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23 Abstract

24 Background

25 Dengue is the most common vector-borne viral disease worldwide. Most cases are mild, but some 

26 evolve into severe dengue (SD), with high lethality. Therefore, it is important to identify 

27 biomarkers of severe disease to improve outcomes and judiciously utilize resources. 

28

29 Methods/Principal Findings

30 One hundred forty-five confirmed dengue cases (median age, 42; range <1-91 years), enrolled 

31 from February 2018 to March 2020, were selected from an ongoing study of suspected arboviral 

32 infections in the Asunción metropolitan area. Cases included dengue virus types 1, 2, and 4, and 

33 severity was categorized according to the 2009 World Health Organization guidelines. Serologic 

34 and biomarker (lipopolysaccharide binding protein and chymase) testing were performed on acute-

35 phase samples by ELISA; additional serologic testing was performed with the multiplex pGOLD 

36 assay. Complete blood counts and chemistries were performed at the discretion of the care team. 

37 Age, gender, and pre-existing comorbidities were associated with SD vs. dengue with/without 

38 warning signs in logistic regression with odds ratios (ORs) of 1.06 (per year; 95% confidence 

39 interval, 1.02, 1.10), 0.12 (female; 0.03,0.5), and 9.82 (presence; 1.92, 50.24) respectively. In 

40 binary logistic regression, for every unit increase in anti-DENV IgG in the pGOLD assay, odds of 

41 SD increased by 2.54 (1.19-5.42). Platelet count, lymphocyte percent, and elevated chymase were 

42 associated with SD in a combined logistic regression model with ORs of 0.99 (1,000/μL; 

43 0.98,0.999), 0.92 (%; 0.86,0.98), and 1.17 (mg/mL; 1.03,1.33) respectively.

44

45 Conclusions
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46 Multiple, readily available factors were associated with SD in this population. These findings 

47 will aid in the early detection of potentially severe dengue cases and inform the development of 

48 new prognostics for use in acute-phase and serial samples from dengue cases.
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49 Author Summary

50 Dengue fever is an acute disease caused by dengue virus and transmitted to humans through the 

51 bite of infected Aedes mosquitoes. Dengue is the most common vector-borne viral disease 

52 worldwide affecting an estimated 50-100 million people and with 10,000 dengue-related deaths 

53 each year. Currently, there is no specific treatment, and safe and effective vaccines have not been 

54 fully implemented. Most dengue cases present with nonspecific mild symptoms, but some will 

55 evolve into severe dengue, which can be fatal. Early detection and subsequent timely treatment 

56 have been shown to decrease mortality among severe cases. Therefore, it is very important to 

57 identify biomarkers for the early identification of cases at risk for progression to severe disease. 

58 In this study we analyze demographic factors, clinical laboratory data, lipopolysaccharide 

59 binding protein and chymase to evaluate associations with disease severity. This study was 

60 carried out in Paraguay, which is a hyperendemic country for dengue where the disease has been 

61 understudied. A number of factors were found to be associated with severe disease in this 

62 population, including patient age, male gender, presence of comorbid illnesses, low platelet 

63 count, low lymphocyte percentage, and elevated chymase level.
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64 Introduction

65 Dengue is a common acute febrile illness in tropical and subtropical regions of the world and 

66 accounts for upwards of 10% of such illnesses in areas of endemicity [1-3]. Each year, an estimated 

67 50-100 million dengue cases and 10,000 dengue-related deaths occur worldwide, resulting from 

68 infection with one of the four types of dengue virus (DENV, genus Flaviviridae) [1, 3, 4]. Dengue 

69 severity ranges dramatically from a mild subclinical illness to dengue fever and clinically severe 

70 dengue with plasma leakage, hemorrhage, and/or end-organ dysfunction [1, 3, 5, 6]. Timely 

71 diagnosis and the initiation of appropriate supportive care improves clinical outcomes and can 

72 lower mortality in clinically severe dengue from 20% to <1% [1, 3, 7, 8]. Although clinically 

73 severe cases represent a minority of dengue cases overall, fatal and hospitalized non-fatal cases 

74 account for over half of the $8.9 billion USD annual economic burden of dengue [6, 9]. Therefore, 

75 early identification of cases at increased risk for developing clinically severe dengue could both 

76 improve clinical outcomes and alleviate the economic burden caused by dengue on resource 

77 constrained medical systems [10]. 

78

79 Clinically severe dengue results from a complex interplay of virus [11-14], host [15-22], and 

80 epidemiologic factors [1, 6, 15]. The manifestations of severe dengue also differ based on patient 

81 age, with children more commonly developing plasma leakage compared to hemorrhage in adults 

82 [6, 23, 24]. Studies have identified associations between the detection and/or concentration of 

83 various molecules or gene transcripts and severe dengue [25-30]. One group of biomarkers that 

84 has been studied are proteins released during mast cell degranulation: vascular endothelial growth 

85 factor (VEGF) and the proteases tryptase and chymase [31-41]. In studies of patients from South 

86 and Southeast Asia, chymase was associated with and predictive of the development of clinically 
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87 severe dengue [31, 32, 34, 35, 38]. Chymase release from mast cells occurs in the presence of 

88 DENV and may be increased by pre-existing anti-DENV IgG antibodies or blocked by antibodies 

89 against viral non-structural protein 1 (NS1) [33, 42]. Lipopolysaccharide (LPS) and 

90 lipopolysaccharide binding protein (LBP) are another set of molecules that have higher levels in 

91 dengue cases compared to healthy controls and in clinically severe cases compared to dengue 

92 fever, which could indicate their usefulness as a predictor of severity [43-46]. Elevated levels of 

93 circulating LPS and LBP result from derangements in gut permeability, potentially leading to 

94 bacterial translocation, bacteremia, and worsened outcomes. Finally, numerous clinical laboratory 

95 findings have been associated with clinically severe dengue, such as thrombocytopenia, 

96 lymphopenia, and evidence of liver or kidney injury [13, 17, 24, 46-48]. These may either define 

97 cases as clinically severe with end-organ dysfunction or predict the development of severe dengue 

98 through detection of changes over the course of illness [3].

99

100 The objective of the current study was to evaluate biomarkers of dengue severity among 

101 participants enrolled in an ongoing study of acute arboviral illness in the metropolitan area of 

102 Asunción, Paraguay. Paraguay is hyperendemic for dengue, with sustained viral circulation since 

103 1999 and large disease outbreaks occurring every 2-5 years. In 2018, predominant circulation of 

104 DENV-1 was recorded [49], and in 2019-2020, this shifted to DENV-4, resulting in the largest 

105 outbreak in the country’s history [50]. Previous studies from Paraguay have found an increased 

106 risk of clinically severe dengue with DENV-2 and secondary infections [51-53]. However, dengue, 

107 and in particular biomarkers of severe disease, remains understudied in the country [54, 55]. 

108 Previously, our group evaluated anti-DENV and anti-ZIKV NS1 IgG levels among dengue cases 

109 in 2018 using a multiplex serological assay, the pGOLD assay [56]. Anti-DENV IgG levels in the 
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110 pGOLD assay correlated with focus reduction neutralization test (FRNT50) titers, and an 

111 association was observed between hospitalization and detection of both anti-DENV and anti-ZIKV 

112 IgG. However, hospitalization is an inexact measure of clinical dengue severity. Therefore, in the 

113 current study, we sought to evaluate this earlier finding and levels of chymase and LBP as 

114 indicators of dengue severity among participants categorized according to the 2009 World Health 

115 Organization guidelines [3]. 

116

117

118 Methods

119 Ethics statement

120 The study protocol was reviewed and approved by the Scientific and Ethics Committee of the 

121 Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción (IICS-

122 UNA, IRB00011984), and the Emory University Institutional Review Board (IRB00000569). 

123 A written consent was obtained from all the participants, or alternatively an oral consent.

124

125 Clinical samples

126 Individuals included in the current study were enrolled in an ongoing parent study of suspected 

127 arboviral infections in the Asunción metropolitan area between February 2018 and March 2020. 

128 Participants of both genders and all ages were enrolled as outpatients at IICS-UNA in all study 

129 years and in the emergency care/inpatient facilities of Hospital Villa Elisa, 2018, and Hospital 

130 Central of the Instituto de Previsión Social, 2019-2020. Inclusion criteria for the parent study 

131 were an acute illness including two or more of the following symptoms: fever (measured or 

132 subjective), red eyes, rash, joint pain involving more than one joint, and/or diffuse muscle pain. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.22.22279107doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.22.22279107
http://creativecommons.org/licenses/by/4.0/


133 Patients with fever and no other localizing signs or symptoms were also included. Day 1 was 

134 defined as the first day of symptoms.

135

136 One hundred forty-five participants with acute dengue and up to 7 days of symptoms were 

137 selected for the current analysis. Cases were classified according to the 2009 WHO criteria as 

138 dengue without warning signs (DWS-), dengue with warning signs (DWS+) and severe dengue 

139 (SD) [3]. For categorization as DWS+, it was necessary to have at least one warning sign. For 

140 categorization as SD, an individual had to develop at least one criterion for SD during the 

141 clinical course. To maximize study power, all SD cases in the parent study were included in this 

142 analysis. A mixture of DWS- and DWS+ cases was then selected to achieve a representative 

143 distribution of participants based on age, days of symptoms, comorbidities, and gender from 

144 across the study period and to maintain an even distribution of these two categories.

145

146 Laboratory testing

147 Acute-phase serum or plasma samples were collected at study enrollment and transported to the 

148 IICS-UNA laboratory. Samples were tested for DENV NS1 antigen using the Standard Q 

149 Dengue Duo rapid immunochromatographic test (SD Biosensor, Suwon, South Korea) according 

150 to manufacturer recommendations. Qualitative antibody data acquired using this method was not 

151 evaluated in this study, see antibody section below. Primary samples were then aliquoted and 

152 stored at −80°C until later use or shipment on dry ice to Emory University for additional testing. 

153 For molecular testing, total nucleic acids were extracted from 200µL of sample on an EMAG 

154 instrument and eluted into 50µL of buffer. Samples were tested for Zika virus, chikungunya 

155 virus and DENV by real-time RT-PCR (rRT-PCR) using a validated and published multiplex 
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156 assay (the ZCD assay) [57], and DENV serotype and viral load were determined with a 

157 published DENV multiplex assay [58, 59]. Both rRT-PCRs were performed as previously 

158 described [57-59].

159

160 Serologic testing was performed on acute-phase samples using two different methods. First, anti-

161 DENV IgG and IgM were analyzed using commercial ELISA kits [Dengue ELISA IgG (G1018) 

162 and Dengue ELISA IgM Capture (M1018), Vircell Microbiologists, Granada, Spain] according to 

163 manufacturer recommendations (interpretation: IgM or IgG index >11 positive, 9-11 

164 indeterminate, <9 negative). Second, a 5µL aliquot of serum from 139 participants with sufficient 

165 sample was tested in the pGOLD assay (Nirmidas Biotech, Inc, Palo Alto, CA), which is a 

166 multiplex serological assay for IgM and IgG against DENV (DENV-2 whole virus antigen) and 

167 ZIKV (NS1 antigen). The pGOLD assay was performed as previously described [56, 60]. In each 

168 well of the pGOLD slide, antigens are spotted in triplicate, and average signals are used during 

169 analysis. For IgG, the negative control signal was subtracted from the sample signal, and the 

170 difference was divided by the average signal of four IgG control spots included in each well. For 

171 IgM, a similar calculation was performed using the signal from a known anti-DENV IgM positive 

172 control sample included on each run. A positive threshold ratio of 0.1 was established for each 

173 isotype, which was ≥ 3 standard deviations above the mean of the negative control.

174

175 Chymase and LBP levels were determined using commercial ELISA kits (G-Biosciences, St. 

176 Louis, MO, USA), following the manufacturer's instructions. Complete blood counts and 

177 chemistries were performed at the clinical site at the discretion of the care team, and results were 

178 included if the sample was obtained within ±1 day of enrollment.
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179

180 Case definitions

181 Dengue cases were defined as individuals who met inclusion criteria for the parent study and had 

182 1) detectable DENV RNA in the ZCD and/or DENV multiplex rRT-PCR, 2) detection of DENV 

183 NS1 by rapid test, or 3) a strong epidemiologic link (one patient, DWS-).

184

185 Statistical analysis

186 Basic statistical analyses were performed using Excel software (Microsoft, Redmond, WA). 

187 Comparisons between group means and medians were made by the ANOVA, Welch’s test, both 

188 pooled and non-pooled two sample t-tests, and Kruskal Wallis tests. Comparisons of proportions 

189 were made using chi-squared tests or Fisher exact tests (if the expected number in each cell was 

190 <5). Graphs were prepared with GraphPad Prism version 9 (GraphPad, San Diego, CA). Crude 

191 associations, statistical analysis and modeling were performed using SAS version 9.4. To calculate 

192 odds ratios for SD, domain models were developed using demographic (age, gender, 

193 comorbidities) and laboratory variables (basic clinical laboratory results, DENV viral load, 

194 chymase and LBP). Models were evaluated using binomial logistic regression (DWS-/DWS+ vs. 

195 SD). Significance was set at two-sided p-value ≤0.05 for all analyses.

196

197

198 Results

199 Demographic and clinical information. Of 145 participants in this study, 55 were categorized 

200 as DWS-, 67 as DWS+, and 23 as SD. Demographic data and DENV diagnostic test results are 

201 shown in Table 1 (binary categories) and Table S1 (three categories). Participants were enrolled 
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202 primarily at Hospital Central of the Instituto de Previsión Social (n=124), followed by Hospital 

203 Villa Elisa (15) and IICS-UNA (6). Results for DWS- and DWS+ were not significantly different 

204 for most analyses performed in this study. As such, results are reported for analyses using the 

205 binary outcome of DWS-/DWS+ vs. SD, except where indicated. Data and analyses for the three 

206 individual categories are provided in the Supplemental Material.

207

208 Table 1. Demographic data and DENV diagnostic test results for participants stratified by 

209 dengue severity.

Characteristic a

DWS-/DWS+

N=122

SD

N=23 p-value

Age, years, mean (st. dev.) 34 (18) 61 (18) <0.001

Gender, female 81 (66.4) 6 (26.1) <0.001

Comorbidities, ≥ 1b 31 (25.8) 16 (84.2) <0.001

Days of symptoms, mean (st. dev.) 3.9 (1.9) 4.8 (1.7) 0.033

Year of Collection 0.015

      2018 14 (11.5) 4 (17.4)

      2019 42 (34.4) 1 (4.3)

      2020 66 (54.1) 18 (78.3)

DENV rRT-PCR, positive 110 (90.2) 20 (90.9) 1.00

     Serotype 0.45

  DENV-1 14 (12.7) 4 (20.0)

  DENV-2 9 (8.2) 0 (0)

  DENV-4 86 (78.2) 16 (80.0)
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  Negative 1 (0.9) 0 (0)

NS1, positive 77 (63.1) 21 (91.3) 0.010

210 Abbreviations: st. dev., standard deviation

211 a Presented as n (%) unless stated otherwise

212 b Comorbidities: hypertension, 32; diabetes, 14; other, 30. Comorbidity data missing for DWS+ 

213 (2) and SD (4).

214

215 SD cases were significantly older than non-SD cases and were significantly more likely to be 

216 male and have at least one comorbidity (Table 1). In logistic regression of these variables in 

217 relation to disease severity, age, gender, and comorbidities remained in the model and were 

218 predictors of severity with a strong goodness of fit (C statistic=0.93; Table 2). In addition, SD 

219 cases presented for care later in the course of illness than non-severe cases (Table 1), and more 

220 SD cases were included 2020, consistent with the large DENV-4 outbreak that occurred in 

221 Paraguay that year [61]. 

222

223 Table 2. Binomial logistic regression of participant demographics and disease severity.

SD vs. DWS-/DWS+

Characteristic OR 95% CI

Age, years 1.06 1.02, 1.10

Gender, female 0.12 0.03, 0.50

Comorbidity, presence 9.82 1.92, 50.24

224 Abbreviations: CI, confidence interval; OR, odds ratio
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225

226 DENV testing

227 One hundred forty-four of 145 dengue cases (99.3%) tested positive by rRT-PCR, NS1 rapid 

228 test, or both; and only one case was included based epidemiologic criteria alone. Over 90% of 

229 cases tested positive for DENV by rRT-PCR, and this did not differ between severity categories 

230 (Table 1 and Table S1). The proportion of DWS-/DWS+ cases with detectable NS1 (77/122, 

231 63.1%) was significantly lower than SD cases (21/23, 91.3%; p=0.010). DENV-4 was the 

232 predominant type, present in 78.5% of the typed samples overall (102/130). 

233

234 Acute-phase samples were tested with two serologic tests: the pGOLD assay for anti-DENV and 

235 anti-ZIKV IgM and IgG, and a commercial ELISA for anti-DENV IgM and IgG (Table 3 and 

236 Table S2). The proportion of individuals with detectable anti-DENV IgM was significantly 

237 higher with the pGOLD assay (p<0.001, Table S3). Although a smaller proportion of SD cases 

238 had detectable anti-DENV IgM compared to DWS-/DWS+ cases by either method, this 

239 difference only reached significance for the pGOLD assay. Most participants had detectable anti-

240 DENV IgG by either method: 120/139 (86.3%) in the pGOLD, 128/145 (88.3%) by commercial 

241 ELISA. The proportion of individuals with detectable anti-DENV IgG did not differ significantly 

242 by severity category (Table 3 and Table S2) or test method (p=0.07, Table S3). 

243

244 Table 3. Serologic test results stratified by disease severity.

Serologic Test DWS-/DWS+a SDa p-value

pGOLDb
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    DENV IgM 71/119 (59.7%) 7/20 (35.0%) 0.040

    DENV IgG 102/119 (85.7%) 18/20 (90.0%) 1.00

    ZIKV IgM 5/119 (4.2%) 0/20 (0%) 1.00

    ZIKV IgG 19/119 (16.0%) 4/20 (20.0%) 0.52

ELISA

    DENV IgM 40/122 (32.8%) 5/23 (21.7%) 0.40

    DENV IgG 106/122 (86.9%) 22/23 (95.7%) 1.00

245 a Presented as positive/tested (%)

246 b pGOLD testing was performed on 139 participants with sufficient serum available

247

248 The pGOLD assay yields a quantitative result that correlates with DENV neutralizing titers [56]. 

249 In crude binary logistic regression, for every unit increase in anti-DENV IgG, the odds of SD 

250 increased by a factor of 2.54 (95% CI, 1.19-5.42). No association was found between 

251 quantitative anti-DENV IgM results and disease severity in crude binary logistic regression. 

252

253 Clinical laboratory data

254 Mean values for most routine laboratory tests, LBP, and chymase differed significantly between 

255 DWS-/DWS+ and SD cases (Fig 1, Table S4). Laboratory values were similar between DWS- 

256 and DWS+ cases except for platelet count, which demonstrated a stepwise decrease from DWS- 

257 to DWS+ to SD, and serum glutamic oxaloacetic transaminase (SGOT) and LBP, which 
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258 increased across severity categories (Fig S1, Table S5). DENV viral load did not differ by 

259 severity category. 
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260 Fig 1. A-I) Clinical laboratory test result distributions by disease severity. J-L) Potential markers 

261 of disease severity measured in the current study: J) lipopolysaccharide binding protein (LBP), 

262 K) chymase, and L) DENV viral load by disease category. Bars on all graphs represent mean and 

263 standard deviation. Labels on the graphs indicate the following: ns, not significant, p>0.05; *, 

264 p≤0.05; **, p≤0.01; ***, p≤0.001; ****, p≤0.0001.  

265
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266

267 Routine laboratory tests were obtained at the discretion of the clinical care team, and as a result, 

268 many participants were missing data, particularly for analytes in the metabolic panel: creatinine 

269 (n=75 cases with results), bilirubin (76), and SGOT (84). Due to this fact, crude associations 

270 with SD were calculated for all variables by binomial regression (Table 4), and variables 

271 evaluated in the laboratory domain multivariable logistic regression were limited to lymphocyte 

272 percent, platelet count, hematocrit, LBP, and chymase. These analytes displayed crude 

273 associations with SD and had a sufficient number of data points to not compromise model 

274 strength. In the binary logistic regression model, lymphocyte percent, platelet count, and 

275 chymase were found to be associated with SD with a very good model fit (C statistic, 0.95; Table 

276 5). 

277

278 Table 4. Crude associations between laboratory results and dengue severity from binomial 

279 logistic regression.

Laboratory Value DWS-/DWS+a SDa OR for SDb

Bilirubin (mg/dL) 0.49±0.26 2.51±2.11 29.03 (3.74, 225.04)

Blood Creatinine (mg/dL) 0.85±0.22 3.76±2.29 372.71 (4.38, >999)

Chymase (mg/mL) 1.2±5.8 30.0±28.9 1.12 (1.06, 1.18)

Hematocrit (%) 39.4±4.5 35.9±8.2 0.89 (0.82, 0.97)

LBP (1,000 ng/mL) 11,917±5,030 18,766±5,510 1.28 (1.11, 1.40)

Leukocytes (1,000 /μL) 4,692±2,155 12,192±10,765 1.43 (1.19, 1.71)
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Lymphocyte Percentage (%) 30.6±17.9 12.6±10.1 0.89 (0.84, 0.94)

Platelets (1,000 /μL) 152,462±72,110 68,364±60,249 0.98 (0.97, 0.99)

SGOT (IU/L) 58.0±45.2 102.8±66.6 1.02 (1.00, 1.03)

280 a Displayed as mean ± standard deviation

281 b Presented as odds ratio for SD (95% CI) vs. DWS-/DWS+

282

283 Table 5. Binomial logistic regression model of laboratory results and disease severity.

SD vs. DWS-/DWS+

Variable OR 95% CI

Lymphocyte, % 0.92 0.86, 0.98

Platelet count, 1,000/µLa 0.987 0.975, 0.999

Chymase, mg/mL 1.17 1.03, 1.33

284 Abbreviations: CI, confidence interval; OR, odds ratio

285 a Three decimal places shown for clarity

286

287 Chymase and SD

288 Mean chymase level was significantly higher among individuals with comorbidities (11.42, st. 

289 dev. 22.55) compared to those without (2.35, 9.83; p=0.011). Notably, the single DWS- case 

290 with an elevated chymase level (Figs 1K and S1K) occurred in an individual with systemic lupus 

291 erythematosus. To evaluate for a potential interaction between chymase and comorbidities on the 

292 development of SD, logistic regression was performed including these two variables. Interaction 

293 product terms were nonsignificant in binomial and multinomial models. Together, comorbidities 
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294 had an OR of 17.91 (2.75, 116.63) for binomial logistic regression (controlling for chymase); 

295 chymase had an OR of 1.12 (1.05, 1.18) (controlling for comorbidities). This model had a strong 

296 goodness of fit (C statistic=0.95).

297

298 Anti-NS1 antibodies may modulate chymase release by mast cells in acute dengue, and 

299 interactions between chymase and cross-reactive anti-ZIKV NS1 antibodies, detected in the 

300 pGOLD assay, were investigated for their association with SD. There was no association 

301 between chymase level and the quantitative anti-ZIKV NS1 IgM or IgG by linear regression, and 

302 no interaction was observed between anti-ZIKV NS1 IgG and chymase in binomial linear 

303 regression for SD. However, anti-ZIKV NS1 IgM showed effect modification of chymase in 

304 binomial linear regression such that as IgM increased, the chymase OR increased as well. With 

305 no detectable anti-ZIKV NS1 IgM, the chymase OR was 1.10 (1.04, 1.17), whereas at the mean 

306 level of anti-ZIKV NS1 IgM (0.02 in this population), the chymase OR was 1.21 (1.09, 1.34; 

307 model fit C statistic=0.93).

308

309 Discussion

310 In a predominantly adult population of dengue cases in Paraguay, multiple factors were 

311 associated with clinically severe dengue, including patient (age, gender, comorbidities), serologic 

312 (elevated anti-DENV IgG), and laboratory variables (low platelet count, relative lymphopenia, 

313 and elevated chymase). 

314

315 Factors identified in the current study are generally consistent with the published dengue 

316 literature. Although clinically severe dengue often occurs among children [1, 3, 24], age among 
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317 adults has been identified as a risk factor for poor outcomes, [17, 23, 46]. Adults are more likely 

318 to develop severe bleeding, and this may be more difficult to manage than plasma leakage, for 

319 which judicious fluid replacement is often effective [3, 6, 8, 17, 23, 24, 46]. Comorbid illness, 

320 including poorly-controlled diabetes mellitus (hemoglobin A1c >7%) and renal disease, have 

321 been associated with SD [16, 18], and hypertension has also been identified in certain studies 

322 [18]. A gender difference among clinically severe dengue has varied across studies [1, 6, 13, 17, 

323 18]. In our population, 66.4% of DWS-/DWS+ cases were female in comparison to only 26.1% 

324 of SD cases, and this difference remained significant after controlling for age and comorbidities. 

325 Although dengue is often associated with leukopenia [3, 24, 62-64], SD cases in the current 

326 study had a mild leukocytosis with reduced lymphocyte percentage (and a resulting neutrophil 

327 predominance). Thrombocytopenia is a common finding in SD cases and was one of the few 

328 factors that demonstrated a stepwise change across disease severity categories (DWS-, DWS+, 

329 and SD) [1, 3, 17, 18, 24, 38, 62].

330

331 Chymase and LBP were evaluated as two markers of clinically severe dengue based on data from 

332 their use in South and Southeast Asia [31, 32, 34, 35, 38, 42-44]. Both demonstrated a crude 

333 association with SD compared to DWS-/DWS+. Although LBP did not remain in the final 

334 laboratory domain model, it demonstrated a stepwise increase across the categories of severity, 

335 which may have limited power in this study to identify a significant difference in a binomial 

336 model. Chymase, along with other mast cell degranulation factors, has been associated with 

337 clinically severe dengue in several studies [32-35], and the current study confirmed this finding 

338 among dengue cases in Paraguay. As clinically severe dengue appears to be more common in 

339 Southeast Asia relative to the Americas [2, 65], it is important to study potential differences in 
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340 pathophysiology between these regions and confirm markers of severity between populations. 

341 Chymase release from mast cells may be modulated by specific anti-DENV antibodies. In mice, 

342 pre-treatment with anti-DENV IgG increased chymase release in an FCγRIII-dependent manner 

343 [33], and in culture, anti-NS1 IgG blocked chymase release [42]. In the current study, we 

344 observed an interaction between chymase level and antibodies against the NS1 protein of ZIKV, 

345 a closely related flavivirus. Further evaluation of this interaction using an array of DENV NS1 

346 proteins may delineate a mechanism of protection for anti-NS1 antibodies, which demonstrate 

347 epitope-specific protection or enhancement [66, 67].

348

349 Higher levels of anti-DENV IgG and undetectable anti-DENV IgM in the pGOLD multiplex 

350 serologic assay were also associated with SD in our study population. These serologic results are 

351 consistent with findings in secondary dengue cases, though this is difficult to determine with 

352 certainty in acute-phase samples [3, 68]. Quantitative anti-DENV IgG levels in the pGOLD 

353 assay correlate with DENV FRNT50, and we previously observed that higher levels are 

354 associated with hospitalization in dengue cases [56]. This finding was confirmed in the current 

355 study when applying more consistent criteria for clinically severe dengue [3] and controlling for 

356 day post-symptom onset (data not shown). However, simultaneous detection of anti-ZIKV NS1 

357 IgG did not increase the risk for SD in contrast to our earlier findings [56]. Anti-DENV IgM 

358 detection in the pGOLD proved more sensitive than a commercial ELISA and demonstrated little 

359 cross-reactivity on the ZIKV NS1 antigen. Notably, interpretation of these results required the 

360 use of a control sample that previously tested positive for anti-DENV IgM, and inclusion of a 

361 calibrator with this assay would improve generalizability. 

362
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363 DENV serum viral load was not associated with SD in this cross-sectional study. Viral load 

364 decreases rapidly over the first week post-symptom onset, and viral kinetics differ between 

365 primary and secondary dengue [12, 69-77]. It is therefore difficult to capture peak viremia in 

366 most clinical settings. With only a single data point for each patient in our study, the lack of 

367 association between viral load and SD is not unexpected, but this highlights a potential limitation 

368 of using viral load as a predictor of severity.

369

370 Difficulties in studying predictors of clinically severe dengue stem from the low proportion of 

371 severe cases among all DENV infections, lack of rapid and accurate diagnostics, and variability 

372 in the definition of study endpoints [3, 5, 6, 10]. The current study relied principally on DENV 

373 rRT-PCR for diagnosis, with a subset of participants detected by NS1. As part of the parent study 

374 design, participants typically presented with fever, which may bias this group toward more 

375 severe cases [49, 78]. Nonetheless, seven factors were associated with clinically severe dengue: 

376 five of these are commonly available at the acute visit (age, gender, comorbidities, platelet count, 

377 and lymphocyte percentage) and chymase and anti-DENV IgG can be measured by ELISA. 

378 Study designs that enroll participants based on rapid antigen test results limit the sample size 

379 necessary to include enough severe cases, but this may bias the study population given the 

380 clinical performance of current rapid tests [3, 25, 49, 79, 80]. However, as many pathways 

381 associated with clinically severe dengue appear linked to NS1, including chymase release and 

382 development of specific antibodies, improved antigen diagnostics may increase DENV detection, 

383 provide prognostic information, and facilitate future studies of clinically severe dengue [12, 14, 

384 29, 42, 76]. 

385
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386 This study had several limitations. First, a single acute-phase sample was available for each 

387 participant. Samples were obtained at different timepoints in relation to the development of 

388 severe disease among the participants, such that the study was not designed to prospectively 

389 evaluate each marker as a predictor of clinically severe dengue. Second, although all available 

390 SD cases were included, the sample size was small, particularly for the detection of differences 

391 among factors with relatively narrow value ranges, such as quantitative pGOLD values. Third, 

392 routine labs were collected at the discretion of the care team, and as a result, not all participants 

393 had laboratory values within the correct time frame. This limited the variables included in the 

394 laboratory domain multivariable analysis.

395

396 Among dengue cases in Paraguay caused by DENV-1, -2, and -4, age, gender, pre-existing 

397 comorbidities, elevated anti-DENV IgG, thrombocytopenia, relative lymphopenia, and elevated 

398 chymase were associated with SD. These findings will aid in the early detection of potentially 

399 severe dengue cases and inform the development of new prognostics for use in acute-phase and 

400 serial samples from dengue cases.
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