + v8 = w2 = 0

v0 + v4 + v8 = w3 = 0

v1 + v5 + v6 = w4 = 1

v2 + v3 + v7 = w5 = 0

Therefore we conclude that the only remaining sample must be positive v1 = 1.

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 21 of 22

This example demonstrates the successful application of a pooling design capable

of decoding up to k = 1 positives when the number of true positives does not exceed

k. For this simple example the case when there are less positives than k would result

in the trivial case of no positive samples leading to all negative pools.

On the other hand, when there are more positives than the design is capable of

handling, it will result in false positives. At the same time, the method does not

produce false negatives. When the decoding step reveals more positives than the

design can identify, all positive samples need to be retested individually. This case

is demonstrated in the following where we assume that samples v3 = v4 = 1 are

positive. The evaluation of pools leads to the following situation:

v0 + v3 + v6 = w0 = 1

v1 + v4 + v7 = w1 = 1

v2 + v5 + v8 = w2 = 0

v0 + v4 + v8 = w3 = 1

v1 + v5 + v6 = w4 = 0

v2 + v3 + v7 = w5 = 1

From the negative pools w2 = w4 = 0 we deduce that samples contained therein

must be negative v1 = v2 = v5 = v6 = v8 = 0. As no further deduction is possible at

this point, the remaining four samples are marked as positive v0 = v3 = v4 = v7 = 1.

Their number exceeds the maximum detectable number of positives k = 1 for this

design. Therefore the four positive samples have to be retested individually.

Alternatively, a new design for larger values of k can be derived. For the detection

of up to k = 2 positives with the other parameters of the example q = 3 and

d = 2 constant, ((d− 1)k+ 1)q = 9 pools would be required. This is infeasible since

it yields no gain with regard to the number of tests compared to testing N = 9

samples individually.

Funding

Not applicable.

Abbreviations
PP Polynomial Pools

PG Projective geometry

COMP Combinatorial Orthogonal Matching Pursuit [4]

STD Shifted Transversal Design [3]

PPoL Packing the Pencil of Lines [13]

P-BEST Pooling-Based Efficient SARS-CoV-2 Testing [15]

DD2 Two-stage Definitive Defectives [14]

ERC Expected relative cost

PCR Polymerase Chain Reaction

Availability of data and materials

The datasets generated and/or analysed during the current study are available in the PP (PolynomialPools)

repository, https://github.com/johannesbrust/PP

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

https://github.com/johannesbrust/PP
https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

Brust and Brust Page 22 of 22

Authors’ contributions
DB produced tables 2–6 and implemented a Julia version of the proposed method. JJB derived the polynomial

representation of pools and implemented a Matlab version of the proposed method. Both authors were major

contributors in writing the manuscript.

Authors’ information
DB is an engineer with more than 8 years of programming experience. JJB is an applied mathematician who

developed affine and projective geometries for COVID-19 pool testing.

Author details
1Institute of Future Fuels, German Aerospace Center (DLR), Jülich, Germany. 2Department of Mathematics,

University of California, San Diego, San Diego, USA.

References
1. Dorfman, R.: On a problem in combinatorics. Cambridge Dublin Math. J. 14(4), 436–440 (1847)

2. Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications, 2nd edn. World Scientific,

Singapore (1999). doi:10.1142/4252

3. Thierry-Mieg, N.: A new pooling strategy for high-throughput screening: the shifted transversal design. BMC

Bioinformatics 7(28) (2006)

4. Chan, C.L., Che, P.H., Jaggi, S., Saligrama, V.: Non-adaptive probabilistic group testing with noisy

measurements: Near-optimal bounds with efficient algorithms. In: In 2011 49th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), pp. 1832–1839 (2011)

5. Täufer, M.: Rapid, large-scale, and effective detection of covid-19 via non-adaptive testing. J. Theor Biol. 506
(2020)

6. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. Chapman & Hall/CRC 2nd ed., New York

(2007)

7. Berger, T., Mandell, J.W., Subrahmanya, P.: Maximally efficient two-stage screening. Biometrics 56(3),

833–840 (2000)

8. Kim, H.-Y., Hudgens, M.G., Dreyfuss, J.M., Westreich, D.J., Pilcher, C.D.: Comparison of group testing

algorithms for case identification in the presence of test error. Biometrics 63(4), 1152–1163 (2007)

9. Kim, H.-Y., Hudgens, M.G.: Three-dimensional array-based group testing algorithms. Biometrics 65(3),

903–910 (2009)

10. Regen, F., Eren, N., Heuser, I., Hellman-Regen, J.: A simple approach to optimum pool size for pooled

sars-cov-2 testing. Int. J. Infect. Dis. 100, 324–326 (2020)

11. Hanel, R., Thurner, S.: Boosting test-efficiency by pooled testing for sars-cov-2—formula for optimal pool size.

PLOS ONE 15(11), 1–10 (2020)

12. Kainkaryam, R.M., Woolf, P.J.: poolhits: A shifted transversal design based pooling strategy for

high-throughput drug screening. BMC Bioinformatics 9, 256–256 (2007)

13. Lin, Y.J., Yu, C.H., Liu, T.H., Chang, C.S., Chen, W.T.: Constructions and comparisons of pooling matrices for

pooled testing of covid-19. IEEE Trans Netw Sci Eng 9(2), 467–480 (2022)

14. Aldridge, M., Johnson, O., Scarlett, J.: Group testing: An information theory perspective. Foundations and

Trends® in Communications and Information Theory 15(3-4), 196–392 (2019)

15. Shental, N., Levy, S., Wuvshet, V., Shosh, S., Shalem, B., Ottolenghi, A., Greenshpan, Y., Steinberg, R., Edri,

A., Gillis, R., Goldhirsh, M., Moscovici, K., Sachren, S., Friedman, L.M., Nesher, L., Shemer-Avni, Y., Porgador,

A., Hertz, T.: Efficient high-throughput sars-cov-2 testing to detect asymptomatic carriers. Sci. Adv. 6 (2020)

16. Ghosh, S., Rajwade, A., Krishna, S., Gopalkrishnan, N., Schaus, T.E., Chakravarthy, A., Varahan, S., Appu, V.,

Ramakrishnan, R., Ch, S., Jindal, M., Bhupathi, V., Gupta, A., Jain, A., Agarwal, R., Pathak, S., Rehan, M.A.,

Consul, S., Gupta, Y., Gupta, N., Agarwal, P., Goyal, R., Sagar, V., Ramakrishnan, U., Krishna, S., Yin, P.,

Palakodeti, D., Gopalkrishnan, M.: Tapestry: A single-round smart pooling technique for covid-19 testing.

medRxiv (2020)

17. Ghosh, S., Agarwal, R., Rehan, M.A., Pathak, S., Agrawal, P., Gupta, Y., Consul, S., Gupta, N., Goyal, R.,

Rajwade, A.V., Gopalkrishnan, M.: A compressed sensing approach to group-testing for covid-19 detection.

arXiv: Quantitative Methods (2020)

18. Sinnott-Armstrong, N., Klein, D., Hickey, B.: Evaluation of group testing for sars-cov-2 rna. medRxiv (2020)

19. Brust, J.J.: Matrix designs for covid-19 group testing. ILAS IMAGE 68, 9–16 (2022)

20. Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2004)

21. Cheng, S.: A toolbox for simple finite field operation (2022). https://www.mathworks.com/matlabcentral/

fileexchange/32872-a-toolbox-for-simple-finite-field-operation Accessed July 7, 2022

22. Kluck, T.: GaloisFields.jl - finite fields for Julia (2022). https://github.com/tkluck/GaloisFields.jl

Accessed July 7, 2022

23. Colbourn, C.J., Dinitz, J.H., Stinson, D.R.: Communications, cryptography, and networking. Surveys in

Combinatorics (267), 37–41 (1999)

Additional Files
Additional file 1 — Proof of Lemma 1

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2022.08.23.22279137doi: medRxiv preprint

http://dx.doi.org/10.1142/4252
https://www.mathworks.com/matlabcentral/fileexchange/32872-a-toolbox-for-simple-finite-field-operation
https://www.mathworks.com/matlabcentral/fileexchange/32872-a-toolbox-for-simple-finite-field-operation
https://github.com/tkluck/GaloisFields.jl
https://doi.org/10.1101/2022.08.23.22279137
http://creativecommons.org/licenses/by/4.0/

	Abstract

