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ABSTRACT 29 

Integrative methods, like colocalization and transcriptome-wide association studies (TWAS), identify 30 

transcriptomic mechanisms at only a fraction of trait-associated genetic loci from genome-wide 31 

association studies (GWAS). Here, we show that a reliance on reference functional genomics panels of 32 

only total gene expression greatly contributes to this reduced discovery. This is particularly relevant for 33 

neuropsychiatric traits, as the brain expresses extensive, complex, and unique alternative splicing 34 

patterns giving rise to multiple genetically-regulated transcript-isoforms per gene. Integrating highly 35 

correlated transcript-isoform expression with GWAS requires methodological innovations. 36 

 37 

We introduce isoTWAS, a multivariate framework to integrate genetics, isoform-level expression, and 38 

phenotypic associations in a step-wise testing framework, and evaluate it using data from the Genotype-39 

Tissue Expression (GTEx) Project, PsychENCODE Consortium, and other sources. isoTWAS shows 40 

three main advantages. First, joint, multivariate modeling of isoform expression from cis-window SNPs 41 

improves prediction by ~1.8-2.4 fold, compared to univariate modeling. Second, compared to gene-level 42 

TWAS, these improvements in prediction lead to ~1.9-2.5-fold increase in the number of testable genes 43 

and a median of 25-70% increase in cross-validated prediction of total gene expression, with the added 44 

ability to jointly capture expression and splicing mechanisms. In external validation, isoform-centric 45 

models predicted gene expression at percent variance explained >1% for 50% more genes than gene-46 

centric models.  Third, across 15 neuropsychiatric traits, isoTWAS increased discovery of trait 47 

associations within GWAS loci over TWAS, capturing ~60% more unique loci and 95% of loci detected by 48 

TWAS. Results from extensive simulations showed no increase in false discovery rate and reinforce 49 

isoTWAS’s advantages in prediction and trait mapping power over TWAS, especially when genetic effects 50 

on expression vary across isoforms of the same gene. We illustrate multiple biologically-relevant 51 

isoTWAS-identified trait associations undetectable by gene-level methods, including isoforms of AKT3, 52 

CUL3, and HSPD1 with schizophrenia risk, and PCLO with multiple disorders. 53 

 54 

The isoTWAS framework addresses an unmet need to consider the transcriptome on the transcript-55 

isoform level to increase discovery of trait associations, especially for brain-relevant traits.  56 
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INTRODUCTION 57 

Over the past decade, the number of genetic associations with complex traits identified by genome-wide 58 

association studies (GWAS) has increased considerably1,2. However, the slow translation of these genetic 59 

associations into concrete molecular mechanisms remains a major obstacle. As GWAS associations 60 

predominately localize within non-coding regions of the genome and are often tagged within large blocks 61 

of linkage disequilibrium (LD), the first major challenge is prioritizing the underlying causal variant(s) 62 

within a given locus and identifying their functional impact on nearby target genes. To address this, 63 

numerous methods have been developed to integrate transcriptomic reference panels with GWAS to 64 

prioritize genes at trait-associated loci3–15. TWAS and related approaches (e.g., PrediXcan) impute the 65 

cis-component of gene expression predicted by germline genetics into an association cohort, thereby 66 

reducing multiple comparisons and increasing interpretability by identifying a set of genes at a locus that 67 

may underlie the genetic association3,4.  Despite these methodological advances, a majority of GWAS loci 68 

still lack robust mechanistic interpretation16.  69 

 70 

Previous integrative analyses have largely focused on aggregated measurements of total gene 71 

expression but have not systematically explored the potentially large number of distinct transcript-72 

isoforms that can be generated from a given genetic locus through alternative splicing. Alternative splicing 73 

is a fundamental form of tissue-specific gene regulation present in more than 90% of human genes, that 74 

vastly expands the coding and regulatory potential of the genome17–20; GENCODE v40 annotates an 75 

average of 4 isoforms per gene (mean 4.05, standard deviation 7.28, median 1)21. Genes uniquely 76 

expressed in the brain, which are longer and contain far more exons, undergo the greatest degree of 77 

splicing compared with other tissues and species—a mechanism contributing to the vast proteomic, 78 

phenotypic, and evolutionary complexity of the human brain22–25. Some genes are known to express up to 79 

hundreds to thousands of unique isoforms in the human brain25. Independent of gene expression, splicing 80 

dysregulation has been increasingly implicated as a putative disease mechanism24,26–30 including for 81 

neuropsychiatric disorders10,24,27,31. Yet, local splicing events can be computationally intensive to measure 82 

and are difficult to systematically integrate across multiple distinct large-scale datasets. Splicing is often 83 

coordinated across a gene, yielding many non-independent features that increases multiple testing 84 
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burden. In contrast, transcript-isoform abundance can now be rapidly estimated across large-scale RNA-85 

seq datasets using pseudoalignment methods32,33. Furthermore, in the brain, isoform-level expression 86 

changes have shown greater enrichment for schizophrenia heritability than gene or local splicing 87 

changes22,31,34–36. However, to fully integrate transcript-isoform quantifications with GWAS, innovative 88 

computational methods are needed that jointly model the highly correlated transcripts of the same gene. 89 

 90 

Here, we present isoform-level TWAS (isoTWAS), a flexible and scalable approach for complex trait 91 

mapping by integrating genetic effects on isoform-level expression with GWAS. In extensive simulations 92 

and real data applications in the Genotype-Tissue Expression (GTEx) Project37 and the PsychENCODE 93 

Consortium22,24, we show that isoTWAS provides several important advantages to trait mapping. First, in 94 

the transcriptomic prediction step, the correlation between isoforms provides additional information that is 95 

unavailable when only gene-level expression is measured, which can be leveraged to improve 96 

prediction38 accuracy of individual isoforms in >80% of cases by a median of ~1.8-2.4-fold improvement 97 

and of total gene expression by 25-70%. In parallel, our isoform-centric framework uncovers cross-98 

validated predictive models for ~2-fold more genes, doubling the number of testable features in the trait 99 

mapping step. Third, divergent patterns of genetic effects across isoforms can be leveraged to provide a 100 

more granular hypothesis for a mechanism underlying the SNP-trait relationship. Finally, the isoTWAS 101 

framework jointly captures expression and splicing disease mechanisms, while maintaining a well-102 

controlled false discovery rate. Altogether, using GWAS data for 15 neuropsychiatric traits, isoTWAS 103 

greatly increases the power to detect gene-level trait associations uncovering associations at ~60% more 104 

GWAS loci compared to traditional gene-level TWAS. These results stress the need to shift focus to 105 

transcript-isoforms to increase discovery of transcriptomic mechanisms underlying genetic associations 106 

with complex traits. 107 

 108 

RESULTS 109 

The isoTWAS framework 110 

isoTWAS seeks to prioritize genes with transcript-isoforms of genes whose cis-genetic component of 111 

expression is significantly associated with a complex trait. We extend the traditional gene-level TWAS 112 
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approach by jointly modeling the expression of distinct transcript-isoforms of a given gene as a matrix 113 

while accounting for the pair-wise correlations between these isoforms21,37,39,40. Here, we assume that 114 

local genetic variants directly modulate expression of an isoform. In addition, we assume that the 115 

abundance of a gene is measured as the is the sum of the abundance of its isoforms, computed as 116 

transcripts per million, or TPM (Supplemental Figure S1)32,33,41,42. Flexibly integrating isoform-level 117 

expression into trait mapping may lead to novel discoveries in disease mapping and prioritize specific 118 

isoforms that explain genetic associations. Accordingly, gene-level trait mapping using traditional TWAS 119 

methods may not necessarily detect a trait association on the gene-level if a gene has multiple isoforms 120 

but only one is associated with the trait (Figure 1a). This scenario may be particularly relevant in the 121 

human brain, where some genes may express up to hundreds to thousands of unique isoforms25. By 122 

modeling the genetic architectures of isoforms of a gene simultaneously, isoTWAS provides a deeper 123 

understanding of potential transcriptomic mechanisms that underlie genetic associations.  124 

 125 

The isoTWAS framework contains three general steps (Figure 1). First, we build multivariate predictive 126 

models of isoform-level expression using well-powered functional genomics training datasets, including 127 

GTEx37 and PsychENCODE24,27. Here, we trained and systematically compared 4 multivariate predictive 128 

frameworks: (1) multivariate elastic net penalized regression43, (2) multivariate LASSO penalized 129 

regression with simultaneous covariance estimation (MRCE)44, (3) multivariate elastic net regression with 130 

stacked generalization (joinet)45, and (4) sparse partial least squares (SPLS)46. As a baseline for 131 

comparison, we also modeled each individual isoform independently with univariate regularized 132 

regressions, as implemented in Gusev et al’s FUSION software4,43,47,48 (see Methods and Supplemental 133 

Methods). Models were trained to predict isoform expression using the set of cis-SNPs within 1 134 

Megabase (Mb) of the gene body (Methods, Figure 1b). Model performance was assessed via 5-fold 135 

cross-validation, using McNemar’s adjusted R2 between observed and predicted expression. 136 

 137 

Next, we use these models to impute isoform expression into an external GWAS cohort and quantify the 138 

association with the target GWAS phenotype (Figure 1b). If individual-level genotypes are available, 139 

isoform expression can be directly imputed as a linear combination of the SNPs in the models, and these 140 
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associations can be estimated through appropriate regression analyses. If only GWAS summary statistics 141 

are available, imputation and association testing is conducted simultaneously through a weighted burden 142 

test4. Finally, isoTWAS performs step-wise hypothesis testing procedure to account for multiple 143 

comparisons and control for local LD structure. Isoform-level P-value are first aggregated to the gene-144 

level to prioritize a gene using the Aggregated Cauchy Association Test (ACAT)49, where false discovery 145 

rates are controlled, and then individual isoforms of prioritized genes are subjected to post-hoc family-146 

wise error control50 (Supplemental Figure S2, Methods). After this step, a set of isoforms are identified 147 

whose cis-genetic component of expression are associated with the trait of interest4. For these isoforms, 148 

we apply a rigorous permutation test whereby the SNP-to-isoform effects are permuted 10,000 times to 149 

generate a null distribution; this permutation test assesses how much signal is added by isoform 150 

expression, given the GWAS architecture of the locus, and controls for large LD blocks4. Lastly, we can 151 

isoform-level Bayesian fine-mapping at each locus with a significant trait association to identify the 152 

minimal credible set of isoforms that contains the ‘casual’ isoform at a 90% confidence level and to assign 153 

individual posterior inclusion probabilities (Figure 1b, Methods). isoTWAS is available as an R package 154 

through Github (https://github.com/bhattacharya-a-bt/isotwas). 155 

 156 

isoTWAS improves prediction of isoform and gene expression in simulations and real data 157 

Previous work has demonstrated that isoform-level quantifications, when propagated to the gene-level, 158 

can lead to more accurate gene expression estimates and differential expression results with short read 159 

RNA-seq data41,42. We therefore hypothesized that our multivariate SNP-based imputation of isoform 160 

expression, when summed to the gene-level, would outperform traditional gene-level TWAS models. To 161 

systematically evaluate the performance of TWAS versus isoTWAS models on prediction of total gene 162 

expression across a variety of genetic architectures, we conducted an extensive set of simulations across 163 

22 different gene loci using European-ancestry data from the 1000 Genomes Project51 (Methods, Figure 164 

2a). At each gene locus, we controlled gene expression heritability and simulated 2-10 distinct isoforms, 165 

varying the proportion of causal isoQTLs (pcausal) and their sharing between isoforms (pshared). We then 166 

trained cross-validated, multivariate predictive models of isoform expression (isoTWAS) or univariate 167 

models of gene expression (TWAS). For isoTWAS, of the specific multivariate prediction models tested, 168 

https://github.com/bhattacharya-a-bt/isotwas
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multivariate elastic net43 demonstrated the greatest CV prediction of isoform expression across most 169 

simulation settings (Figure 2b, Supplemental Figure S3, Supplemental Data 1). For gene expression 170 

prediction, the optimal isoTWAS models (in sum) outperformed the optimal TWAS model, particularly at 171 

sparser isoQTL architectures, with median absolute increase in adjusted R2 of 0.6-3.5% (Figure 2c, 172 

Supplemental Figure S4, Supplemental Data 2). Performance gains decreased somewhat with denser 173 

isoQTL architectures, although real data is consistent with 0.1-1% sparsity (i.e., 1-10 causal e- and 174 

isoQTLs per gene or isoform)37. In simulations, we found that isoTWAS prediction of gene expression 175 

also increases as the proportion of shared non-zero effect SNPs across isoforms decreases (Figure 2b-176 

c, Supplemental Figure S4, Supplemental Data 2). 177 

 178 

Next, we assessed predictive performance in real data from 48 tissues (13 brain) with sufficient sample 179 

sizes (N > 100) in GTEx for all genes with multiple expressed isoforms (Supplemental Table S1; 180 

Methods). Altogether, for 48 tissues in GTEx, we built significant predictive models for 50,000 to 80,000 181 

isoforms across 8,000 to 12,000 unique genes per tissue (Supplemental Figure S11, Supplemental 182 

Table S2). We considered 3 main criteria to evaluate the performance of both the multivariate and 183 

isoform-centric approaches of isoTWAS: (1) the number of isoforms whose expression can be imputed 184 

using multivariate/univariate models with cross-validation (CV) R2 > 0.01; (2) the number of unique genes 185 

with at least one isoform that can be imputed at CV R2 > 0.01; and (3) the number of unique genes in 186 

which total gene expression can be imputed at CV R2 > 0.01 using isoTWAS (summed) or TWAS models.  187 

 188 

At the isoform level (criterion 1), through joint multivariate modeling of isoform expression, we trained 2.3-189 

2.5-fold more models at cross-validation (CV) R2 > 0.01 across the 48 tissues, compared to traditional 190 

univariate approaches (Figure 3a, Supplemental Figure S5). Using these multivariate models, we 191 

improve prediction for 79-82% of isoforms with a median increase of ~1.8-2.4 fold increase in adjusted R2 192 

(Supplemental Figure S6, Supplemental Table S2). Concordant with simulations, we found that the 193 

multivariate elastic net overwhelmingly outperformed other multivariate (and univariate) methods, 194 

indicating that leveraging the shared genetic architecture between isoforms of the same gene greatly aids 195 

in prediction of each individual isoform (Supplemental Figure S7, Supplemental Table S2). Notably, we 196 
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observed that multivariate models were particularly important for brain tissues compared with non-brain 197 

tissues in GTEx, which showed significantly improved performance compared with univariate models 198 

(Figure 3b; P = 0.011 from OLS regression of median percent increase in CV R2 for 199 

multivariate/univariate models against tissue type, adjusted for sample size), suggesting more shared 200 

isoQTL architecture in brain tissues than others which can be leveraged by isoTWAS for improved 201 

prediction. These gains in prediction accuracy directly translate into increased power in the trait 202 

association step52.  203 

 204 

At the gene level (criteria 2 and 3), isoTWAS also increased the number of genes with testable models in 205 

the trait mapping step and improved prediction of total gene expression. The number of unique genes 206 

with at least 1 isoTWAS model at CV R2 > 0.01 (inclusion criterion for isoTWAS trait mapping) was 1.9-207 

2.5 times larger than the number of unique genes with TWAS models achieving CV R2 > 0.01 for gene 208 

expression prediction (Figure 3c, Supplemental Figure S8, Supplemental Table S2). For a given gene, 209 

isoTWAS models (summed) outperformed TWAS models in prediction of total gene expression by a 210 

median of 25-70% in cross validation (Supplemental Figure S9) with a 50-80% increase in the number 211 

of genes that are predicted at CV R2 > 0.01 (Figure 3d, Supplemental Figure S10). We replicated these 212 

gains in total gene expression prediction using an independent, out of sample QTL reference panel of 213 

adult cortex from PsychENCODE/AMP-AD (Methods). Multivariate isoTWAS models outperformed 214 

univariate TWAS models in predicting total gene expression with a 15.2% median percent increase in 215 

adjusted R2 when training in GTEx and testing in PsychENCODE/AMP-AD, and 23.9% vice versa; Figure 216 

3e, Supplemental Table S3). As predictive performance is positively related to power to detect trait 217 

associations51, both the increased number and accuracy of trainable imputation models using isoTWAS’s 218 

multivariate predictive framework have strong implications on increased discovery in trait mapping51. 219 

 220 

Performance of isoTWAS across distinct genomic contexts 221 

As genes can differ widely with respect to the number and expression patterns of their constituent 222 

isoforms, as well as by other potentially relevant features such as gene length and SNP density, we next 223 

sought to characterize the impact of these factors of isoTWAS performance using GTEx models as 224 
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evaluated by the 3 criteria outlined above (Methods, Supplemental Note, Supplemental Figures S12-225 

19, Supplemental Data 3-4). Overall, we observed an increase in performance of isoTWAS multivariate 226 

modeling of both isoforms and genes with increasing number of isoforms per gene, although there was 227 

less conclusive of a pattern with increasing dominant isoform fraction52 (Supplemental Figures S12-13, 228 

Supplemental Note, Methods). We also noticed trends in the performance gain using isoTWAS 229 

multivariate modeling with respect to both isoform and gene expression prediction across gene length, 230 

SNP density at the gene locus, and sample size (Supplemental Figures S14-16, Supplemental Note). 231 

Finally, as the proportion of non-zero effect SNPs in the isoTWAS model that are shared across isoforms 232 

increased (Supplemental Note), we found an increasing trend in the gain in prediction of gene 233 

expression using isoTWAS compared to TWAS models (Supplemental Figure S17), reflecting a similar 234 

observation from simulation. Interestingly, as this proportion increased, we found an increase in the gain 235 

in prediction of isoform expression, reinforcing the utility of multivariate modelling in marginal prediction of 236 

isoform expression. 237 

 238 

Lastly, we investigated how the robustness of isoform abundance estimation from short-read RNA-seq 239 

impacted performance gains of isoTWAS, compared with TWAS. Isoform abundance was initially 240 

quantified from probabilistic point estimates using Salmon, guided by Gencode annotations. We then 241 

assessed the performance of isoTWAS across loci binned by quantification variance measured across 50 242 

inferential replicates from Salmon32. In general, we found that for isoform-level prediction, multivariate 243 

modeling in isoTWAS substantially outperformed univariate approaches as quantification variance 244 

increased. However, comparing isoTWAS isoform-centric and TWAS gene-centric models, there were no 245 

discernable trends in prediction of gene expression as the mean count and/or quantification variance of 246 

genes increased (Supplemental Figure S18-19, Supplemental Note). Finally, we evaluated the impact 247 

of reference transcriptome annotation fidelity by generating a synthetic dataset quantified using a 248 

reference annotation masking the dominant isoforms for a set of genes. As expected, performance of 249 

both isoTWAS and TWAS models declined when isoforms failed to be detected in expression 250 

quantification (Supplemental Note, Supplemental Figure S20). 251 

 252 
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Simulations support improved power and calibrated null across genetic architectures 253 

We next introduced GWAS data for complex traits into our simulation framework to benchmark the false 254 

positive rate (FPR) and power of isoTWAS (Methods). First, we found that the FPR is controlled at 0.05 255 

for isoform-level mapping using ACAT, consistent with gene-level mapping using TWAS (Supplemental 256 

Figure S21, Supplemental Data 4). For a simulated trait, we modeled causal effect architectures for a 257 

genomic locus with 2-10 isoforms under three main scenarios (Methods; Figure 4, Supplemental Figure 258 

S22): (1) where the true trait effect is from only total gene expression, (2) where there is only one isoform 259 

with a non-zero effect on the trait, called the “effect isoform”; and (3) where 2 isoforms are effect isoforms, 260 

with varying magnitudes and directions of association. This first scenario showed clear increases in 261 

power for TWAS over isoTWAS, but this advantage declined as the causal proportion of isoQTLs 262 

increased and as the proportion of shared isoQTLs increased (Figure 4a, Supplemental Data 5).  For 263 

scenarios (2) and (3), as effects on the trait varied across isoforms of the same gene (Figure 4b-c, 264 

Supplemental Data 6-7), we observed large increases in power for isoTWAS over TWAS. Here, across 265 

most scenarios and causal effect architectures, isoTWAS demonstrated improved power compared with 266 

gene-level TWAS, particularly when only one isoform of a gene carried a trait effect or when two effect 267 

isoforms of the same gene had different directions of effects. However, when the effect sizes of two effect 268 

isoforms of the same gene converged, TWAS and isoTWAS demonstrated similar power to detect a 269 

gene-trait association (Figure 4c). 270 

 271 

Finally, we assessed the performance of probabilistic fine-mapping in identifying the true effect isoform in 272 

our simulation framework of genes with 5 or 10 isoforms (Methods, Supplemental Figure S23, 273 

Supplemental Data 9). In general, the sensitivity of 90% credible sets (proportion of credible sets that 274 

contained the true effect isoform) was under-calibrated, likely due to difficulties in fine-mapping when QTL 275 

horizontal pleiotropy is extremely high53. We found that the sensitivity of 90% credible sets decreased and 276 

the mean set size increased with increasing proportion of shared isoQTLs. Our simulation results suggest 277 

that varied isoQTL architectures and isoform-trait effects for isoforms of the same gene are key features 278 

that influence power gains in isoform-centric modeling. 279 

 280 
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isoTWAS increases discovery of trait associations across 15 neuropsychiatric disorders 281 

To explore our central hypothesis that isoform-centric multivariate predictive modeling will improve 282 

discovery for complex trait mapping, particularly for brain relevant traits, we next sought to apply and 283 

directly compare isoTWAS and TWAS results across 15 neuropsychiatric disorders and traits. To 284 

maximize discovery, we trained both isoTWAS and TWAS models using a greatly expanded adult brain 285 

functional genomics reference panel (N = 2,115), comprised of frontal cortex samples from 286 

PsychENCODE and AMP-AD Consortia27,54, as well as using a developmental55 pre-frontal cortex (N = 287 

205) dataset (Methods; Figure 5). In the adult cortex, we trained models for 15,127 genes using 288 

isoTWAS passing the CV R2 > 0.01 cutoff, compared with 14,283 genes using gene-level TWAS. In the 289 

developing cortex, despite a smaller sample size, isoTWAS models were successfully trained for 16,504 290 

genes, compared with 10,535 genes using TWAS (Methods; Supplemental Table S1). 291 

 292 

We next applied these models to perform trait associations using summary statistics from 15 293 

neuropsychiatric and brain-related GWAS56–70 (Methods, Figure 5a, Supplemental Figure S24), using 294 

the conservative stepwise hypothesis testing procedure (Figure 1a; FDR-adjusted P < 0.05 and within-295 

locus permutation PACAT\< 0.05). We detected far more trait-associated genes with isoTWAS compared 296 

with TWAS, across adult (2,595 vs 1,589 genes) and developmental (4,062 vs 890 genes) reference 297 

panels, respectively (Supplemental Figure S25, Supplemental Data 10-13).  In total across both 298 

reference panels and all 15 traits, isoTWAS detected 3,436 unique gene and 5,377 unique isoform-trait 299 

associations (Supplemental Figure S26). In addition, of the 1,335 genes with multiple isoform-trait 300 

associations, 661 gene exhibited distinct isoform-level associations in different directions. 301 

 302 

We next sought to compare the performance of isoTWAS/TWAS in prioritizing candidate mechanisms 303 

within independent, high-confidence GWAS-significant loci73. Across a combined 1,149 GWAS loci, 304 

isoTWAS identified significant associations within 323, compared with 201 detected by TWAS, a ~60% 305 

increase in discovery (Figure 5b; Methods, Supplemental Table S4). For example, of the 287 GWAS 306 

loci identified for SCZ74, isoTWAS prioritized genes within 70 and 86 unique loci across adult and 307 

developmental reference panels, respectively, compared with 56 and 29 loci for TWAS (Figure 5b). 308 
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Further, across the 15 traits, 96% of gene-level TWAS associations (193/201) were concordantly 309 

identified by isoTWAS. Likewise, the standardized effect sizes for significant gene- and isoform-level 310 

associations were highly correlated (r = 0.84, P < 2.2 x 10-16; Figure 5c). Finally, to explore whether these 311 

isoTWAS-specific associations were capturing true disease signal, we compared the rate at which each 312 

method prioritized constrained genes (probability of loss-of-function intolerance, pLI   0.9; Supplemental 313 

Tables S5-S8), which are known to be substantially enriched for disease associations75. Across adult and 314 

developmental panels for 15 traits, respectively, isoTWAS prioritized 724 and 385 constrained genes 315 

compared with 106 and 200 with TWAS, a significant increase (adult: P=0.048, developmental: P = 1.23 x 316 

10-5, Fisher's Exact test). Altogether, these results emphasize that isoTWAS not only recovers the vast 317 

majority of TWAS associations but also greatly increases discovery of candidate GWAS mechanisms, 318 

particularly for genes intolerant to protein-truncating variation76.  319 

 320 

In our evaluation of methods in real data, we sought to compare discovery using isoTWAS to discovery 321 

using local splicing-event based trait mapping. Briefly, for the developmental brain dataset, we first 322 

calculated intron usage using Leafcutter77 and transformed these usage percentages to M-values78. Then, 323 

for all introns mapped to a given gene, we used all SNPs within 1 Mb of a splicing-event to predict its 324 

usage and mapped trait associations for these splicing events using isoTWAS’s multivariate framework 325 

(Methods). Overall, when aggregated to the gene-level, across 15 traits, we found that isoTWAS 326 

prioritized features at ~40% more independent GWAS loci (167 loci) than splicing-event based trait 327 

mapping (119 loci), with 108 loci (90.7%) jointly identified (Figure 5f), using the same developmental 328 

brain reference panel. Taken together, isoTWAS’s specific focus on modeling isoforms of a gene 329 

provided considerable gains over considering only total gene expression or intron usage in identifying trait 330 

associations for genes and their transcript-isoforms. 331 

 332 

To investigate whether this increase in trait mapping discovery reflected true biological signal, rather than 333 

test statistic inflation due to the increased number of tests (~4-fold increase in number of tests), we next 334 

compared the null distributions across methods for results across the 15 traits (Supplemental Figure 335 

S27). As the genomic inflation factor is not a reliable measure in TWAS settings79, we estimated inflation 336 
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in gene-level test statistics using an empirical Bayes approach (Methods). Collapsing across all 15 traits, 337 

there were no significant differences between TWAS and isoTWAS in the 95% credible intervals for test 338 

statistic inflation (Figure 5d). Using a heuristic to estimate increases in effective sample size (Methods), 339 

we observed an approximate increase in effective sample size of 10-20% when using isoTWAS 340 

compared to TWAS (Figure 5e, Supplemental Table S9). These analyses indicate that isoTWAS 341 

discovery is both well-calibrated to the null and facilitates increased discovery in real data compared to 342 

gene-level TWAS. 343 

 344 

We also empirically compared probabilistic fine-mapping55 of results from isoTWAS and gene-level TWAS  345 

(Methods). Here, we conducted fine-mapping on significant trait-associated genes/isoforms (adjusted P < 346 

0.05 and permutation P < 0.05) and are within 1 Mb of one another; we term a locus with overlapping 347 

genes/isoforms a risk region. Overall, the mean number of genes in a risk region using TWAS was 3.15 348 

compared to 3.90 using isoTWAS (Supplemental Figure 28a); the mean number of genes in a 90% 349 

credible set using TWAS was 1.33 compared to 1.25 using isoTWAS (Supplemental Figure 28a). On 350 

average, there were 1.54 isoforms per gene in a risk region and 1.27 isoforms per gene in a 90% credible 351 

set (Supplemental Figure 28b). Isoform-centric modeling presents unique challenges for fine-mapping 352 

due to potentially high levels of horizontal pleiotropy, and remains an important and open question for the 353 

field. Nevertheless, isoTWAS identified a relatively comparable number of genes in risk regions compared 354 

with TWAS, and the combination of conservative two-step trait mapping, permutation testing, and 355 

probabilistic fine-mapping were critical for maintaining a narrow credible set size. 356 

 357 

isoTWAS identifies biologically-meaningful trait associations undetectable by TWAS 358 

Overall, isoTWAS prioritized dozens of novel candidate risk genes and mechanisms in the developing 359 

and adult brain for 15 neuropsychiatric traits. These isoTWAS-prioritized genes were enriched for multiple 360 

relevant pathways consistent with the biology of the underlying trait, including cell proliferation pathways 361 

for brain volume, calcium channel activity for schizophrenia and neuroticism, and proteasome regulation 362 

in Alzheimer’s Disease, among others (Supplemental Figure S29).  We highlight below several 363 

examples of novel trait associations in which isoTWAS prioritized a highly constrained gene within a 364 
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GWAS locus (Supplemental Table S5-8). For example, we identified an association for SCZ with 365 

developmental expression of ENST00000519133, an isoform of SNAP91 (adjusted P = 6.06 x 10-7 in 366 

isoTWAS, pLI = 0.99, chromosomal location of 6q14.2), with a GWAS-significant variant rs217291 within 367 

the gene body. SNAP91 has been predicted to affect clathrin and phosphatidylinositol biding activity and 368 

synaptic vesicle recycling and has previously shown to impact synaptic development80. In addition, we 369 

found that imputed developmental cortex expression of ENST00000476671, an isoform of KMT2E, was 370 

associated with CDG risk (adjusted P = 7.63 x 10-3, pLI = 1, chromosomal location of 7q22.3); the GWAS 371 

SNP rs2385537, associated in a meta-analysis of ADHD, ASD, BP, and SCZ81, is within the gene body. 372 

KMT2E regulates post-translational histone methylation of histone 3 on lysine 4A, and KMT2E 373 

heterozygous variants are associated with risk of neurodevelopmental disorders82. Imputed adult brain 374 

expression of ENST00000492146 (adjusted P = 1.14 x 10-6, pLI = 0.94, chromosomal location of 3p21.1), 375 

an isoform of SFMBT1, showed a strong association with SCZ risk and contains a GWAS SNP within the 376 

gene body (rs2071044). In a recent gene-based analysis of GWAS data for SCZ and BD, decreased 377 

expression of SFMBT1 was associated with increased risk of both disorders83, consistent with the effects 378 

for the isoform we identify in this isoTWAS analysis. Lastly, our analysis implicated ENST00000537270, 379 

an isoform of KMT5A (pLI = 0.99, found in 12q24.31), in an association with SCZ risk. KMT5A, a H4K20 380 

methyltransferase, has been previously implicated in GWAS for SCZ but cis-eQTLs of the gene have not 381 

be colocalized with the GWAS signal previously74,84,85.  382 

 383 

As evidenced by our simulation analyses, a main advantage of isoTWAS over TWAS is the identification 384 

of trait associations for isoforms of genes, where the gene itself is not associated with the trait. We 385 

illustrate several examples of isoforms prioritized by isoTWAS, all in adult cortex, for genes with limited or 386 

distinct expression QTLs (Figure 6, Supplemental Figure S30, Supplemental Data 14). First, we 387 

detected a strong SCZ association with ENST00000492957, an isoform of AKT3 (pLI = 1) at 1q43-q44, 388 

which encodes a serine/threonine-protein kinase that regulated many processes like metabolism and cell 389 

growth, proliferation, and survival. AKT3 has shown effects on anxiety, spatial and contextual memory, 390 

and fear extinction in mice, such that loss-of-function of AKT3 causes learning and memory deficits86,87. 391 

Within the GWAS locus, there was a strong overlapping isoQTL signal (P < 10-50); however, the eQTL 392 
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signal includes only a single SNP that reaches P < 10-6, which is in low LD with the GWAS-significant 393 

SNPs in the locus (Figure 6a). The lead isoQTL (rs4430311) showed a significant, negative association 394 

with ENST00000492957, but not AKT3 expression, with increasing SCZ risk alleles. However, this SNP 395 

has only a nominally significant positive association with AKT3, as the number of alternative alleles at the 396 

SNP increased. Interestingly, a different isoform of AKT3 (ENST00000681794) was prioritized in an 397 

association with BV, which also has a GWAS hit at this locus (Supplemental Figure S30). The two 398 

distinct isoforms of AKT3 have distinct 3’ transcript structures, particularly close to the lead isoQTL of 399 

ENST00000681794. These results suggest a complex role of AKT3 isoforms with brain-related traits to be 400 

explored further computationally and experimentally. 401 

 402 

Similarly, we found a strong isoQTL signal for ENST00000409096 but a weak eQTL signal of CUL3 in the 403 

2q36.2 locus (pLI = 0.99), in another association with SCZ (Figure 6b). CUL3 is a component of Cullin-404 

RING E3 ubiquitin ligase complexes, involved in protein ubiquitylation, cell cycle regulation, protein 405 

trafficking, signal transduction, and transcription. Previous work has implicated CUL3 dysregulation as a 406 

pathological mechanism for both SCZ and ASD risk88. Next, an isoform ENST00000678969 of HSPD1, 407 

encoding a mitochondrial heat shock protein, was associated with SCZ risk (adjusted P = 8.79 x 10-12, pLI 408 

= 0.99, 2q33.1) and showed a similar pattern across GWAS, eQTL, and isoQTL signals (Figure 6c). 409 

HSPD1 was identified in 3 independent secondary analyses of SCZ GWAS data, is among multiple non-410 

MHC immune genes implicated in SCZ, and has roles in brain hypomyelination89. Our work adds to these 411 

previous studies by implicating a specific isoform of HSPD1 at the locus. Lastly, ENST00000423517, an 412 

isoform of PCLO, was associated with multiple traits in the CDG analysis (meta-analysis of ADHD, BP, 413 

MDD, and SCZ; adjusted P = 1.83 x 10-4, pLI = 1). Again, we found a strong isoQTL but not eQTL signal, 414 

with the CDG risk allele negatively associated with isoform expression. PCLO is involved in the 415 

presynaptic cytoskeletal matrix, establishing active synaptic zones, and synaptic vesicle trafficking; rare 416 

variants of PCLO in diverse populations have been recently implicated in risk of SCZ and ASD90,91. 417 

Altogether, these results highlight the importance of incorporating isoform-level regulation for prioritizing 418 

novel candidate GWAS risk mechanisms, as implemented in our isoTWAS framework.  419 

 420 
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DISCUSSION 421 

In this work, we introduce isoTWAS, a scalable framework that integrates genetic and isoform-level 422 

transcriptomic variation with GWAS to not only identify genes whose expression are associated with a 423 

trait but also prioritize a set of isoforms of the gene that best explains the association. We provide an 424 

extensive set of isoform-level predictive models (https://zenodo.org/record/679594792) and software to 425 

conduct isoform-level trait mapping with GWAS summary statistics (https://github.com/bhattacharya-a-426 

bt/isoTWAS). 427 

 428 

As demonstrated above, isoTWAS presents several advantages over traditional gene-level TWAS or 429 

simple univariate modeling of isoform expression. First, modeling expression at the isoform-level can 430 

detect isoQTL architectures that vary across isoforms and thus may not be captured by eQTLs of a gene. 431 

Second, joint multivariate isoform-level modeling improved predictive accuracy of isoform and total gene 432 

expression, both in simulated and real data with independent replication. Third, aggregating isoform-level 433 

associations to the gene-level through ACAT substantially increased power to detect trait associations 434 

over traditional TWAS. We attribute this increase in power to several key features: first, isoform-level 435 

modeling in isoTWAS increases the number of imputable genes by >2-fold; second, isoTWAS models 436 

improve accuracy of gene-level prediction by as much as 35%; third, isoTWAS jointly models both 437 

expression and splicing regulation, thereby capturing multiple potential underlying complex trait 438 

mechanisms. Finally, as genetic control of isoform expression and usage are often much more tissue- 439 

and cell-type-specific than eQTLs26,37, we hypothesize that isoTWAS is more capable of uncovering such 440 

context-specific trait associations.  441 

 442 

Recent work has highlighted the promise of alternative splicing as a biological mechanism underlying 443 

complex traits not fully captured through eQTLs24,26,27,93.  Splicing-QTL integration is a promising vehicle 444 

to prioritize alternative exons or splice sites that may explain the genetic association with a trait, but a 445 

single exon or splice site can correspond to multiple isoforms of the same gene. Mapping genetic 446 

regulation at the exon- rather than gene-level often leads to more detected signal94. However, most of 447 

these analyses have focused on local splicing events or exon-level inclusion, rather than the combined 448 

https://zenodo.org/record/6795947
https://github.com/bhattacharya-a-bt/isoTWAS
https://github.com/bhattacharya-a-bt/isoTWAS
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consequences of these events – namely, different isoforms of the same gene. Local splicing events can 449 

be computationally intensive to measure and are difficult to systematically integrate across multiple 450 

distinct large-scale datasets, which is necessary for achieving sample sizes sufficient for interrogation of 451 

population-level allelic effects27,28. Furthermore, multiple splicing changes are often coordinated across a 452 

gene, yielding many non-independent features that increase multiple testing burden. Our results 453 

demonstrate that isoform-centric trait mapping with isoTWAS increases discovery by ~40% compared 454 

with a matched local splicing event-based analysis, although these methods may recover some 455 

independent signal. Future work should consider integrating both reference-guided and annotation-free 456 

approaches for quantification and detection of isoform and splicing patterns to develop more nuanced 457 

mechanistic hypotheses for GWAS loci. 458 

 459 

We conclude with some limitations of and future considerations for isoTWAS. First, we note that isoform-460 

level expression quantifications are maximum-likelihood estimates, due to the inherent limitations of 461 

short-read RNA-seq. These estimates are generally guided by existing transcriptome annotations (e.g., 462 

GENCODE) and thus are dependent on the completeness and accuracy of these genomic annotations. 463 

Further, many dataset-specific sequencing factors may will affect the accuracy of these estimates, 464 

especially sequencing depth, read length and library preparation (mRNA vs total RNA sequencing). The 465 

continued emergence of long-read sequencing platforms, including PacBio IsoSeq and Oxford Nanopore 466 

Technologies, will be instrumental for improving reference transcriptome annotations, particularly with 467 

tissue specificity, which will in turn improve isoTWAS. Further, as these methods continue to gain 468 

scalability and cost effectiveness, they will ultimately replace short-read sequencing (and isoform 469 

estimation) for population-scale datasets. As isoTWAS is agnostic to the method of isoform expression 470 

quantification, this framework will continue to be applicable as we approach this long read sequencing 471 

era. Recent analyses have shown that larger sample sizes may outweigh sequencing coverage for eQTL 472 

mapping, but this relationship has not been investigated for isoform-level expression95. Thus, for optimal 473 

discovery with isoTWAS, the appropriate balance between sample size and reference panel sequencing 474 

depth remains to be determined.  475 

 476 
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Second, while inferential replicates from RNA-seq quantification can provide measures of technical 477 

variation, they are not incorporated into the predictive models. Our analyses of prediction across 478 

inferential replicates suggest a methodological opportunity: leveraging these inferential replicates as a 479 

measure of quantification error may help in estimating the robustness of isoform prediction and, 480 

potentially, of the precision of these SNP effects. A more flexible predictive model that estimates standard 481 

errors for SNP effects by model-averaging across the replicate datasets may help with trait mapping by 482 

providing a prediction interval for both isoform- and gene-level imputed expression. Third, just as TWAS 483 

can be cast as a differential gene expression analysis conducted with imputed expression, isoform-level 484 

trait mapping is akin to differential transcript expression analysis. An analogous goal of isoTWAS can be 485 

to detect trait associations with genetically-regulated transcript usage. However, it is unclear if the 486 

compositional nature of transcript usage data needs to accounted for at the prediction step or the trait 487 

mapping steps96. Lastly, as we show, this framework can suffer from reduced power, inflated false 488 

positives, and reduced sensitivity in fine-mapping in the presence of SNP horizontal pleiotropy, where the 489 

genetic variants in the isoform expression model affect the trait, independent of isoform expression, or 490 

when multiple SNPs affect expression of isoforms97,98. For pathways that are not observed or accounted 491 

for in the reference expression panel and GWAS, accounting for horizontal pleiotropy may improve trait 492 

mapping. We motivate further methodological extensions of probabilistic fine-mapping to reconcile 493 

pleiotropy for SNPs shared across models for multiple isoforms at the same genetic locus, as summary-494 

statistic based methods that control for horizontal pleiotropy are not yet effective99. 495 

 496 

In sum, isoTWAS provides a novel framework to scalably interrogate the transcriptomic mechanisms 497 

underlying genetic associations with complex traits and generate biologically-meaningful and testable 498 

hypotheses about disease risk mechanisms. Based on our results, we emphasize a shift in focus from 499 

quantifications of the transcriptome on the gene-level to the transcript-isoform level to maximize discovery 500 

of transcriptome-centric genetic associations with complex traits. 501 

 502 

METHODS 503 
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isoTWAS consists of three steps: (1) training predictive models of isoform expression, (2) imputing 504 

isoform-specific expression into a separate GWAS panel, and (3) association testing between imputed 505 

expression and a phenotype (Figure 1b). isoTWAS contrasts with TWAS as it models correlations 506 

between the expression of isoforms of the same gene. We outline each step below, with further 507 

mathematical details in Supplemental Methods. 508 

 509 

Training predictive models of isoform expression 510 

Model and assumptions 511 

Assume a given gene 𝐺 has 𝑀 isoforms with expression levels across 𝑁 samples, with each sample 512 

having 𝑅 inferential replicates. Let 𝑌𝐺
∗ be the 𝑁 × 𝑀 matrix of mean isoform expression (log-scale TPM) for 513 

the 𝑁 samples and 𝑀 isoforms, using the point estimates from the Expectation-Maximization algorithm of 514 

a pseudo-mapping quantification algorithm, like Salmon or kallisto32,33. We can jointly model isoform 515 

expression with a system of 𝑁 × 𝑀 × 𝑅 equations. For sample 𝑛 ∈ {1, … , 𝑁}, isoform 𝑚 ∈ {1, … , 𝑀} of gene 516 

𝐺, and replicate 𝑟 ∈ {1, … , 𝑅}, we have: 517 

𝑦𝑛𝑚𝑟 = 𝑥𝑛𝛽𝑚 + 𝜖𝑛𝑚𝑟      (1), 518 

where 𝑦𝑛𝑚𝑟  is the expression of isoform 𝑚 for the 𝑟th inferential replicate of sample 𝑛, 𝑥𝑛 is the 𝑃-vector 519 

(vector of length 𝑃) of cis-genotypes in a 1 Mb window around gene 𝐺, 𝛽𝑚 is the 𝑃-vector of genetic 520 

effects of the 𝑃 genotypes on isoform expression, and 𝜖𝑛𝑚𝑟 is normally distributed random noise with 521 

mean 0 and variance 𝜎𝑛𝑚𝑟
2 . We standardize both the genotypes and the isoform expression to mean 0 522 

and variance 1. As the SNP vector 𝑥𝑛 does not differ across inferential replicates, we impose the following 523 

assumptions on the variance-covariance matrix of 𝜖 = (𝜖1,1,1, 𝜖1,1,2, … , 𝜖𝑛𝑚𝑟)
𝑇
, the vector of random errors: 524 

we assume that 𝜖𝑛𝑚𝑟 are independent and identically distributed across samples 𝑛 ∈ {1, … , 𝑁} and 525 

identically distributed across replicates 𝑟 ∈ {1, … , 𝑅}. Accordingly, the point estimates of the SNP effects 526 

on isoform expression are not influenced by differences in expression across replications. Therefore, in 527 

matrix form, we consider the following predictive model: 528 

𝑌𝐺
∗ = 𝑋𝐺𝐵𝐺 + 𝐸𝐺       (2) 529 

Here, 𝑋𝐺 is the 𝑁 × 𝑃 matrix of genotype dosages, 𝐵𝐺  is the 𝑃 × 𝑀 matrix of SNP effects on isoform 530 

expression and 𝐸𝐺 is a matrix of random errors, such that 𝑣𝑒𝑐(𝐸𝐺) ∼ 𝑁𝑁𝑀(0, 𝛴 = Ω−1 ⊗ 𝐼𝑁). 𝛴 represents 531 
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the variance-covariance matrix in the errors (with precision matrix 𝛺 = Σ−1), following the aforementioned 532 

independence assumptions. 533 

  534 

Estimating SNP effects on isoform expression 535 

We apply 5 different methods to estimate �̂�𝐺 , the matrix of SNP effects on isoform expression. The first 536 

four are multivariate methods that model the isoforms jointly; the last method models each isoform 537 

separately using univariate methods. The goal of this SNP effect estimation is marginal prediction, i.e., 538 

leveraging the correlation between isoforms to improve prediction of each isoform separately. The �̂�𝐺  539 

matrix that gives the largest adjusted R2 in 5-fold cross-validation across the 5 methods is selected as the 540 

final model to predict isoform expression for a given gene. In settings where we are interested in 541 

predicting gene-level expression from these predicted isoforms, isoTWAS trains an elastic net penalized 542 

linear regression that predicts gene-level expression from genetically-predicted isoform-level expression; 543 

this model training is conducted across the same 5 folds to prevent data leakage100. We provide an 544 

overview of the methods, with mathematical details in Supplemental Methods: 545 

1. Multivariate elastic net (MVEnet) regression: This is an extension of elastic net, where the response is 546 

a matrix of correlated responses43. Here, the absolute penalty is imposed on each single coefficient 547 

by a group-lasso penalty on each vector of SNP effects across isoforms (rows of 𝐵𝐺); accordingly, a 548 

SNP can only have a non-zero effect on an isoform if it has a non-zero effect on all isoforms. 549 

2. Multivariate LASSO Regression with covariance estimation (MRCE): We adapt Rothman et al’s 550 

proposed procedure to simultaneously and iteratively estimate both �̂�𝐺, the SNP effects matrix, and 551 

�̂�, the precision matrix44. This procedure accounts for the correlation between isoforms but does not 552 

impose the group-lasso penalty as in MVEnet. As such, a single SNP need not have a non-zero effect 553 

on all isoforms. 554 

3. Multivariate elastic net with stacked generalization (joinet): We use Rauschenberger and Glaab’s 555 

joinet method that uses a two-step prediction45. In the first step, the design matrix of SNPs is used to 556 

generate a cross-validated prediction of each isoform. In the second step, the matrix of predicted 557 

isoform expression is used to predict each isoform. 558 
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4. Sparse partial least squares (SPLS): This is an implementation of partial least squares with a sparsity 559 

penalty, that attempts to find an optimal latent decomposition for the linear relationship between the 560 

matrix of isoform expression and the design matrix of SNPs. We use the Chun and Keles’s 561 

implementation from the spls R package46. 562 

5. Univariate FUSION: the simplest implemented method is the univariate predictive modelling used in 563 

FUSION2. We disregard the correlation structure between isoforms and train a univariate elastic net43, 564 

estimation of the best linear unbiased predictor (BLUP) in a linear mixed model101, and SuSiE47 565 

predictive model for each isoform separately. The model with the largest adjusted R2 out of these 566 

three models is outputted. This approach serves as a baseline measurement for prediction of each 567 

isoform independently. 568 

 569 

Trait association and step-wise hypothesis testing 570 

We note that the tests of association in isoTWAS are similar to tests in differential transcript expression 571 

analyses, as TWAS tests of association are analogous to tests in differential gene expression analyses. 572 

isoTWAS and TWAS are distinct, as these methods consider imputed isoform and gene expression, 573 

respectively, as predicted by the trained expression models. If individual-level genotypes are available in 574 

the external GWAS panel, isoform expression can be directly imputed by multiplying the SNP weights 575 

from the predictive model with the genotype dosages in the GWAS panel. If only summary statistics are 576 

available, we adopt the weighted burden test from Gusev et al with an ancestry-matched linkage 577 

disequilibrium panel4,98. Compared to TWAS, a main distinction for isoTWAS association testing is the 578 

increased number of tests (approximately 4-fold the number of isoforms than genes)21 and the potential 579 

correlation in test statistics for isoforms of the same gene. 580 

 581 

Accordingly, we perform a two-step hypothesis testing framework (Supplemental Figure S2)102. In the 582 

first step, for every isoform with a trained model, we generate a TWAS test statistic using either linear 583 

regression for GWAS with individual-level genotypes or the weighted burden test for GWAS with only 584 

summary statistics4. Given the 𝑡 test statistics 𝑇1, … , 𝑇𝑡 for a single gene, we used an omnibus test to 585 

aggregate the 𝑡 test statistics into a single P-value for a gene. We benchmark different omnibus tests in 586 
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simulations, but the default omnibus test in isoTWAS is aggregated Cauchy association test (ACAT)49. 587 

We control for false discovery across all genes via the Benjamini-Hochberg procedure, but the Bonferroni 588 

procedure can also be applied for more conservative false discovery control. In the second step, for 589 

isoforms for genes with an adjusted omnibus P < 0.05, we employ Shaffer’s modified sequentially 590 

rejective Bonferroni (MSRB) procedure to control the within-gene family-wide error rate. At the end of 591 

these two steps, we identify a set of genes and their isoforms that are associated with the trait. 592 

 593 

Control for false positives within GWAS loci 594 

In TWAS and related methods, association statistics have been shown to be well calibrated under the null 595 

of no GWAS association. However, within loci harboring significant GWAS signal, false positive 596 

associations can result when eQTLs and GWAS coincide within overlapping LD blocks. To address this, 597 

we have adopted two conservative approaches to control for type 1 error within GWAS loci, namely (1) 598 

permutation testing and (2) probabilistic fine mapping. The permutation testing approach, adopted from 599 

Gusev et al4, is a highly conservative test of the signal added by the SNP-transcript effects from the 600 

predictive models, conditional on the GWAS architecture of the locus. Briefly, we shuffle the SNP-601 

transcript effects in the predictive models 10,000 times and generate a null distribution for the TWAS test 602 

statistic for each isoform. We then use this null distribution to generate a permutation-based P-value for 603 

the original test statistic for each isoform. Additionally, we aggregate these null distributions using an 604 

omnibus test and compare the omnibus P-value to this distribution to generate permutation P-value for 605 

each gene. Finally, we can employ isoform-level probabilistic fine-mapping using methods from FOCUS55 606 

to generate credible set of isoforms that explain the trait association at a locus. We only run isoform-level 607 

fine-mapping for significantly-associated isoforms in overlapping 1 Megabase windows. 608 

 609 

Simulation framework 610 

We adopt techniques from Mancuso et al’s twas_sim protocol103 to simulate multivariate isoform 611 

expression based on randomly simulated genotypes and environmental random noise. First, for 𝑛 612 

samples, we generate a matrix of genotype dosages for the SNPs within 1 Megabase of 22 different 613 
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genes (1 per chromosome) using an LD reference panel of European subjects from 1000 Genomes 614 

Project51.  615 

 616 

Next, we generate a matrix of SNP-isoform effects across different causal SNP proportions 𝑝𝑐, numbers 617 

of isoforms 𝑡, and 𝑝𝑠  proportion of the SNP-isoform effects being shared across isoforms of the same 618 

gene. We then add two matrices of random noise 𝑈 and 𝜖. The first matrix 𝑈 noise represents non cis-619 

genetic effects on isoforms that are correlated between samples and isoforms; we control the proportion 620 

of variance explained in isoform expression attributed to 𝑈 using a parameter 𝜎ℎ. The second matrix 𝜖 is a 621 

matrix of random noise that is independent for each isoform, such that 𝜖𝑖 ∼ 𝑁(0, 𝜎𝑒
2𝐼) where 𝜎𝑒

2 = 1 −622 

 𝜎ℎ − ℎ𝑔
2. We generate 10,000 simulations for each configuration of the simulation parameters, varying 𝑛 ∈623 

{200, 500}, 𝑝𝑐 ∈ {0.001,0.01,0.05}, ℎ𝑔
2 ∈ {0.05, 0.10,0.25}, 𝑝𝑠 ∈ {0,0.5,1}, and 𝜎ℎ ∈ {0.1,0.25} .  Full 624 

mathematical details are provided in Supplemental Methods and summarized in Figure 2. 625 

 626 

We also generate traits under three distinct scenarios, with a continuous trait with heritability ℎ𝑡
2 ∈627 

{0.01,0.05,0.10} and a GWAS sample size of 50,000 (Supplemental Methods): 628 

1. Only gene-level expression has a non-zero effect on trait. Here, we sum the isoform expression 629 

to generate a simulated gene expression. We randomly simulate the effect size and scale the error to 630 

ensure trait heritability. 631 

2. Only 1 isoform has a non-zero effect on the trait. Here, we generate a multivariate isoform 632 

expression matrix with 2 isoforms and scale the total gene expression value such that one isoform 633 

(called the effect isoform) makes up 𝑝𝑔 ∈  {0.10, 0.30, 0.50, 0.70, 0.90} proportion of total gene 634 

expression. We then generate effect size for one of the isoforms and scale the error to ensure trait 635 

heritability. 636 

3. Two isoforms with different effects on traits. Here, we generate a multivariate isoform expression 637 

matrix with 2 isoforms that make up equal portions of the total gene expression. We then generate an 638 

effect size of 𝛼 for one isoform and 𝑝𝑒𝛼 for the other isoform, such that 𝑝𝑒 ∈  {−1, −0.5, −0.2,0.2,0.5,1}. 639 

We then scale the error to ensure trait heritability. 640 

 641 
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Lastly, to estimate the approximate false positive rate (FPR), we followed the same simulation framework 642 

to generate eQTL data and GWAS data. In the GWAS data, however, we set the effect of gene- and 643 

isoform-level imputed expression to 0 to generate a simulated trait under the null, where the gene and 644 

isoforms are not associated with the trait. We then estimate the FPR by calculating the proportion of 645 

gene-trait associations at P < 0.05 under this null across 20 sets of 1,000 simulated GWAS panels. We 646 

also assess isoform-level fine-mapping using FOCUS in a scenario with a gene with 5 or 10 isoforms and 647 

a single effect isoform. We compute the sensitivity of 90% credible sets of isoforms (proportion of credible 648 

sets that contain the effect isoform) and the number of isoforms in the 90% credible set. 649 

 650 

GTEx processing and model training 651 

We quantified GTEx v837 RNA-Seq samples for 48 tissues using Salmon v1.5.232 in mapping-based 652 

mode. We first built a Salmon index for a decoy-aware transcriptome consisting of GENCODE v38 653 

transcript sequences and the full GRCh38 reference genome as decoy sequences21. Salmon was then 654 

run on FASTQ files with mapping validation and corrections for sequencing and GC bias. We computed 655 

50 inferential bootstraps for isoform expression using Salmon’s Expectation-Maximization algorithm. We 656 

then imported Salmon isoform-level quantifications and aggregated to the gene-level using tximeta41. 657 

Using edgeR, gene and isoform-level quantifications underwent TMM-normalization, followed by 658 

transformation into a log-space using the variance-stabilizing transformation using DESeq2104,105. We 659 

then residualized isoform-level and gene-level expression (as log-transformed CPM) by all tissue-specific 660 

covariates (clinical, demographic, genotype PCs, and expression PEER factors) used in the original QTL 661 

analyses in GTEx. We calculated the quantification variance across inferential replicates using the 662 

computeInfRV() function from the fishpond package106. We computed the isoform fraction using the 663 

isoformToIsoformFraction() function from the IsoformSwitchAnalyzeR package54. 664 

 665 

SNP genotype calls were derived from Whole Genome Sequencing data for samples from individuals of 666 

European ancestry, filtering out SNPs with minor allele frequency (MAF) less than 5% or that deviated 667 

from Hardy-Weinberg equilibrium at P < 10-5. We further filtered out SNPs with MAF less than 1% 668 

frequency among the European ancestry samples in 1000 Genomes Project51. 669 
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 670 

Details of the model training pipeline for GTEx are similar to those summarized in Supplemental Figure 671 

S10. Gene-level univariate models were trained using elastic net regression43, best linear unbiased 672 

predictor (BLUP) in a linear mixed model48, and SuSiE47, using all SNPs within 1 Mb of the gene 673 

body4,43,47,101. For each gene, the best performing model was chosen based on McNemar’s adjusted 5-674 

fold cross-validation (CV) R2. We selected only genes with CV R2  0.01. We applied multivariate 675 

modeling outlined in isoTWAS to train isoform-level predictive models, selecting only those isoform 676 

models with CV R2  0.01 (Supplemental Figure S2). All isoTWAS models generated are publicly 677 

available (see Data Availability). 678 

 679 

Developmental brain reference panel processing and model training 680 

We quantified developmental frontal cortex24 (N = 205) RNA-Seq samples using Salmon v1.8.032 in 681 

mapping-based mode. We used the same indexed transcriptome as in the GTEx analysis and ran 682 

Salmon with mapping validation and corrections for sequencing and GC bias. We computed 50 inferential 683 

bootstraps for isoform expression using Salmon’s Expectation-Maximization algorithm. We then imported 684 

Salmon isoform-level quantifications and aggregated to the gene-level using tximeta41. Using edgeR, 685 

gene and isoform-level quantifications underwent TMM-normalization, followed by transformation into a 686 

log-space using the variance-stabilizing transformation using DESeq2104,105. We then residualized 687 

isoform-level and gene-level expression (as log-transformed CPM) by covariates (age, sex, 10 genotype 688 

PCs, 90 and 70 hidden covariates with prior, respectively). Typed SNPs with non-zero alternative alleles, 689 

MAF > 1%, genotyping rate > 95%, HWE P < 10-6 were first imputed to TOPMed Freeze 5 using 690 

minimac4 and eagle v2.4107,108. We then retained biallelic SNPs with imputation accuracy R2 > 0.8, with 691 

rsIDs. Finally, we filtered out SNPs with MAF < 0.05 or that deviated from Hardy-Weinberg equilibrium at 692 

P < 10-6. 693 

 694 

Adult brain reference panel processing and model training 695 

Matched genotype and RNAseq data from adult brain cortex tissue from n = 2,365 individuals were 696 

compiled and processed from the PsychENCODE Consortium22 and the Accelerating Medicines 697 
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Partnership Program for Alzheimer’s Disease (AMP-AD)56, consisting of the individual studies BipSeq, 698 

BrainGVEX, CommonMind Consortium (CMC), CommonMind Consortium's National Institute of Mental 699 

Health Human Brain Collection Core (CMC HBCC), Lieber Institute for Brain Development-szControl 700 

(LIBD_szControl), UCLA-ASD, Religious Orders Study and the Memory and Aging Project (ROSMAP), 701 

Mount Sinai Brain Bank (MSBB) and MayoRNAseq. 702 

 703 

Typed genotypes were lifted over to the GRCh38 build using CrossMap v.0.6.3109 and then filtered to 704 

remove variants where the reference allele matched any of the alternate alleles. Genotype data from 705 

whole genome sequencing (BrainGVEX, UCLA-ASD, ROSMAP, MSBB, and MayoRNAseq) was further 706 

filtered to variants present on the Infinium Omni5-4 v1.2 array in order to satisfy the imputation server's 707 

maximum limit of 20,000 typed variants per 20Mb. All genotype data was further processed with PLINK 708 

v1.90b6.21110, removing variants with HWE P < 10-6, MAF< 0.01 or missingness rate > 0.05, and 709 

removing samples with missingness rate > 0.1 across typed variants or missingness rate > 0.5 on any 710 

individual chromosome. Genotype data was prepared for imputation using the McCarthy Group's HRC-711 

1000G-check-bim-v4.3.0 tool against freeze 8 of the Trans-Omics for Precision Medicine (TOPMed) 712 

reference panel111. The tool removes A/T and G/C SNPs with MAF > 0.4, variants with alleles that differ 713 

from the reference panel, variants with an allele frequency difference > 0.2 from the reference panel and 714 

variants not in the reference panel. Additionally, the tool updates strand, position and reference/alternate 715 

allele assignment to match the reference panel. 716 

 717 

Genotypes were then passed into the TOPMed Imputation Server by individual array batch112. The 718 

genotypes were phased with Eagle v2.4 and imputed with Minimac4 using the TOPMed reference 719 

panel107,108. Further QC was performed on the imputed genotypes using bcftools v1.11 and PLINK. The 720 

imputed genotypes were filtered to well-imputed variants with R2 > 0.8. The arrays were merged after 721 

filtering to variants that were well-imputed in all arrays to be merged. Only arrays with at least 400,000 722 

variants after pre-imputation QC were merged in order to prevent too many variants from dropping out. 723 

The merged genotype data was then converted to PLINK 1 binary format and further processed with 724 

PLINK, removing variants with duplicates, HWE P < 10-6, MAF < 0.01 or missingness rate > 0.05 and 725 
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removing samples with missingness rate > 0.1. Samples from the same individual were identified by 726 

calculating the genetic relatedness matrix using SnpArrays.jl and finding sets of samples with relatedness 727 

> 0.75. From each set of replicates, only the genotyped sample from the array with the most variants after 728 

pre-imputation QC was kept. For model training, only SNPs annotated in HapMap3 were retained113. 729 

 730 

RNAseq paired reads from each study were sorted by name and then converted to FASTQ format using 731 

samtools v1.14114. The reads were then quantified using salmon v1.8.0 in mapping-based mode using a 732 

full decoy indexed from GENCODE v38 transcriptome and GRCh38 patch 13 assembly32. Quantification 733 

was run using standard EM algorithm with library type automatically inferred and estimates adjusted for 734 

sequence-specific and fragment-level GC biases. Bootstrapped abundance estimates were calculated 735 

using 50 bootstrap samples. Isoform-level expression was summarized to the gene-level using tximeta115. 736 

Only isoforms with 0.1 TPM for more than 75% of samples were retained. The resulting expression was 737 

normalized using the variance-stabilizing transformation from DESeq2105. Samples with WGCNA network 738 

connectivity scores of less than -3 were removed as outliers, resulting in a total of 2,115 samples116. 739 

Isoform- and gene-level expression was then batch-corrected using ComBat, using study site as the 740 

batch117. Lastly, age, sex, squared age, 10 genotype PCs, and 200 (for gene expression) and 175 (for 741 

isoform expression) hidden covariates with prior (using sequencing metrics from PicardTools to estimate 742 

the prior) were removed from the expression118,119. The number of hidden covariates with prior (HCP) 743 

were selected by optimizing the number of nominal cis-gene-level expression QTLs and cis-isoform-level 744 

expression QTLs at Bonferroni-corrected P < 0.05, respectively, on a grid from 100 to 300 HCPs, as 745 

detected by QTLtools120. 746 

 747 

Details of the model training pipeline are summarized are equivalent to those used to train models in 748 

GTEx data. All isoTWAS models generated are available at https://zenodo.org/record/679594792. 749 

 750 

Gene- and isoform-level trait mapping 751 

We conducted gene- and isoform-level trait mapping for 15 neuropsychiatric traits: attention-deficit 752 

hyperactivity disorder (ADHD, Ncases = 20,183/Ncontrols = 35,191)59, Alzheimer’s disease (ALZ, 753 

https://zenodo.org/record/6795947
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90,338/1,036,225)60, anorexia nervosa (AN, 16,992/55,525)72, autism spectrum disorder (ASD, 754 

18,381/27,969)58, bipolar disorder (BP, 41,917/371,549)61, brain volume (BV, N = 47,316)62, cross-755 

disorder (CDG, 232,964/494,162)63, cortical thickness (CortTH, N = 51,665)64, intracranial volume (ICV, N 756 

= 32,438)65, major depressive disorder (MDD, 246,363/561,190)66, neuroticism (NTSM, N = 449,484)67, 757 

obsessive compulsive disorder (OCD, 2,688/7,037)68, panic and anxiety disorders (PANIC, 758 

2,248/7,992)69, post-traumatic stress disorder (PTSD, 32,428/174,227)70, and schizophrenia (SCZ, 759 

69,369/236,642)71. For gene-level trait mapping, we used the weighted burden test, followed by the 760 

permutation test, as outlined by Gusev et al4. For isoform-level trait mapping, we used the stage-wise 761 

testing procedure outlined in the isoTWAS method. In-sample LD from the QTL reference panels was 762 

used to calculate the standard error in the weighted burden test. For isoforms, irrespective of their 763 

corresponding genes, passing both stage-wise tests and the permutation test, we employed isoform-level 764 

probabilistic fine-mapping using FOCUS with default parameters55. These methods are summarized in 765 

Supplemental Figure S24. 766 

 767 

We estimated the percent increase in effective sample size by employing the following heuristic. We 768 

convert gene-level association P-values into χ² test statistics with 1 degree-of-freedom. For χ² > 1, we 769 

then calculate the percent increase for isoTWAS-based associations versus TWAS-based associations. 770 

As the mean of the χ² distribution is linearly related to power and sample size121, we can use this percent 771 

increase in test statistic as a measure of power or effective sample size. We defined independent 772 

genome-wide significant SNPs in GWAS by LD clumping with lead GWAS SNP < 5 x 10-8 with P-value 773 

used for ranking and a R2 threshold of 0.2. 774 

 775 

DATA AVAILABILITY 776 

GTEx genetic, transcriptomic, and covariate data were obtained through dbGAP approval at accession 777 

number phs000424.v8.p2. Linkage disequilibrium reference data from the 1000 Genomes Project were 778 

obtained at this link: https://www.internationalgenome.org/data-portal/sample. GWAS summary statistics 779 

were obtained at the following links: ADHD (https://www.med.unc.edu/pgc/download-results/), ALZ 780 

(https://ctg.cncr.nl/software/summary_statistics/), AN (http://www.med.unc.edu/pgc/results-and-781 

https://www.internationalgenome.org/data-portal/sample
https://www.med.unc.edu/pgc/download-results/
https://ctg.cncr.nl/software/summary_statistics/
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downloads), ASD (https://www.med.unc.edu/pgc/download-results/), BP 782 

(https://www.med.unc.edu/pgc/download-results/), BV (https://ctg.cncr.nl/software/summary_statistics), 783 

CDG (https://www.med.unc.edu/pgc/results-and-downloads), CortTH 784 

(https://enigma.ini.usc.edu/research/download-enigma-gwas-results/), ICV 785 

(https://enigma.ini.usc.edu/research/download-enigma-gwas-results/), MDD 786 

(http://dx.doi.org/10.7488/ds/2458), NTSM 787 

(https://ctg.cncr.nl/software/summary_statistics/neuroticism_summary_statistics), OCD 788 

(https://www.med.unc.edu/pgc/download-results/), PANIC (https://www.med.unc.edu/pgc/download-789 

results/), PTSD (https://www.med.unc.edu/pgc/results-and-downloads/), and SCZ 790 

(https://www.med.unc.edu/pgc/download-results/). The Developmental Brain RNA-seq and genotype 791 

dataset from Walker et al is available at dbGAP with accession number phs001900. The subset of Adult 792 

Brain RNA-seq and genotype data from the PsychENCODE Consortium is available at 793 

https://psychencode.synapse.org/DataAccess and from AMP-AD is available at 794 

https://adknowledgeportal.synapse.org/Data%20Access. GWAS summary statistics and accession 795 

numbers to genotype and RNA-seq data are provided in Supplemental Table S10. isoTWAS models for 796 

48 tissues from GTEx are available at https://zenodo.org/record/8047940122, adult brain cortex from 797 

PsychENCODE and AMP-AD are available at https://zenodo.org/record/8048198123, and developmental 798 

brain cortex from Walker et al are available at https://zenodo.org/record/8048137124. 799 

 800 

CODE AVAILABILITY 801 

isoTWAS is available as an R package at https://github.com/bhattacharya-a-bt/isotwas. Sample scripts for 802 

analyses are available at https://github.com/bhattacharya-a-bt/isotwas_manu_scripts. 803 
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   1073 

FIGURE LEGENDS 1074 

Figure 1: Isoform-centric approach for complex trait mapping and prioritization of disease mechanisms at 1075 

a genetic locus. (a) Motivation for isoTWAS. Gene G has three isoforms associated with a trait but only 1076 

one has an effect on the trait. Gene G itself does not show an association with the trait. Studying genetic 1077 

associations with an isoform-centric perspective will prioritize Gene G, but not with a gene-centric 1078 

perspective. (b) Schematic comparison of isoTWAS and TWAS. First, isoTWAS differs from TWAS by 1079 

training a multivariate model of isoform expression, while TWAS models total gene expression, the sum of 1080 

isoform expression. Second, isoTWAS maps isoform-trait associations through a step-wise hypothesis 1081 

testing framework that provides gene-level false discovery control and isoform-level family-wide error rate 1082 

control. TWAS only maps gene-trait association. 1083 

 1084 
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Figure 2: IsoTWAS models predict gene expression with more accuracy than TWAS models in simulated 1085 

data. (a) Simulation setup to generate isoform expression with specified isoQTL architecture, controlled 1086 

expression heritability, number of isoforms, and inter-isoform correlation structure. (b) Proportion of 1087 

simulations where the isoTWAS model has the maximum adjusted R2 for marginal isoform prediction (Y-1088 

axis) across shared isoQTL proportion (X-axis), colored by isoTWAS method, facetted by causal isoQTL 1089 

proportion (top margin) and proportion of isoform expression variance attributed to shared non cis-genetic 1090 

effects (right margin). (c) Boxplots of difference in adjusted R2 in predicting gene expression between 1091 

isoTWAS and TWAS models from simulations with sample size 500 where isoform and gene expression 1092 

heritability are set to 0.05, across causal isoQTL proportion (X-axis) and colored by number of transcripts 1093 

per gene, facetted by proportion of shared isoQTLs (top margin) and proportion of variance explained by 1094 

shared non cis-genetic effects (right margin). 1095 

 1096 

Figure 3: Multivariate isoform-level predictive models improve upon gene-level predictive models in 1097 

predictive gene-level expression. (a) Barplot showing the number of isoforms with CV R2 > 0.01 (Y-axis) 1098 

using multivariate (cream) and univariate (blue) modelling methods across brain tissues (X-axis). (b) 1099 

Boxplot of median percent difference in predicting isoform expression (Y-axis) using multivariate 1100 

compared to univariate method by brain and other tissue (X-axis). P-value corresponds to difference in 1101 

median across groups, adjusted for sample size. (c) Barplot showing the number of genes passing CV 1102 

thresholds (Y-axis) using TWAS (red) and isoTWAS (blue) across brain tissues. (d)  Barplot showing the 1103 

number of genes with CV R2 > 0.01 (Y-axis) using TWAS (red) and isoTWAS (blue) across brain tissues 1104 

(X-axis). (e) Boxplot of percent difference in R2 (Y-axis) of predicting gene expression (isoTWAS – 1105 

TWAS) in external datasets. X-axis shows the training and imputation datasets. The median percent 1106 

difference in labelled. 1107 

 1108 

Figure 4: IsoTWAS improves power to detect gene-trait associations, especially when genetic effects 1109 

differ across isoforms, in simulations. (a) Power to detect gene-trait association (proportion of tests with P 1110 

< 2.5 x 10-6, Y-axis) across causal proportion of isoQTLs (X-axis), facetted by proportion of shared 1111 

isoQTLs (top margin) and proportion of variance explained by shared non cis-genetic effects (right 1112 
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margin). (b) Power to detect gene-trait association (proportion of tests with P < 2.5 x 10-6, Y-axis) across 1113 

proportion of gene expression explained by effect isoform (X-axis). (c) Power to detect gene-trait 1114 

association (proportion of tests with P < 2.5 x 10-6, Y-axis) across ratio of effect sizes for 2 effect isoforms. 1115 

Across all plots, isoform and total gene expression heritability is set to 0.05 and causal proportion of 0.01 1116 

in (b-c). Points are colored by method and shaped by the number of isoforms per gene. 1117 

 1118 

Figure 5: Isoform-level trait mapping increases discovery of genetic associations over gene-level trait 1119 

mapping. (a) Schematic diagram for trait mapping using gene-level TWAS and isoTWAS using 1120 

PsychENCODE data. (b) Number of gene-trait associations overlapping GWAS risk SNPs within 0.5 Mb 1121 

using gene-level TWAS (red), isoTWAS (blue), or either (green) at conservative permutation-based 1122 

significance thresholds. (c) Scatterplot of standardized effect sizes (Z-scores) using isoTWAS and gene-1123 

level TWAS, considered associations with nominal P < 0.05 using both TWAS and isoTWAS. Gray line 1124 

shows the 45-degree line and the green line shows an ordinary least squares regression. (d) Empirical 1125 

Bayes estimate of test statistic inflation (X-axis) for TWAS (red) and isoTWAS (red) gene-level 1126 

associations across 15 traits (Y-axis). (e) Mean percent increase in approximate 𝜒2-test statistic (squared 1127 

Z-score), which is proportional to increase in effective sample size, for isoTWAS trait associations over 1128 

TWAS trait associations. (f) Number of gene-trait associations overlapping GWAS risk SNPs within 0.5 1129 

Mb using splicing-event-based TWAS (purple), isoTWAS (blue), or either (green) at conservative 1130 

permutation-based significance thresholds. 1131 

 1132 

Figure 6: isoTWAS implicates isoforms of AKT3, CUL3, HSPD1, and PCLO in genetic associations with 1133 

psychiatric traits. In each plot, (top) Manhattan plots of GWAS risk, total gene eQTLs, and isoQTLs, 1134 

colored by LD to the lead isoQTL and lead isoQTL shown in a triangle and labelled. LD is based on the 1135 

1000 Genomes European reference. (bottom) Boxplots of gene and isoform expression by genotype of 1136 

the lead isoQTL SNP and forest plot of the lead isoQTL’s effect and 95% confidence interval on the trait, 1137 

gene, and isoform, with P-values labelled. (a) SCZ risk, AKT3 gene expression, and ENST00000492957 1138 

isoform expression. (b) SCZ risk, CUL3 gene expression, ENST00000409096 isoform expression. (c) 1139 
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SCZ risk, HSPD1 gene expression, ENST00000678969 isoform expression. (d) CDG risk, PCLO gene 1140 

expression, ENST00000423517 isoform expression. 1141 

 1142 

SUPPLEMENTAL INFORMATION 1143 

Supplemental Methods 1144 

Supplemental Methods are provided in the attached SupplementalMethods.pdf. 1145 

 1146 

Supplemental Figure Legends 1147 

Figure S1: Directed acyclic graph (DAG) illustrating causal assumptions in isoTWAS. We assume that 1148 

the local genetic variants within 1 Megabase of a gene have direct effects on the expression of a gene G 1149 

and its isoforms; these genetic effects need not be shared across isoforms and the gene. Furthermore, 1150 

we assume that the abundance of a gene is the sum of abundances of its isoforms. Lastly, we assume 1151 

that the isoform and gene need not affect the complex trait through the same path. We also acknowledge 1152 

that genetic variants may have effects on the trait through pathways independent of gene and isoform 1153 

expression. 1154 

 1155 

Figure S2: Step-wise hypothesis testing in isoTWAS. First, isoform-trait associations are estimated either 1156 

using appropriate regressions of imputed expression in individual-level GWAS or the weighted burden 1157 

test in Gusev et al in GWAS summary statistics. Then, associations for isoforms of the same gene are 1158 

aggregated to the gene-level using the Aggregated Cauchy Association Test (ACAT). These aggregated 1159 

gene-level associations are adjusted for multiple testing burden to control the false discovery rate (FDR) 1160 

using either a Bonferroni or Benjamini-Hochberg procedure. Lastly, for isoforms of genes that pass gene-1161 

level testing, we control the family-wide error rate (FWER) using Shaffer’s modified sequentially rejective 1162 

procedure. 1163 

 1164 

Figure S3: Comparison of predictive performance of 6 models implemented in isoTWAS. Across 1,000 1165 

simulations of 5 isoforms with isoform heritability (ℎ𝑖
2) set to 0.05 or 0.10. Boxplots of adjusted R2 of 1166 

prediction of isoform expression (Y-axis) across shared isoQTL proportion (X-axis) 1167 
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 1168 

Figure S4: IsoTWAS models predict gene expression with more accuracy than TWAS models. Boxplots 1169 

of percent difference in adjusted R2 in predicting gene expression between isoTWAS and TWAS models 1170 

from simulations with sample size 200 (compare with sample size 500 in Figure 2), where isoform and 1171 

gene expression heritability are set to (top) 0.05 and (bottom) 0.10. 1172 

 1173 

Figure S5: Across 48 GTEx tissues (Y-axis), the number of multivariate (cream) and univariate (blue) 1174 

models predicting isoform expression at CV R2 > 0.01 (X-axis). 1175 

 1176 

Figure S6: Across 48 GTEx tissues (Y-axis), percent difference in CV R2 (X-axis) of prediction of isoform 1177 

expression models using multivariate models versus univariate models. The label shows the proportion of 1178 

isoforms with improved performance using multivariate models. 1179 

 1180 

Figure S7: Number of isoforms with CV R2 > 0.01 (Y-axis) using the baseline univariate model (teal, best 1181 

univariate) and 4 multivariate models. 1182 

 1183 

Figure S8: Across 48 GTEx tissues (Y-axis), number of genes that pass TWAS (blue) and isoTWAS (red) 1184 

CV R2 cutoffs to be available for testing in the trait-mapping step (X-axis) 1185 

 1186 

Figure S9: Across 48 GTEx tissues (Y-axis), percent difference in CV R2 (X-axis) of prediction of isoform 1187 

expression models using multivariate models versus univariate models. The label shows the proportion of 1188 

isoforms with improved performance using multivariate models. 1189 

 1190 

Figure S10: Across 48 GTEx tissues (Y-axis), number of genes predicted at CV R2 > 0.01 using TWAS 1191 

(blue) and isoTWAS (red) 1192 

 1193 

Figure S11: Number of genes (left) and isoforms (right) predicted at CV R2 > 0.01 using isoTWAS across 1194 

48 GTEx tissues. 1195 
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 1196 

Figure S12: Performance of isoTWAS across number of isoforms per gene across 48 GTEx tissues. (a) 1197 

Ratio of number of isoforms predicted at R2 > 0.01 using multivariate versus univariate prediction. (b) 1198 

Ratio of number of genes passing CV threshold using isoTWAS versus TWAS. (c) Median number of 1199 

isoforms predicted at CV R2 > 0.01 in isoTWAS models across increasing number of isoforms per gene. 1200 

The red line shows the line Y = X + 1. (d) Ratio of number of genes with CV R2 > 0.01 using isoTWAS 1201 

versus TWAS. 1202 

 1203 

Figure S13: Performance of isoTWAS across increasing maximum isoform fraction across 48 GTEx 1204 

tissues. (a) Ratio of number of isoforms predicted at R2 > 0.01 using multivariate versus univariate 1205 

prediction. (b) Ratio of number of genes passing CV threshold using isoTWAS versus TWAS. (c) Ratio of 1206 

number of genes with CV R2 > 0.01 using isoTWAS versus TWAS. 1207 

 1208 

Figure S14: Performance of isoTWAS across increasing gene length across 48 GTEx tissues. (a) Ratio 1209 

of number of isoforms predicted at R2 > 0.01 using multivariate versus univariate prediction. (b) Ratio of 1210 

number of genes passing CV threshold using isoTWAS versus TWAS. (c) Ratio of number of genes with 1211 

CV R2 > 0.01 using isoTWAS versus TWAS. R2 > 0.01 using isoTWAS versus TWAS. 1212 

 1213 

Figure S15: Performance of isoTWAS across increasing SNP density across 48 GTEx tissues. (a) Ratio 1214 

of number of isoforms predicted at R2 > 0.01 using multivariate versus univariate prediction. (b) Ratio of 1215 

number of genes passing CV threshold using isoTWAS versus TWAS. (c) Ratio of number of genes with 1216 

CV R2 > 0.01 using isoTWAS versus TWAS. 1217 

 1218 

Figure S16: Performance of isoTWAS across increasing sample size across 48 GTEx tissues. (a) Ratio 1219 

of number of isoforms predicted at R2 > 0.01 using multivariate versus univariate prediction. (b) Ratio of 1220 

number of genes passing CV threshold using isoTWAS versus TWAS. (c) Ratio of number of genes with 1221 

CV R2 > 0.01 using isoTWAS versus TWAS. 1222 

 1223 
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Figure S17: Performance of isoTWAS across proportion of shared isoTWAS model effect SNPs across 1224 

48 GTEx tissues. (a) Ratio of number of isoforms predicted at R2 > 0.01 using multivariate versus 1225 

univariate prediction. (b) Ratio of number of genes passing CV threshold using isoTWAS versus TWAS. 1226 

(c) Ratio of number of genes with CV R2 > 0.01 using isoTWAS versus TWAS. 1227 

 1228 

Figure S18: Performance of isoTWAS across increasing mean counts of isoforms and genes across 48 1229 

GTEx tissues. (a) Ratio of number of isoforms predicted at R2 > 0.01 using multivariate versus univariate 1230 

prediction across increasing mean counts of isoforms. (b) Ratio of number of genes with CV R2 > 0.01 1231 

using isoTWAS versus TWAS across increasing mean counts of genes. 1232 

 1233 

Figure S19: Performance of isoTWAS across increasing quantification variance of isoforms and genes 1234 

across 48 GTEx tissues. (a) Ratio of number of isoforms predicted at R2 > 0.01 using multivariate versus 1235 

univariate prediction across increasing quantification variance of isoforms. (b) Ratio of number of genes 1236 

with CV R2 > 0.01 using isoTWAS versus TWAS across increasing quantification variance of genes. 1237 

 1238 

Figure S20: (a) Median percent difference in R2 of predicting original isoform expression using 1239 

multivariate versus univariate models across increasing number of isoforms per gene, colored by models 1240 

trained in the original dataset (pink) and the leave-one-out dataset (teal) (b) Median percent difference in 1241 

R2 of predicting original gene expression using isoTWAS versus TWAS models across increasing number 1242 

of isoforms per gene, colored by models trained in the original dataset (pink) and the leave-one-out 1243 

dataset (teal) 1244 

 1245 

Figure S21: IsoTWAS and gene-level TWAS show relatively similar false positive rates. Across 20 1246 

iterations of 1,000 simulations, boxplots of false positive rate to detect a gene-trait association using 1247 

Cauchy-aggregated P-values of isoform-trait associations (red) and gene-level TWAS (blue). In these 1248 

simulations, we simulate 200 and 5,000 samples in the eQTL and GWAS panels, 5 isoforms, and isoform 1249 

and gene expression heritability of 0.10. We vary the causal isoQTLs proportion (pc, shown on X-axis), 1250 

the QTL architecture (right margin), and correlation between isoforms (top margin). For each iteration, we 1251 
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simulate one eQTL panel and 1,000 GWAS panels where genetically-regulated gene and isoform 1252 

expression have no effect on the trait. We calculate the false positive rate as the proportion of the 1,000 1253 

tests that give P > 0.05. 1254 

 1255 

Figure S22: Power comparison between TWAS and isoTWAS in detecting gene-trait association across 3 1256 

scenarios (Methods). (a) Power to detect gene-trait association (proportion of tests with P < 2.5 x 10-6, Y-1257 

axis) across number of total isoforms per gene (X-axis), facetted by proportion of shared isoQTLs (top 1258 

margin) and proportion of expression heritability attributed to shared non-genetic effects across isoforms 1259 

(right margin). Points are shaped by causal isoQTL proportion and colored by method. (b) Power to 1260 

detect gene-trait association (proportion of tests with P < 2.5 x 10-6, Y-axis) across proportion of gene 1261 

expression explained by effect isoform (X-axis), facetted by proportion of shared isoQTLs (top margin) 1262 

and proportion of expression heritability attributed to shared non-genetic effects across isoforms (right 1263 

margin). Points are shaped by number of isoforms per gene and colored by method. (c) Power to detect 1264 

gene-trait association (proportion of tests with P < 2.5 x 10-6, Y-axis) across ratio of effect sizes of 2 effect 1265 

isoforms (X-axis), facetted by proportion of shared isoQTLs (top margin) and proportion of expression 1266 

heritability attributed to shared non-genetic effects across isoforms (right margin). Points are shaped by 1267 

number of isoforms per gene and colored by method. Here, expression heritability is set of 0.05, trait 1268 

heritability is set to 0.1, and causal proportion of (b-c) is set of 0.01. 1269 

 1270 

Figure S23: Sensitivity (a) and mean set size (b) of 90% credible set using FOCUS to finemap isoform-1271 

trait associations for a single gene, across causal isoQTL proportion (X-axis). Points are colored by trait 1272 

heritability and shaped by the number of isoforms per gene. Plots are facetted by proportion of shared 1273 

isoQTLs (top margin) and proportion of expression heritability attributed to shared non-genetic effects 1274 

across isoforms (right margin). Line-range shows a 95% jackknife confidence interval. 1275 

 1276 

Figure S24: Schematic diagram for analysis using adult and developmental frontal cortex data from 1277 

PsychENCODE and AMP-AD. Data sources for eQTL reference data, GWAS cohorts, and reference LD 1278 
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data are provided on the left (black). The full gene-level TWAS (red) and isoTWAS (blue) are summarized 1279 

on the right. 1280 

 1281 

Figure S25: Number of gene-trait associations (Y-axis) using TWAS (red) and isoTWAS (blue) across 1282 

trait (X-axis), faceting by tissue (top margin) and threshold (right margin: adjusted P < 0.05 and 1283 

permutation P < 0.05, top; in 90% credible set using FOCUS fine-mapping, bottom). 1284 

 1285 

Figure S26: Number of isoform-trait associations (Y-axis) using isoTWAS across trait (X-axis), faceting by 1286 

tissue (top margin) and threshold (right margin: adjusted P < 0.05 and permutation P < 0.05, top; in 90% 1287 

credible set using FOCUS fine-mapping, bottom). 1288 

 1289 

Figure S27: QQ-plots of gene-level P-values using TWAS (red) and isoTWAS (blue) across 15 traits. 1290 

 1291 

Figure S28: (a) Distribution of number of genes in risk region (left) and in 90% credible set (right) using 1292 

TWAS and isoTWAS. (b) Distribution of number of isoforms per gene in risk region (left) and in 90% 1293 

credible set (right) using isoTWAS. 1294 

 1295 

Figure S29: Lollipop plot of enrichment ratio (X-axis) of ontologies (Y-axis) for isoTWAS-prioritized genes 1296 

associated at adjusted P < 0.05 and permutation P < 0.05. Points are shaped by tissue type (adult or 1297 

developmental) and colored by ontology type (biological process, cell component, molecular function). 1298 

 1299 

Figure S30: For ENST00000681794 association with BV (a) and ENST00000492957 with BV (b), 1300 

Manhattan plots of GWAS, eQTL, and isoQTL signal colored by LD (top), boxplots of gene (red) and 1301 

isoform (blue) expression (Y-axis) by genotype (X-axis) (bottom left), and forest plot of lead isoQTL 1302 

association with isoform (blue), gene (red), and trait (black) (bottom right). (c) Comparison of exon and 1303 

intron structure of ENST00000681794 and ENST00000492957, based on Gencode v38 reference. 1304 

 1305 

Supplemental Tables 1306 
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Table S1: Sample size, source, and tissues for functional genomics reference panels 1307 

 1308 

Table S2: Number of genes/models that pass cross-validation prediction cutoffs using TWAS and 1309 

isoTWAS feature selection criteria and prediction methods 1310 

 1311 

Table S3: Distribution of predictive external R2 of observed total gene expression vs. predicted total gene 1312 

expression (isoTWAS -TWAS) 1313 

 1314 

Table S4: Number of GWAS loci with an isoTWAS-, TWAS-, and splice-TWAS-prioritized gene within 0.5 1315 

Mb 1316 

 1317 

Table S5: TWAS and fine-mapping results for genes with adjusted P < 0.05 and permutation P < 0.05 1318 

across 15 traits using adult brain cortex models 1319 

 1320 

Table S6: isoTWAS and fine-mapping results for genes with adjusted P < 0.05 and permutation P < 0.05 1321 

across 15 traits using adult brain cortex models 1322 

 1323 

Table S7: TWAS and fine-mapping results for genes with adjusted P < 0.05 and permutation P < 0.05 1324 

across 15 traits using developmental brain cortex models 1325 

 1326 

Table S8: isoTWAS and fine-mapping results for genes with adjusted P < 0.05 and permutation P < 0.05 1327 

across 15 traits using developmental brain cortex models 1328 

 1329 

Table S9: Empirical bayes estimates of test statistic inflation and increase in χ² test statistics of gene-1330 

level associations using isoTWAS and TWAS 1331 

 1332 

Table S10: Accession numbers and URLs for data access 1333 

 1334 
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Supplemental Data 1335 

Data 1: Predictive performance comparison of isoTWAS multivariate methods in simulated data across a 1336 

variety of genetic architecture settings 1337 

 1338 

Data 2: Predictive performance comparison of isoTWAS and TWAS gene expression prediction in 1339 

simulated data across a variety of genetic architecture settings 1340 

 1341 

Data 3: Isoform expression prediction metrics across a variety of factors, using 48 GTEx datasets 1342 

 1343 

Data 4: Gene expression prediction metrics across a variety of factors, using 48 GTEx datasets 1344 

 1345 

Data 5: False positive rates using isoTWAS and TWAS to detect a gene-trait association at P < 0.05 1346 

across a variety genetic architecture parameters 1347 

 1348 

Data 6: Power to detect trait association at P < 2.5 x 10-6 across 1,000 simulations each for 22 genes 1349 

using TWAS and isoTWAS across various simulations. These simulations are under Scenario 1 in Figure 1350 

4a (gene has a true effect on the trait, but none of the isoforms have a true effect on the trait) 1351 

 1352 

Data 7: Power to detect trait association at P < 2.5 x 10-6 across 1,000 simulations each for 22 genes 1353 

using TWAS and isoTWAS (ACAT) across various simulations. These simulations are under Scenario 2 1354 

in Figure 4b (a gene has multiple isoforms, only one has an effect on the trait, and we vary the usage of 1355 

this effect isoform) 1356 

 1357 

Data 8: Power to detect trait association at P < 2.5 x 10-6 across 1,000 simulations each for 22 genes 1358 

using TWAS and isoTWAS (ACAT) across various simulations. These simulations are under Scenario 3 1359 

in Figure 4c (a gene has two isoforms with differing effects on the trait, and we vary the effect size of one 1360 

of the isoforms) 1361 

 1362 
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Data 9: Sensitivity and mean set size of 90% credible sets determined by FOCUS in simulated data 1363 

across a variety of genetic architecture parameters 1364 

 1365 

Data 10: Raw TWAS results across 15 neuropsychiatric traits using adult brain cortex expression models 1366 

 1367 

Data 11: Raw isoTWAS results across 15 neuropsychiatric traits using adult brain cortex expression 1368 

models 1369 

 1370 

Data 12: Raw TWAS results across 15 neuropsychiatric traits using developmental brain cortex 1371 

expression models 1372 

 1373 

Data 13: Raw isoTWAS results across 5 neuropsychiatric traits using developmental brain cortex 1374 

expression models 1375 

 1376 

Data 14: GWAS and nominal eQTL and isoQTL summary statistics corresponding to isoTWAS isoform-1377 

trait association examples shown in Figure 7 and Supplemental Figure S30. 1378 

 1379 
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Figure 1: Isoform-centric approach for complex trait mapping and prioritization of disease mechanisms at a 

genetic locus. (a) Motivation for isoTWAS. Gene G has three isoforms associated with a trait but only one has an 

effect on the trait. Gene G itself does not show an association with the trait. Studying genetic associations with an 

isoform-centric perspective will prioritize Gene G, but not with a gene-centric perspective. (b) Schematic comparison of 

isoTWAS and TWAS. First, isoTWAS differs from TWAS by training a multivariate model of isoform expression, while 

TWAS models total gene expression, the sum of isoform expression. Second, isoTWAS maps isoform-trait 

associations through a step-wise hypothesis testing framework that provides gene-level false discovery control and 

isoform-level family-wide error rate control. TWAS only maps gene-trait association. 
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Figure 2: IsoTWAS models predict gene expression with more accuracy than TWAS models in simulated data. (a) 

Simulation setup to generate isoform expression with specified isoQTL architecture, controlled expression heritability, 

number of isoforms, and inter-isoform correlation structure. (b) Proportion of simulations where the isoTWAS model 

has the maximum adjusted R2 for marginal isoform prediction (Y-axis) across shared isoQTL proportion (X-axis), 

colored by isoTWAS method, facetted by causal isoQTL proportion (top margin) and proportion of isoform expression 

variance attributed to shared non cis-genetic effects (right margin). (c) Boxplots of difference in adjusted R2 in 

predicting gene expression between isoTWAS and TWAS models from simulations with sample size 500 where 

isoform and gene expression heritability are set to 0.05, across causal isoQTL proportion (X-axis) and colored by 

number of transcripts per gene, facetted by proportion of shared isoQTLs (top margin) and proportion of variance 

explained by shared non cis-genetic effects (right margin). 



  

Figure 3: Multivariate isoform-level predictive models improve upon gene-level predictive models in predictive gene-
level expression. (a) Barplot showing the number of isoforms with CV R2 > 0.01 (Y-axis) using multivariate (cream) and 
univariate (blue) modelling methods across brain tissues (X-axis). (b) Boxplot of median percent difference in 
predicting isoform expression (Y-axis) using multivariate compared to univariate method by brain and other tissue (X-
axis). P-value corresponds to difference in median across groups, adjusted for sample size. (c) Barplot showing the 
number of genes passing CV thresholds (Y-axis) using TWAS (red) and isoTWAS (blue) across brain tissues. (d)  
Barplot showing the number of genes with CV R2 > 0.01 (Y-axis) using TWAS (red) and isoTWAS (blue) across brain 
tissues (X-axis). (e) Boxplot of percent difference in R2 (Y-axis) of predicting gene expression (isoTWAS – TWAS) in 
external datasets. X-axis shows the training and imputation datasets. The median percent difference in labelled. 
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Figure 4: IsoTWAS improves power to detect gene-trait associations, especially when genetic effects differ across 

isoforms, in simulations. (a) Power to detect gene-trait association (proportion of tests with P < 2.5 x 10-6, Y-axis) 

across causal proportion of isoQTLs (X-axis), facetted by proportion of shared isoQTLs (top margin) and proportion of 

variance explained by shared non cis-genetic effects (right margin). (b) Power to detect gene-trait association 

(proportion of tests with P < 2.5 x 10-6, Y-axis) across proportion of gene expression explained by effect isoform (X-

axis). (c) Power to detect gene-trait association (proportion of tests with P < 2.5 x 10-6, Y-axis) across ratio of effect 

sizes for 2 effect isoforms. Across all plots, isoform and total gene expression heritability is set to 0.05 and causal 

proportion of 0.01 in (b-c). Points are colored by method and shaped by the number of isoforms per gene. 
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Figure 5: Isoform-level trait mapping increases discovery of genetic associations over gene-level trait mapping. (a) 
Schematic diagram for trait mapping using gene-level TWAS and isoTWAS using PsychENCODE data. (b) Number of 
gene-trait associations overlapping GWAS risk SNPs within 0.5 Mb using gene-level TWAS (red), isoTWAS (blue), or 
either (green) at conservative permutation-based significance thresholds. (c) Scatterplot of standardized effect sizes 
(Z-scores) using isoTWAS and gene-level TWAS, considered associations with nominal P < 0.05 using both TWAS 
and isoTWAS. Gray line shows the 45-degree line and the green line shows an ordinary least squares regression. (d) 
Empirical Bayes estimate of test statistic inflation (X-axis) for TWAS (red) and isoTWAS (red) gene-level associations  
across 15 traits (Y-axis). (e) Mean percent increase in approximate 𝜒2-test statistic (squared Z-score), which is 

proportional to increase in effective sample size, for isoTWAS trait associations over TWAS trait associations. (f) 
Number of gene-trait associations overlapping GWAS risk SNPs within 0.5 Mb using splicing-event-based TWAS 
(purple), isoTWAS (blue), or either (green) at conservative permutation-based significance thresholds. 



 

Figure 6: isoTWAS implicates isoforms of AKT3, CUL3, HSPD1, and PCLO in genetic associations with psychiatric 
traits. In each plot, (top) Manhattan plots of GWAS risk, total gene eQTLs, and isoQTLs, colored by LD to the lead 
isoQTL and lead isoQTL shown in a triangle and labelled. LD is based on the 1000 Genomes European reference. 
(bottom) Boxplots of gene and isoform expression by genotype of the lead isoQTL SNP and forest plot of the lead 
isoQTL’s effect and 95% confidence interval on the trait, gene, and isoform, with P-values labelled. (a) SCZ risk, AKT3 
gene expression, and ENST00000492957 isoform expression. (b) SCZ risk, CUL3 gene expression, 
ENST00000409096 isoform expression. (c) SCZ risk, HSPD1 gene expression, ENST00000678969 isoform 
expression. (d) CDG risk, PCLO gene expression, ENST00000423517 isoform expression. 


