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 2 

Abstract 19 

Somatic mutations drive cancer development and are relevant to patients’ response to treatment. 20 

Emerging evidence shows that variations in the somatic genome can be influenced by the 21 

germline genetic background. However, the mechanisms underlying these germline-somatic 22 

associations remain largely obscure. We hypothesized that germline variants can influence 23 

somatic mutations in a nearby cancer gene (“local impact”) or a set of recurrently mutated cancer 24 

genes across the genome (“global impact”) through their regulatory effect on gene expression. 25 

We integrated tumor targeted sequencing from 12,413 patients across 11 cancer types in the 26 

Dana-Farber Profile cohort with germline cancer gene expression quantitative trait loci (eQTL) 27 

from the Genotype-Tissue Expression Project. We identified variants that upregulate ATM 28 

expression which are also associated with a decreased risk of having somatic ATM mutations 29 

across 8 cancer types (P = 3.43 × 10−5). We also identified GLI2, WRN, and CBFB eQTL that are 30 

associated with global tumor mutational burden of cancer genes in ovarian cancer, glioma, and 31 

esophagogastric carcinoma, respectively (P < 3.45 × 10−6). An EPHA5 eQTL was associated 32 

with the number of mutations in cancer genes specific to colorectal cancer, and eQTL associated 33 

with expression of APC, WRN, GLI1, FANCA, and TP53 were associated with mutations in 34 

genes specific to endometrial cancer (P < 1.73 × 10−5). Our findings provide evidence for the 35 

germline-somatic associations mediated through expression of specific cancer genes and open 36 

new avenues for research on the underlying biological processes, especially those related to 37 

immunotherapy responses.  38 
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Introduction 39 

Cancer is a genetic disease driven by somatic events occurring in the genome over time. 40 

Identifying genes carrying driver mutations (cancer driver genes) and elucidating their roles in 41 

the related signaling pathways have become primary goals in cancer genomic research because 42 

of the contribution of these genetic changes to abnormal and uncontrolled cell growth and 43 

transformation which drive the development of a malignant tumor (1-4). Many of these driver 44 

genomic alterations have been found to be clinically actionable drug or therapeutic targets for 45 

precision medicine. With the advancement of low-cost, high-throughput next-generation 46 

sequencing (NGS) technologies, genomic profiling of tumors using targeted NGS panels is 47 

becoming part of routine cancer care (5-8). 48 

Different cancers are characterized by different patterns of somatic mutations (9,10). Even 49 

patients with the same cancer may have substantial heterogeneity in the overall tumor mutational 50 

burden (TMB), mutation patterns characterized by mutational signatures, or the cancer genes and 51 

oncogenic signaling pathways altered (4,11-14). These heterogeneities in the somatic mutational 52 

profile can lead to differential cancer progression, prognosis, and treatment response (15,16). A 53 

well-known example is the predictive association of TMB and response to immunotherapy (17). 54 

Mounting evidence suggests that somatic variations in tumors can have a germline genetic basis 55 

(12,18-23). This germline-somatic relationship has been established at different levels, from the 56 

impact of a single germline variant on somatic mutation rate of a cancer gene (e.g., rs25673 at 57 

19p13.3 with PTEN alterations that involved in the mTOR signaling pathway) (20), to the 58 

associations between germline polygenic risk scores (PRS) and somatic mutational signatures 59 

(e.g., germline PRS of inflammatory bowel disease with APOBEC signatures in breast cancer) 60 

(23). Emerging evidence also shows an interactive effect of germline and somatic variations on 61 
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clinical outcomes (24). However, the study of germline-somatic interactions is still at an early 62 

stage and the mechanisms responsible for these observed associations are still largely uncovered.  63 

Germline variants may affect somatic mutations through gene expression (19,22,25). In the well-64 

established example of the APOBEC mutational process, rs17000526-A allele in the APOBEC3B 65 

region is associated with higher expression of this gene, which contributes to somatic 66 

mutagenesis of APOBEC signatures in bladder tumor (19). Chen et al. systematically assessed 67 

the impacts of expression level of putative cancer-susceptibility genes on mutational signatures 68 

and TMB and identified a wide range of associations across six cancer types (25). Many 69 

underlying mechanisms may co-exist, but an intuitive and interpretable hypothesis would be that 70 

the germline cancer gene expression quantitative trait loci (eQTL) alter the propensity of 71 

acquiring somatic mutations in those specific genes or globally through their regulatory effect on 72 

gene expression. Although prior studies included gene expression information in the analysis of 73 

germline-somatic interactions, this is no systematic study focusing on both the local and global 74 

impact of eQTL on somatic mutations in cancer genes across multiple cancers. Many latent 75 

associations and mechanisms may thus have been missed.  76 

Here, we performed a pan-cancer analysis of the germline genetic impacts on both the local and 77 

global tumor mutations, incorporating regulatory information of germline variants on gene 78 

expression. Specifically, we evaluated the associations between germline cancer gene eQTL and 79 

i) somatic mutation status of those cancer genes or any hotspot mutation in those genes, ii) tumor 80 

mutation counts (TMC) of all recurrently mutated cancer genes for a cancer type, and iii) TMB 81 

of all targeted cancer genes from the OncoPanel sequencing platform across 11 cancer types in 82 

the Dana-Farber Profile cohort. Clinical targeted sequencing cohorts are well suited for such 83 

germline-somatic analysis because the tumor sequencing specifically targets those actionable 84 
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cancer drivers and the cancer patient population is usually large, unselected, and has extensive 85 

clinical data. Our results demonstrate evidence for germline-somatic associations that are 86 

potentially mediated through cancer gene expression and provide insights into the mechanisms of 87 

mutagenesis in somatic cells.   88 
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Materials and Methods 89 

Study population 90 

The Dana-Farber Profile, initiated in 2011, is a cohort study of unselected cancer patients who 91 

presented at the Dana-Farber Cancer Institute, Brigham and Women’s Hospital, or Boston 92 

Children’s Hospital, received genomic profiling and consented to participate. Tumor specimens, 93 

mainly formalin-fixed paraffin-embedded tissues, were retrieved from all consented patients for 94 

targeted sequencing. Comprehensive clinical and pathologic data were collected along with the 95 

genomic data (6,26). The study protocol was approved by the institutional review board (IRB) of 96 

Dana-Farber/Partners Cancer Care Office for the Protection of Research Subjects (11-104/17-97 

000). Secondary analyses of previously collected data were approved by the Dana-Farber IRB 98 

(19-033/19-025). 99 

Tumor targeted sequencing 100 

A workflow of the full data generating and processing pipeline is present in Fig. 1. All collected 101 

tumor samples were sequenced on OncoPanel, a targeted NGS platform designed for detecting 102 

somatic variations in a panel of actionable cancer genes. There are three versions of the panel 103 

targeting the exon and/or intron regions of 304, 326, and 447 genes, respectively; each patient in 104 

the cohort was sequenced on one of the panels (Supplementary Table S1). All targeted genes 105 

were previously identified oncogenes or tumor suppressor genes involved in cancer-related 106 

signaling pathways (27). Sequencing was performed using an Illumina HiSeq 2500 with 2×100 107 

paired-end reads followed by somatic mutation calling using MuTect (for single-nucleotide 108 

variants) (28) and Indelocator (for indels; http://www.broadinstitute.org/cancer/cga/indelocator) 109 
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from reads aligned to the targeted genome regions with > 50× reads (“On-target reads”). More 110 

details about the tumor sequencing pipeline can be found in prior studies (6,27).  111 

We collected somatic mutation data from the tumor sequences of 18,472 primary cancer samples 112 

spanning over 60 cancer types and subtypes. Some tumors exhibit microsatellite instability 113 

(MSI) with high mutational burden; the germline-somatic relationship for those hypermutable 114 

subtypes might be substantially different from the microsatellite stable (MSS) tumors. We thus 115 

further classified each sample as MSI or MSS using MSIDetect (29). Cancer types with > 500 116 

samples were selected; for each selected cancer, we removed those rare subtypes with < 3 117 

samples. The remaining 12,413 samples across 11 cancer types were included in the downstream 118 

analysis (Supplementary Table S2).  119 

Germline imputation from tumor sequences 120 

Details of inferring common germline variants from the OncoPanel tumor sequencing data are 121 

described elsewhere (26) and briefly summarized here. Tumor targeted sequencing generated 122 

both high-coverage “on-target reads” aligned to the targeted regions and low-coverage “off-123 

target reads” aligned to the rest of the genome (Fig. 1). Common germline variants with > 1% 124 

frequency in the European population were imputed from these tumor sequences (mainly relied 125 

on off-target reads) using linkage disequilibrium (LD) information with the 1000 Genomes Phase 126 

3 release as the haplotype reference panel. Imputation accuracies from several algorithms 127 

designed for imputing germline variants from low coverage data were evaluated by comparing 128 

the imputed allele dosage to the gold standard germline data generated from genotyping array. 129 

The STITCH algorithm (30) yielded the highest overall accuracy and the resulting imputed 130 

germline data were used for the downstream analysis. The imputed variants were subsequently 131 
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restricted to an imputation INFO score of greater than 0.4, which produced a mean imputation 132 

correlation of 0.86 between tumor imputed and germline SNP array variants (26). 133 

Genetic ancestry was inferred by projecting the imputed germline genetic data into the genetic 134 

ancestry principal components using weights derived for European, African, and Asian 135 

populations from the 1000 Genomes Project reference data (31). We further restricted our 136 

analysis to samples with < 10% inferred non-European ancestry. 137 

Identifying recurrently mutated cancer genes and hotspot mutations 138 

We identified recurrently mutated cancer genes, defined as genes with ≥ 5% carriers of missense 139 

mutations, for each selected cancer type from the somatic data. Not all panel genes were 140 

sequenced on every sample (multiple panel versions exist); we thus further excluded those 141 

identified gene-cancer pairs with < 500 sequenced samples. We included additional genes that 142 

were identified as highly significantly mutated or significantly mutated genes among known 143 

cancer genes for each selected cancer type from the TumorPortal (http://www.tumorportal.org/) 144 

(32). A total of 135 cancer genes and 342 gene-cancer pairs were identified, with the mutation 145 

frequency ranging from 0.0036 to 0.73 (Fig. 2A; Supplementary Table S3). Mutation status for 146 

each sample and gene is defined as whether this sample carries at least one functional mutation 147 

(frame_shift_del, frame_shift_ins, frameshift, initiator_codon, missense and splice_region, 148 

missense_mutation, nonsense_mutation, protein_altering, splice_site, start_lost, stop_lost, and 149 

translation_start_site) in this gene and is considered to capture the “local” tumor mutation 150 

(mutation in one cancer gene).  151 

For each selected cancer type, we further identified specific mutations with ≥ 5% carriers in the 152 

somatic data as hotspot mutations. Seven of the 11 cancer types harbor at least one hotspot 153 
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mutation. A total of 17 hotspot mutations and 25 mutation-cancer pairs were identified, with the 154 

mutation frequency ranging from 0.051 to 0.33 (Fig. 2B; Supplementary Table S4). A binary 155 

variable of the local mutation status was created to indicate whether a sample carries a specific 156 

hotspot mutation.  157 

Quantifying TMB of all panel genes and TMC of recurrently mutated cancer genes 158 

TMB is defined as the total number of missense mutations per megabase based on the targeted 159 

sequencing data of all panel genes (Fig. 2C). It captures the total mutations in all targeted cancer 160 

genes and is considered as a refined “global” mutational burden restricting to a set of cancer-161 

related genes rather than the genome-wide mutational burden. In addition to TMB, we also 162 

calculated TMC for each sample, which is defined as the count of recurrently mutated cancer 163 

genes (specific to each cancer type) that harbor at least one missense mutation. The number of 164 

identified recurrently mutated cancer genes varies across cancer types (Fig. 2D). Compared to 165 

TMB, TMC is a more refined measure of the mutational burden in likely driver genes for a 166 

cancer. Moreover, by counting the genes instead of the mutations, the TMC analysis would be 167 

less sensitive to hypermutable outliers. 168 

Identifying eQTL from the Genotype-Tissue Expression (GTEx) Project for all selected 169 

genes  170 

We obtained the eQTL and gene expression association results in normal tissue for all selected 171 

genes from the meta-analyzed multi-tissue eQTL results using METASOFT (33) from the GTEx 172 

Analysis V8 release. We selected those genome-wide significant eQTL with P < 5 × 10−8 from 173 

any of the fixed effect (FE), random effect (RE), or Han and Eskin's random effect (RE2) 174 

models. Variants with minor allele frequency < 1% were further removed. A total of 28,486 175 
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eQTL for 114 genes with imputed germline data available were included in the analysis. We 176 

performed LD clumping with r2 = 0.3 on the final list of eQTL for each gene to identify 177 

independent loci, which was used to determine the number of effective tests in the association 178 

analyses (34).  179 

Assessing the associations of cancer gene eQTL with TMB and TMC 180 

We assessed the association between each selected cancer gene eQTL and TMB of all panel 181 

genes for each cancer by fitting a linear model adjusting for age, gender (if applicable), panel 182 

version, and tumor purity. MSI status was also adjusted as a covariate for the models of 183 

colorectal and endometrial cancer where a substantial proportion of the cases display 184 

hypermutability (35,36). TMB was Winsorized to 98% within each cancer type to reduce the 185 

impact of potential outliers on the association results. The associations between cancer gene 186 

eQTL and TMC were evaluated for recurrently mutated cancer genes for each cancer type by 187 

fitting a negative binomial model with the same covariates as the TMB models. Sensitivity 188 

analysis was performed to assess the impacts of potential TMB or TMC outliers on the 189 

association results by varying the Winsorization thresholds and using standardized TMB. For 190 

TMC, we further evaluated the impacts of using count of missense mutations instead of count of 191 

mutated genes on the germline-somatic associations. 192 

Assessing the associations of cancer gene eQTL with recurrently mutated cancer genes and 193 

hotspot mutations 194 

The local impact of each cancer gene eQTL on the risk of having somatic mutations in that gene 195 

or a nearby hotspot mutation was assessed using logistic regression. These analyses further 196 

adjusted for TMB along with all the covariates included in the TMB or TMC models. Meta-197 
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analysis was performed to evaluate the broad impact of a cancer gene eQTL on the mutation 198 

status of one gene or mutation across cancers. 199 

Data availability statement 200 

The individual-level data used in this study are not publicly available due to patient privacy 201 

requirements. Other unidentifiable data generated in this study are available within the article 202 

and its supplementary data files.  203 
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Results 204 

Germline cancer gene eQTL influence global tumor mutations 205 

We analyzed 28,486 eQTL for 114 cancer genes and assessed their associations with TMB of all 206 

cancer genes sequenced on the panel across cancers. There were 1,317 independent eQTL (r2 < 207 

0.3) after LD clumping. We identified 22 significant eQTL-TMB associations representing 3 208 

independent gene-cancer pairs that passed the Bonferroni correction threshold accounting for the 209 

number of effective tests (P < 3.45 × 10−6; Supplementary Table S5). Table 1 summarizes the 210 

results for the most significant association at each locus. There exists heterogeneity in the effects 211 

of these eQTL on TMB across cancers (Supplementary Table S6). Sensitivity analysis on the 212 

impacts of potential outliers showed that the association of the GLI2 eQTL and TMB in ovarian 213 

cancer was sensitive to the changing Winsorization threshold (Supplementary Table S7). This 214 

association also became non-significant if we use standardized TMB as the outcome (beta = 215 

0.26, P = 0.43) while the other two top associations remained nominally significant (beta = 216 

−2.33, P = 1.57 × 10−3 for rs139944315 (WRN) and TMB in glioma; beta = −0.23, P = 0.04 for 217 

rs11075646 (CBFB) and TMB in esophagogastric carcinoma).  218 

To further investigate the relationship between the observed germline-somatic associations and 219 

gene expression, we compared our results with the association results between the identified top 220 

eQTL and expression level of the specific cancer genes in normal tissue in GTEx (Table 1; Fig. 221 

3). The T allele of rs1530578 was associated with elevated TMB in ovarian cancer and reduced 222 

expression of GLI2 across tissues (Fig. 3A,D). The largest effect of rs1530578 on GLI2 223 

expression was observed in ovary with beta = −0.55 and P = 3.93 × 10−5 (Fig. 3A). rs139944315 224 

was associated with TMB in glioma and expression of WRN across tissues in a consistent 225 
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direction (Fig. 3B,E). While the largest effect of this variant on WRN expression was observed in 226 

subcutaneous adipose tissue, there was also an association in putamen of basal ganglia with beta 227 

= −0.51 for the T allele and P = 0.05 (Fig. 3B). Finally, we found that the C allele of rs11075646 228 

was associated with decreased TMB in esophagogastric carcinoma and slightly increased 229 

expression of CBFB across tissues (Fig. 3C,F). This variant had a nominally significant impact 230 

on CBFB expression in both gastroesophageal junction (beta = 0.10 and P = 0.02, Fig. 3C) and 231 

mucosa of esophagus (beta = 0.08 and P = 0.01) while the most significant effect was observed 232 

for thyroid (Fig. 3F). None of these three top variants or variants in high LD with them have 233 

been linked to cancer incidence in genome-wide association studies (GWAS) from GWAS 234 

Catalog (https://www.ebi.ac.uk/gwas/home) (37). 235 

We next assessed the impacts of cancer gene eQTL on TMC, which quantifies the mutational 236 

burden of a set of genes that are recurrently mutated in the specific cancer. There were 145 237 

significant eQTL-TMC associations after Bonferroni correction (P < 1.73 × 10−5; Supplementary 238 

Table S8), representing six independent gene-cancer pairs (Table 1). Sensitivity analysis showed 239 

that all top TMC associations were robust to a wide range of Winsorization thresholds 240 

(Supplementary Table S9). Replacing count of mutated genes with count of mutations also 241 

yielded similar results compared to the main analysis (Supplementary Table S10). Given that all 242 

top eQTL-TMC associations were identified for colorectal and endometrial cancer, we further 243 

performed a stratified analysis by MSI status. There was no substantial deviation in the effect 244 

estimates for MSS or MSI subgroup from the main analysis though the subgroup results were 245 

less significant, especially for MSI samples, which was likely due to the reduced sample sizes 246 

(Supplementary Table S11). Finally, we compared these top eQTL-TMC associations to the 247 

previous eQTL-TMB results and found that all these top germline variants were associated with 248 
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TMB in the corresponding cancers in consistent directions with TMC with nominal significance 249 

(Supplementary Table S12). 250 

There exists substantial heterogeneity in the associations with gene expression level across 251 

tissues for many of the top variants in the TMC associations (Fig. 4). Two of the tissue-specific 252 

associations have both P < 0.05 and m-value > 0.8: rs10031417 and EPHA5 expression in 253 

sigmoid colon and rs7201264 and FANCA expression in uterus (Fig. 4A,E). The A allele of 254 

rs10031417 was associated with lower somatic mutational burden in recurrently mutated cancer 255 

genes in colorectal cancer and slightly higher expression of EPHA5 across tissues (Fig. 4A,G); 256 

this positive effect on EPHA5 expression was larger in sigmoid colon with beta = 0.17 and P = 257 

1.11 × 10−3 (Fig. 4A). It is worth noting that a variant that is in LD with rs10031417 258 

(rs13104357, r2 = 0.18) has also been reported to be associated with EPHA5 expression in 259 

colorectal tumor samples in The Cancer Genome Atlas (TCGA) (38); the direction of this 260 

association in tumor was consistent with in normal tissue. rs7201264-C allele was associated 261 

with both increased TMC in endometrial cancer and decreased FANCA expression across tissues 262 

(Fig. 4E,K); it had a specific significant impact on FANCA expression in uterus (Fig. 4E; beta = 263 

−0.28 for the C allele, P = 0.02). rs78378222, that is in LD with the top variant identified for 264 

TMC in endometrial cancer and TP53 expression (rs17884306, r2 = 0.21 with rs78378222), has 265 

been previously associated with the risk of uterine fibroids and several cancers in but not the risk 266 

of endometrial cancer specifically (39,40). 267 

Local impacts of germline eQTL on somatic mutations in cancer genes 268 

Investigation of the local impacts of eQTL for a cancer gene on somatic mutations in that gene is 269 

also of interest as it may point to a direct and testable mechanism of how germline variations 270 
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modify the susceptibility to somatic events. None of the individual associations between somatic 271 

mutation status for recurrently mutated genes and their eQTL passed the Bonferroni correction 272 

threshold (P < 1.73 × 10−5). The most significant association observed was between a TSC2 273 

eQTL and somatic TSC2 mutation status in endometrial cancer (beta = −1.81 for rs12918530-C 274 

allele, P = 1.56 × 10−4; Supplementary Table S13). Looking across all cancers, there was a 275 

significant (P < 6.91 × 10−5) association between an ATM eQTL (lead SNP: rs4753834 at 276 

11q22.3) and somatic ATM mutations from a meta-analysis of 8 cancers (Fig. 5; Supplementary 277 

Table S14). The G allele of rs4753834 was associated with a lower risk of having somatic 278 

mutations in ATM (beta = −0.35, P = 3.43 × 10−5 across cancers from FE model) and increased 279 

expression of ATM in normal tissues (beta = 0.05, P = 1.03 × 10−20 across tissues from RE 280 

model). This variant also had specific effects on ATM expression in many tissues related the 8 281 

cancers, including mammary tissue (beta = 0.06), sigmoid colon (beta = 0.09), hypothalamus 282 

(beta = 0.12), lung (beta = 0.07), and prostate (beta = 0.11), all with P < 0.05 and m-value > 0.9. 283 

Moreover, variants that are in LD with rs4753834 have also been associated with ATM 284 

expression in tumor samples of breast cancer (rs673281, r2 = 0.21, beta = −0.08 for the T allele, 285 

P = 1.98 × 10−4) and glioma (rs1003623, r2 = 0.21, beta = −0.11 for the T allele, P = 4.56 × 10−4) 286 

(38); the directions were also consistent with those in normal tissues. We additionally tested the 287 

associations of ATM eQTL and TMB or TMC of cancer genes and found that variants in LD with 288 

rs4753834 (lead SNP: rs672964, r2 = 0.21 with rs4753834) were associated with TMB (beta = 289 

−0.69 for rs672964-C, P = 2.97 × 10−5) and TMC (beta = −0.07 for rs672964-C, P = 0.02) in 290 

non-small cell lung cancer in the consistent direction with ATM mutation status. No association 291 

with cancer risk was found for rs4753834 or its tagging SNPs in GWAS Catalog. 292 
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We also identified nominal associations between eQTL for cancer genes identified in the global 293 

tumor mutation analysis with the somatic mutation status of that gene in the corresponding 294 

cancer. We found that rs1897693 (r2 = 0.42 with rs10031417) was associated with both the 295 

expression of EPHA5 in normal tissues (beta = 0.03 for the C allele, P = 0.03 across tissues from 296 

RE model) and the somatic mutation status of EPHA5 in colorectal cancer (beta = −0.66 for the 297 

C allele, P = 0.01). Another variant rs55671402 was associated with FANCA expression in 298 

normal tissues (beta = −0.13 for the C allele, P = 9.67 × 10−13 across tissues from RE model; beta 299 

= −0.54 for the C allele, m-value = 0.98, P = 1.35 × 10−3 in uterus) and somatic mutations in 300 

FANCA in endometrial tumors (beta = −1.23 for the C allele, P = 8.61 × 10−3).  301 

We further assessed the impacts of eQTL for a cancer gene on each identified hotspot mutation 302 

in that gene. None of the associations passed the Bonferroni correction threshold (P < 3.40 × 303 

10−4) with the most significant association observed for rs1867930 with p.S249C in FGFR3 in 304 

bladder cancer (beta = 0.60 for the G allele, P = 3.54 × 10−3; Supplementary Table S15). Only 305 

one nominally significant (P < 0.05) association from the meta-analysis across cancers was 306 

found for rs11047823 with p.G12D in KRAS across colorectal cancer, endometrial cancer, non-307 

small cell lung cancer, and pancreatic cancer (beta = 0.24 for the G allele, P = 0.01 across 308 

cancers from the FE model), though it still did not pass the Bonferroni correction threshold for 309 

significance (P < 5 × 10−3).  310 
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Discussion 311 

In this study, we systematically evaluated the influence of germline variants that are associated 312 

with cancer gene expression on somatic mutations in specific cancer genes across 11 cancer 313 

types, leveraging large-scale clinical targeted panel sequencing data, germline data imputed from 314 

tumor sequences, and cancer gene eQTL data from GTEx. Our analysis revealed novel 315 

associations of germline eQTL for well-established cancer genes with local mutation status of a 316 

single cancer gene or the global mutational burden. These findings provide the initial evidence 317 

for the hypothesis that germline variants can influence local and global tumor mutations by 318 

altering the expression level of specific cancer genes. The underlying molecular mechanisms of 319 

the identified associations can be further investigated through functional analysis and in cancer 320 

cell lines. 321 

Although our findings are consistent with the putative mechanism that germline variants affect 322 

somatic mutations through gene expression, there are also other possible scenarios that can yield 323 

the same results (Fig. 6). First, given that there exists a causal impact of eQTL on somatic 324 

mutations, we still cannot conclude that this is only mediated by the transcript abundance of the 325 

specific eQTL gene. The germline eQTL may regulate the expression of other genes which 326 

contribute to somatic mutagenesis, or they might be associated with somatic mutations through 327 

other pathways that are not related to gene expression (Fig. 6A). Finding an eQTL signal in the 328 

cancer-related tissue can provide further support that gene expression plays a role in the 329 

germline-somatic relationship. Second, we are studying somatic mutations in developed tumor 330 

(S’) rather than in normal or precancerous tissue (S) (Fig. 6A). S’ can serve as a proxy for S, 331 

though it was measured after tumorigenesis and might be further influenced by other factors such 332 

as the tumor microenvironment (41). Here, we are studying mutations in cancer genes that have 333 
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been identified as potential drivers for carcinogenesis. Even if some mutations in those genes 334 

occurred after cancer initiation, our results could still inform us of the role of germline variants 335 

in inducing somatic mutations during cancer progression. Finally, even when there is no direct 336 

causal effect of germline variants on somatic mutations, we may still observe this association 337 

among cancer patients. Consider the three possible scenarios in Fig. 6B given that a germline-338 

somatic association was observed: germline variants may influence somatic mutation and they 339 

may or may not have an effect on cancer diagnosis through other pathways; however, under the 340 

situation that the germline variants only influence cancer diagnosis through other pathways and 341 

there is no causal effect on somatic mutations, we may still observe this germline-somatic 342 

association among cancer patients due to collider bias (Fig. 6B). We are unable to distinguish 343 

between these three scenarios based on our data, but we can leverage information from other 344 

sources (e.g., association results of the germline variants with cancer incidence from GWAS) to 345 

weigh these possible scenarios for each identified association. 346 

Most of the germline-somatic associations identified here were consistent with prior evidence, 347 

and many of them may be involved in the biological mechanisms that underlie patients’ response 348 

to immunotherapy. Among all the identified eQTL genes, APC, ATM, CBFB, and TP53 have 349 

been predicted as pan-cancer tumor suppressor genes across 33 cancer types in TCGA (1). We 350 

observed that the germline variants associated with reduced expression of these tumor suppressor 351 

genes were associated with increased tumor mutations, except for APC where the eQTL 352 

association with gene expression was close to null across tissues (but still significant) with no 353 

effect in uterus (Table 1; Fig. 3-5). The APC gene encodes the adenomatous polyposis coli 354 

protein which plays an important role in the Wnt signaling pathway (42) and interacts with E-355 

cadherin, which regulates cell adhesion (43). Mutations that inactivate APC lead to disruption of 356 
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β-catenin degradation, resulting in its translocation into the nucleus and activation of the 357 

transcription of multiple genes, which triggers cancer development, including endometrial 358 

carcinogenesis (44). Active β-catenin signaling has been linked to resistance to anti-PD-L1/anti-359 

CTLA-4 monoclonal antibody therapy in melanoma (45). A recent study found that germline 360 

pathogenic variants in APC are associated with elevated TMB (46). In our work, the minor allele 361 

of the lead SNP is also associated with higher TMC of recurrently mutated cancer genes, but the 362 

direction of its association with APC expression is not clear (Table 1; Fig. 4). Intuitively, we 363 

would assume a variant that downregulates the expression of a tumor suppressor gene to be 364 

associated with elevated risk of cancer and somatic mutational burden, but this assumption might 365 

be oversimplified as the oncogenic or tumor suppressive effect of a gene on carcinogenesis and 366 

on somatic mutational burden would depend on the signaling pathway that the gene involved in 367 

and may vary substantially across cancer types (47). Here, the major allele of rs397768 slightly 368 

downregulates APC expression across tissues, if this indicates activation of β-catenin signaling in 369 

endometrial carcinogenesis, then it should be associated with resistance to immunotherapy and 370 

reduced tumor mutations as we observed. However, this interpretation depends upon many 371 

variable components involved in this complex biological process; further study is needed to 372 

elucidate the molecular mechanisms underlying these associations. 373 

ATM germline and somatic mutations have been linked to multiple cancers. Activated ATM 374 

protein kinase phosphorylates a few key proteins which activates DNA damage checkpoint, 375 

leading to its main tumor suppressive effect of cell-cycle arrest and apoptosis (48). A study of 376 

pathogenic germline variants in cancer identified two-hits events for ATM where a germline 377 

variant in ATM is coupled with a somatic mutation in the other copy of the gene in multiple 378 

cancers (49). They also found that ATM pathogenic variant carriers had lower ATM expression, 379 
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which is in line with our finding that the minor allele of rs4753834 is associated with lower 380 

expression of ATM but higher risk of having somatic mutation in the gene (Fig. 5). Recent 381 

studies also reported that ATM mutations were associated with improved response to immune 382 

checkpoint blockade therapy (50,51). We observed this inverse relationship of ATM expression 383 

with both somatic ATM mutations across cancers and TMB in non-small cell lung cancer, which 384 

may support the potential role of ATM as a therapeutic target for promoting the response to 385 

cancer immunotherapy.  386 

TP53, which encodes protein p53, is one of the most frequently mutated genes in cancer. Genetic 387 

alterations in the p53 stress response pathway can affect the tumor suppressive role of TP53 and 388 

promote tumorigenesis (52). Results from a recent study demonstrated evidence for the 389 

interactive effects of a germline cancer risk variant, rs78378222, and somatic mutation status of 390 

TP53 on cancer risk, prognosis, and drug responses (24). The C allele of rs78378222 has been 391 

linked to lower expression level of wild-type TP53 in both normal tissue and tumor, which in 392 

turns reduce p53 cellular activity and lead to poorer overall survival of patients. In our analysis, 393 

we found that the minor allele of rs17884306, which is correlated with the C allele of 394 

rs78378222, was associated with higher TMB and lower TP53 expression (Table 1; Fig. 3). One 395 

study highlighted the predictive value of somatic TP53 mutations for benefit from anti–PD-396 

1/PD-L1 immunotherapy in lung cancer (53). Our results may provide further insights into how 397 

inherited genetic predisposition can influence patients’ response to immunotherapy through its 398 

effect on TP53 expression and somatic mutational burden. 399 

Increased expression of GLI2 in the hedgehog signaling pathway has been found to induce PD-400 

L1 expression in gastric cancer and promote tumor resistance to immunotherapy (54). We 401 

identified a germline eQTL at 2q14.2 that upregulates GLI2 and is associated with lower TMB in 402 
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ovarian cancer; nominally significant associations were also found in esophagogastric carcinoma 403 

and glioma in the same directions (Table 1; Fig. 3; Supplementary Table S6). These findings 404 

may shed light on the underlying mechanism of the link between TMB and response to 405 

immunotherapy in these specific cancers.  406 

Reduced EPHA5 expression has been linked to lymph node metastasis, advanced TNM stage, 407 

and poor survival outcome in colorectal cancer, supporting its tumor suppressive role in this 408 

cancer (55). Recent work showed that having somatic EPHA5 mutations is positively associated 409 

with TMB and response to immune checkpoint inhibitor therapy in lung cancer (56). We also 410 

identified consistent associations of an EPHA5 eQTL at 4q13.2 with both somatic EPHA5 411 

mutations and the global tumor mutations in colorectal cancer. This eQTL influences EPHA5 412 

expression in colorectal cancer and normal colon tissue (Table 1; Fig. 3); the allele that was 413 

associated with reduced expression was also associated with increased somatic mutations. 414 

Further studies are needed to characterize the potential interactive effect of these identified 415 

germline variants, EPHA5 expression, and somatic EPHA5 mutations in colorectal cancer.   416 

Our study has several limitations. First, as mentioned above, we cannot easily distinguish 417 

between several possible scenarios of the causal relationships that may be consistent with the 418 

observed associations between germline eQTL and tumor mutations. We suggest future studies 419 

to further investigate these associations in normal tissue or precancerous lesions and 420 

incorporating haplotype-level information. Experimental validation is also necessary to confirm 421 

the putative mechanisms through gene expression for the identified associations. Second, the use 422 

of germline data imputed from off-target reads in tumor sequencing provides only a probabilistic 423 

estimate of the imputed variant. Although the validation analysis of imputed common germline 424 

variants against SNP array yielded high accuracy (26), it would still be important to validate 425 
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these findings using direct germline genotyping. Third, our analysis focused on somatic 426 

mutations in the tumor, but we only included eQTL identified from normal tissue, which may 427 

miss tumor-specific eQTL effects (19). However, using normal tissue eQTL as the genetic 428 

instrument is more consistent with our hypothesis that eQTL alter gene expression in normal 429 

tissue contributes to somatic mutagenesis and tumor initiation. Where available, we also cross-430 

referenced the eQTL results to those in corresponding tumor tissue and found the results had 431 

consistent direction with those in normal tissue. Finally, we only focused on missense and a few 432 

other functional mutations; future studies can further investigate the germline impact on somatic 433 

copy number alteration or structural variation through gene regulation.  434 

In conclusion, we systematically investigated the impacts of germline cancer gene eQTL on 435 

somatic mutations in cancer genes across 11 cancer types. Our results indicate that germline 436 

variants that regulate the expression of cancer genes also influence local and global tumor 437 

mutations. These findings provide further evidence for the important role of gene expression 438 

regulation in germline-somatic associations and open avenues for future research on the 439 

molecular mechanisms underlying these associations that confer cancer risk and sensitize cancer 440 

to immunotherapy.  441 
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Tables 

 

Table 1. Significant associations between cancer gene eQTL and global tumor mutations 

 
 eQTL       Association results with TMB or TMC  Association results with gene expression from GTExa 

Cancer type 
Region Lead SNP Posb 

Effect 

allele 

Other 

allele 
EAF 

 
Beta SE P value 

 
Gene 

Beta 

(FE) 

P value 

(FE) 

Beta 

(RE) 

P value 

(RE) 

P value 

(RE2) 

TMB of all cancer genes on OncoPanel           
 

      
            

Ovarian Cancer 2q14.2 rs1530578 121702128 T C 0.01  17.61 3.02 1.26E-08  GLI2 −0.11 2.41E-16 −0.11 2.00E-10 1.33E-16 

Glioma 8p12 rs139944315 30332577 T A 0.99  −16.36 2.65 1.21E-09  WRN −0.30 6.35E-44 −0.28 4.16E-20 6.79E-45 

Esophagogastric Carcinoma 16q22.1 rs11075646 66969176 C G 0.90  −2.57 0.53 1.48E-06  CBFB 0.05 2.06E-12 0.05 1.34E-08 3.03E-12 

TMC of recurrently mutated cancer genes           
 

      
            

Colorectal Cancer 4q13.2 rs10031417 66700879 A G 0.55  −0.18 0.04 2.04E-06  EPHA5 0.03 5.63E-05 0.03 4.12E-02 6.36E-13 

Endometrial Cancer 5q22.2 rs397768 112181576 G A 0.38  0.24 0.05 1.43E-05  APC 0.01 7.91E-02 0.00 7.36E-01 3.77E-10 

Endometrial Cancer 8p12 rs11782945  31082006 G A 0.41  0.58 0.12 4.95E-07  WRN 0.06 1.06E-26 0.06 4.95E-21 3.14E-26 

Endometrial Cancer 12q13.3 rs73115907 57754701 G A 0.76  −0.31 0.06 4.61E-07  GLI1 −0.02 2.75E-03 −0.02 1.31E-01 2.99E-08 

Endometrial Cancer 16q24.3 rs7201264 90036122 C G 0.20  0.41 0.07 1.10E-08  FANCA −0.07 4.70E-18 −0.09 1.32E-07 8.17E-41 

Endometrial Cancer 17p13.1 rs17884306 7572101 C T 0.94  −0.60 0.13 4.36E-06  TP53 0.09 2.41E-16 0.08 4.45E-12 8.15E-16 

 
a Meta-analysis results of the associations between the eQTL and normalized gene expression levels across 49 tissues 

b Position based on GRCh37/hg19  
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Figures 

Figure 1. A workflow of the germline and somatic data generation pipeline in the Profile 

cohort. Tumor samples were collected from all consented patients in the Profile cohort, followed 

by targeted sequencing using OncoPanel. Somatic data were generated from on-target reads from 

the tumor sequences. Germline data were imputed using both the off-target and on-target reads 

generated from tumor sequencing. Four measures of the local and global tumor mutations: i) 

Mutation status of recurrently mutated cancer genes, ii) Mutation status of hotspot mutations, iii) 

TMC of recurrently mutated cancer genes, and iv) TMB of all panel genes were generated for all 

selected primary cancer samples across 11 cancer types from somatic data. Germline eQTL were 

identified from GTEx for all identified genes, followed by germline allele dosage extraction from 

the germline imputed data. 

Figure 2. Local and global tumor mutations of 11 cancer types. A, Mutation frequency and 

sample size of the identified recurrently mutated cancer genes for each cancer type. A total of 

135 genes were selected for 11 cancer types (Supplementary Table S3); only genes that are 

recurrently mutated in ≥ 5 cancer types are shown on this figure. B, Mutation frequency and 

sample size of the identified hotspot mutations for each cancer type. There are 17 hotspot 

mutations in 10 genes for 7 cancer types. C, Distribution of TMB of all panel genes across 

cancers with sample sizes. D, Distribution of TMC of recurrently mutated cancer genes across 

cancers. Each dot represents a sample. The red horizontal line represents the median of TMC for 

each cancer type. The total number of recurrently mutated cancer genes selected for each cancer 

is listed on the top of the figure.  
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Figure 3. Associations of eQTL with TMB of all panel genes and gene expression across 

tissues. A-C, All selected eQTL for genes identified from the top eQTL-TMB associations are 

shown. Association results (−log10(P)) for eQTL and TMB are from linear models adjusting for 

age, gender (if applicable), tumor purity, and panel version. Association results (m-value, the 

posterior probability that an effect exists in a tissue) for eQTL and gene expression in the 

“matching tissue” are from GTEx; matching tissue was selected as the tissue with the largest m-

value among all relevant tissues for the corresponding cancer type. Each dot represents a variant; 

variants that are significantly associated with both TMB and gene expression (in any meta-

analysis model) are in red with the top variant marked as yellow diamond. RSID, effect allele, 

effect size, P value, and m-value for the top variant are annotated on the plots. The horizontal red 

dashed lines denote the significant threshold for TMB associations (P = 3.45 × 10−6) and “has an 

effect” threshold for gene expression associations in the matching tissue (m-value = 0.9). D-F, 

Association results of the top variants with expression level of the eQTL genes identified from 

the top eQTL-TMB associations by tissue from GTEx. The −log10(P) are from single-tissue 

eQTL analysis. Each dot represents a tissue with the matching tissue for the specific cancer 

marked as yellow triangle. Meta-analysis results across tissues from FE and RE models are 

provided on the plots. See Fig. 5 for tissue annotations. 

Figure 4. Associations of eQTL with TMC of recurrently mutated cancer genes and gene 

expression across tissues. A-F, All selected eQTL for genes identified from the top eQTL-TMC 

associations are shown. Association results (−log10(P)) for eQTL and TMC are from negative 

binomial models adjusting for age, gender (if applicable), tumor purity, panel version, and MSI 

status. Association results (m-value, the posterior probability that an effect exists in a tissue) for 

eQTL and gene expression in the “matching tissue” are from GTEx; matching tissue was 
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selected as the tissue with the largest m-value among all relevant tissues for the corresponding 

cancer type. Each dot represents a variant; variants that are significantly associated with both 

TMC and gene expression (in any meta-analysis model) are in red with the top variant marked as 

yellow diamond. RSID, effect allele, effect size, P value, and m-value for the top variants are 

annotated on the plots. The horizontal red dashed lines denote the significant threshold for TMC 

associations (P = 1.73 × 10−5) and “has an effect” threshold for gene expression associations in 

the matching tissue (m-value = 0.9). G-L, Association results of the top variants with the 

expression level of the eQTL genes identified from the top eQTL-TMC associations by tissue 

from GTEx. The −log10(P) are from single-tissue eQTL analysis. Each dot represents a tissue 

with the matching tissue for the specific cancer marked as yellow triangle. Meta-analysis results 

across tissues from FE and RE models are provided on the plots. See Fig. 5 for tissue 

annotations. 

Figure 5. rs4753834 is associated with both ATM expression and somatic ATM mutations. 

A, Associations between rs4753834 and risk of having somatic mutations in ATM across 8 

cancers. The odds ratio is associated with the G allele of rs4753834. Meta-analysis results from 

the fixed-effect model are shown. B, Sample sizes and mutation frequencies of the 8 cancer 

types. Note that these numbers are based on samples included in the final models. C, Association 

results of rs4753834 and ATM expression by tissue from GTEx. The −log10(P) are from single-

tissue eQTL analysis. m-value is the posterior probability that an effect exists in a tissue. Results 

from the FE and RE meta-analysis across tissues are also shown on the plot. 

Figure 6. Hypothetical relationships between germline variants, cancer gene expression, 

somatic mutations, and cancer diagnosis. A, Complete relationships between germline eQTL, 

environmental factors (E), expression level of cancer genes in normal tissue (transcript 
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abundance, T), somatic mutations in cancer genes in normal tissue before tumor development 

(S), cancer diagnosis (D), and somatic mutations in cancer genes in tumor after cancer diagnosis 

(S’). Our hypothesis is that germline eQTL regulate the expression of cancer genes; the transcript 

abundance of those cancer genes modifies the propensity of acquiring somatic mutations in those 

genes; having somatic mutations in those cancer genes is associated with an increased risk of 

cancer (the path shown by red arrows). Here, we are testing the associations between the eQTL 

and S’, which can serve as a proxy for S, among cancer patients (conditioning on D). B, Three 

possible relationships between germline variants (G), somatic mutations in normal tissue before 

tumor development (S), cancer diagnosis (D), and somatic mutations in tumor after cancer 

diagnosis (S’) given that an association between G and S’ is observed. Blue arrows on the graphs 

show the paths from G to S’ through S given that only cancer patients are included in the study 

(conditioning on D).  
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