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Abstract

Background: Opportunistic resistant bacteria are health and economically
relevant in the health care systems and in industries worldwide, especially in the
so-called resistant bacteria era (RBE). Enhancing the activity of commercially
available antibiotics (CAAs) with different types of natural products (NPs) is a
successful antimicrobial strategy, for instance the amoxicillin and clavulanate
mixture.

Objective: To find research trends in this field during 2015-2020 and to detect
potential drug hits with potential to diversify formulations and materials design
that can be useful to manage the RBE.

Systematic review results: It yielded 190 reports of synergistic effects of CAAs
and NPs. The analyzed variables were: a) natural products origin: plant family,
genera, secondary metabolite type; b) strains: +/- Gram, genera, most frequent
species, application field; and c) CAAs: family, most frequent CAAs. The families
with potential to have more bioactive species were Apocynaceae, Rubiaceae,
Euphorbiaceae (Isbio factor). Lonicera had the highest reports amount.
Polyphenols and flavonoids were the majority of pure NPs tested. Several
potential drug hits for antibiotic activity enhancement at synergistic level were
identified together with potential mechanisms of action: berberine (drug efflux
inhibitor–DEI, biofilm inhibitor–BI), curcumin (BI), essential oils (BI),
3-o-metyl-butylgallato (inhibition of fatty acid saturation), among others. About
the half of the tested strains were gram positive, being Methicillin Resistant
Staphylococcus aureus (MRSA) the most frequently tested. Escherichia coli was
the gram negative strain most frequently reported, including enterotoxigenic and
extended spectrum beta-lactamases producers. The growth of other foodborne
genera strains, such as Listeria and Salmonella, were also inhibited.
Aminoglycosides were the family most reported, with gentamicin as the most
commonly studied.

Conclusions: NPs as either as plant extracts from a variety of families, or as
purified compounds specially flavonoids and polyphenols, have shown effective
results to enhance the antibiotic activity of CAAs against gram positive and
negative strains relevant to HC and FI. Their mechanisms of action are starting
to be determined, as the case EPIs and BIs. Further research is needed to achieve
co-formulations and materials design useful for those fields, that can certainly be
positively impacted by pursuing this strategy.

Keywords: synergistic effects; enhancement antibiotic activity; antibiotics;
natural products; flavonoids; terpenoids; biofilm inhibitors; efflux pump inhibitors;
aminoglycosides; co-formulating
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Background
Opportunistic bacteria are relevant in the health care systems and in industries

that involve living organisms. For instance, in 2021 the cost of human illness caused

by food borne pathogens costed more than 15.6billion USD to USA. A 48% of

those outbreaks were related to meat, and 34% were related to plant based foods.

This phenomena contributes to the emergence of antibiotic-resistant bacteria which

positively feed backs the increment of food borne antibiotic-resistant infections.

Among the CDC and FDA, and USDA strategies to address these issues are: a) to

stimulate the antibiotic drug discovery, b) to improve the appropriate antibiotic use

in veterinary medicine and agriculture, and c) to ensure that the related industries

have tools, information, and training on antibiotic use [1, 2, 3, 4, 5].

To properly manage the resistant bacteria era, humankind must advance its an-

timicrobial toolbox. One strategy is to enhance the activity of already commer-

cialized antibiotics, and even to revert antibacterial resistant by co-formulating the

antibiotic drugs with those enhancers. A successful example of this approach is

the mixture of amoxicillin and clavulanic acid. This mixture was patented in 1985,

consisting of a semi-synthetic derivative of penicillin mixed with an inhibitor of

the enzyme beta-lactamase isolated from Streptomyces clavuligerus. The market for

amoxicillin is expected to raise up to 4,256 millioun USD by 2026, at the same time

resistant strains are emerging and antibiotic drug discovery and re-formulation is

on demand (CDC) [6, 3].

Acknowledging the success of amoxicillin-clavulanate potassium combo and the

relevance of the resistant bacteria in health care systems and industry, and taking

in account the promise of natural products as source of bioactive compounds, a

systematic literature review was performed aiming to identify potential natural

products that can improve the antibiotic activity against opportunistic bacteria,

with potential applications in the food industry.

Literature Review Methods
Literature search parameters

The literature search parameters were defined as following: i) Databases and

search engines: National Center for Biotechnology Information (NCBI) – Pubmed

Central,[7] Scifinder,[8] In the cases in which the search engine also yielded recom-

mended articles related to the found article, follow up of such studies was performed.

ii) Publication date: in the range from april 2016 up to 2020 iii) Targeted

content: Antimicrobial activity evaluation of commercially available antibiotics to-

gether with natural extracts against opportunistic microbes (CAAs and NE–OM),

such that yielded synergistic effects results which data analysis included either FICI

or a statistical comparison between control and test groups. Also, analog results

from testing the main component(s) of any given natural extract were also included.

iv) Keywords and phrases: The keywords applied to start the literature search

in the different databases and search engines were: synergistic effects natural prod-

ucts and antibiotics, botanicals and antibiotics bioassays, plant extracts interaction

with antibiotics, and antibiotic adjuvant bioassays. v) Exclusion criteria: results

classified as either antagonist, additive, or non–interaction effects of CADs and NPs

tests; results classified as either enhancement or modulating effects of CADs and
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NPs tests, such that were reported without statistical analysis, such that it was

not possible to conclude if synergistic effects were observed; only the NPs (either

as extract or purified components from it) were tested for antimicrobial activity;

mixture of two or more NPs, even if those yielded antimicrobial synergistic effects;

mixture of two or more CADs, even if those yielded antimicrobial synergistic effects.

Data analysis

The selected registries were analyzed based on a set of parameters that are analyzed

in the following paragraphs. In brief, first, the analysis of the origin was divided into

plant extracts and type of secondary metabolite. To further analyze the extracts

origin, the frequency of reported families and genus were tabulated. In order to

detect potential mining taxa for either more bioactive species (Isbio above 0.80 for

a given family) or to define species that are the most studied (Isbiobelow 0.3 for a

given family), we proposed and utilized the Isbio index for further analysis (see Fig.

1).

Then, the tested bacteria were analyzed by strain, gram positive or negative, and

field of relevance. The antibiotics that rendered synergistic effects were grouped by

their type. Additionally, the natural products that yielded antibiofilm inhibition

activity were compiled.

Results and Discussion
A succinct summary is shown in Fig. 3 and the prisma escheme for the literature

review in Fig. 1. A total of 270 reports of synergistic effects of natural products and

commercially available antibiotics (Syn-NPs-CAAs) were retrieved, together with

several reviews on the topic [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25].

The Syn-NPs-CAAs were referred as a combinatory therapy [26], Chinese medicine

and Western medicine integration [27], and an hybrid combination [15], all of them

highlighting the fact of the utilization of an already validated commercially available

antibiotic and a natural product that has not yet been validated by the same means,

but that is known to be active in traditional medicine. Such a natural product can

range from a pure compound, to fractionated extracts of a given species, to a mixture

of extracts from several species.

The Syn-NPs-CAAs approach may be useful in the food industry for design of

new packaging or for switching bacteria control to this hybrid formulation[15]. The

synergistic effects were observed in studies with slightly variants regarding study

focus, these are commented accordingly in the text.

The selected registries were analyzed based on a set of parameters that are ana-

lyzed in the following paragraphs. In brief, first, the analysis of the origin and type

of natural product is presented in Sec. , also in Figs. 4, 4, and 2, and Table 4 .

Then, the tested bacteria were analyzed by gram positive or negative, strain, and

field of relevance, and field, see Sec. and 5. The antibiotics that rendered synergistic

effects were grouped by their type are shown in Fig. 5. Additionally, the natural

products that yielded antibiofilm inhibition activity (Sec. ) were compiled in Figs.

2 and 1. The chapter closes with remarks and future prospects for research, Sec.

, development and innovation utilizing natural products as enhancers of antibiotic

activity of CAAs.
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Origin and type of the natural products

The species studied covered from edible plants, those used in traditional medicine,

up to weeds . The genera Lonicera (Capriofoliaceae) was reported more frequently,

being almost the only genera explored in that family, notice the Isbio of 0.28, see Fig.

4 and 4. Green tea Camelia sinensis (Theaceae) and Aloe vera (Xanthorrhoeaceae)

are the most studied species of their respective families, and it seems as no other

species are currently under the radar of synergistic effects research (Isbio below

0.20).

According to an Isbio above 0.80, see Fig. 4, among the families of interest due to

their potential to find bioactive species are Apocynaceae, Euphorbiaceae, Malvaceae

and Rubiaceae [22]. The Compositae family is also of interest to explore more

species, even though its current Isbio is 0.68. Compositae is one of the largest among

the plant families, actually is the major group of flowering plants, with more than

27,000 known species [28].

A total of 290 assays of secondary metabolites yielded synergistic interactions with

CAAs against opportunistic bacteria, some examples are given in 4 and 1. Their

distribution by secondary metabolite type is shown in Fig. 2. Flavonoids and phe-

nolics represented the majority of the tested purified extracts. The flavonoids and

polyphenols families may play an important role increasing the antibiotic bioavail-

ability, and might become relevant in hybrid formulations and materials design,

e.g., with CAAs [29, 30, 31, 32, 33].

Terpenoids as merulinic acid and a ursolic acid glycoside, among others, damaged

the bacterial cell wall [34, 35]. Berberine can be considered a drug lead for efflux

pump inhibition, such as berberine, zeylenol and bulgecin A, see Table 4 and refer-

ences therein. Currently, berberine main limitation is its low bioavailability in the

body [36, 37, 38, 39, 40, 32, 41, 42].

Other examples of efflux pump inhibitors are sophoroflavone G, jatrorrhizine, iso-

valeryl shikonin, griseviridin, 2-(2-aminophenyl)indole, flavonoids, essential oils and

several plant extracts. It should be mentioned that both berberine and jatrorrhizine

have also been isolated from Mahonia bealei, together with a variety of other alka-

loids, terpenoids and polyphenols, and synergistic interactions with CAAs can be

an expected result [43, 44, 45, 46, 47, 48, 40, 49, 50, 51, 52, 53].

Strains

The mixture of NPs and CAAs were effective against strains which distribution is

presented in Fig. 5. Opportunistic bacterial strains were the center of the Fractional

Inhibitory Concentration Index—FICI assays. FICI was determined applying the

checkerboard method (except for at least five studies that compared statistical

difference by p value). Among the bioactivities assayed were minimal inhibitory

concentration, time kill assay, and biofilm inhibitory concentration. The origin of

the strains included ATCC with a variety of resistant genes and other commercially

available sources, as well as clinical isolates. First line antibiotics were commonly

explored, see Fig. 5, with aminoglycosides being majority.

The most frequently reported genera was Staphylococcus, mostly S. aureus (SA)

and MRSA. The other two main strains were the gram negative Escherichia coli

(EC), including ESBL-producing EC and enterotoxigenic EC, and Pseudomonas
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aeruginosa (PA) including MDR variants. MRSA is in the WHO list of High Prior-

ity Bacteria that requires research and development of new antibiotics[54], and the

CDC classifies MRSA as Serious Threat Level [55]. In 2014, MRSA was included

among the US government National Targets for Combating Antibiotic-Resistant

Bacteria, aiming to reduce by half (to—at least—50%) the bloodstream infections

caused by MRSA [56]. Several of the studied strains belong to the so–called ES-

KAPE pathogens species (Enterococcus faecium, Staphylococcus aureus, Klebsiella

pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter), a

set of antibiotic–resistant pathogenic bacteria that represents new paradigms re-

garding pathogenesis, transmission, and resistance [57].

A set of 35 studies were focused in the type of infections more than its in the

causal agent, for instance foodborne and oral infections, and those related to chronic

inflammatory diseases, and veterinary, especially poultry and livestock [58, 59, 60,

61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84].

The growth of foodborne strains Listeria sp., Salmonella sp., Vibrio sp., Shigella

sp. was inhibited by a variety of NPs-CAAs, including essential oils such as thymol

and nerolidol [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 31, 95, 96, 27, 97, 98, 48, 40, 99,

100, 101, 102, 103, 104, 105, 106, 107, 70, 108, 86].

Oral infections caused by opportunistic bacteria are an active target for drug

discovery, including the virulent factors modulation such as the biofilm formation

(see below Sec. ) and a set of mouthwashes and toothpastes formulations had been

patented [25, 53, 109, 110, 111, 112, 113, 114, 115, 24].

Another target, at bioassay level, was the gut microbiota regulation through the

intake of selected probiotics [116].

Inhibition of the growth of gram negative bacteria represented the half of the

reported strains, including MDR variants. Examples of natural products inhibiting

EC, KP, and PA can be found in Fig. 4. Edible properties are relevant, especially for

safety concerns on utilizing plant extracts. An example of the 49 Syn-NPs-CAAs for

EC is the methanolic extracts of edible plants Psidium guajava L., Persea americana

Mill., Camellia sinensis L., Mangifera indica L., Coula edulis Baill., and Citrus

sinensis L. [93]. Other plant extracts inhibited EC growth with focus on foodborne,

hospital acquired infections and veterinary [117, 86, 29, 118, 119, 120, 30, 121, 122,

27, 123, 124, 100, 125, 126, 127, 128, 129, 92, 130, 48, 131, 132, 93, 133, 134, 135, 136,

137, 138, 99, 139, 93, 140, 141, 142, 143, 144, 95, 89, 145, 146, 147, 78, 80, 81, 82, 93].

Inhibition of Toxin Production and Antibiofilm Activities

Among the reported mechanisms of action that renders synergistic effects of NPs

and CAAs are the interaction of NPs with bacteria virulent factors. Which included

inhibition of toxin production, biofilm formation, interference with quorum sensing

molecules, inhibition of penicillin binding proteins, pump efflux inhibitors and pore

forming compounds [148, 149, 150, 151, 49, 152, 50, 34, 35].

Essential oils and flavonoids are among the set of drug hits for inhibiting entero-

toxin production in vitro. Certain polyphenols inhibited the production of entero-

toxins by S. aureus MDR [103]. And 5-Hydroxy-3,7,4’-trimethoxyflavone inhibited

the enterotoxin production by E. coli [141, 120]. The extract of Spondias mombin

L. (Anacardiaceae) leaves also enhanced the amoxicillin effect against enterotoxic
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EC strains, and further research may also lead other drug hits for this activity [141].

Further research on these natural products may lead to improve therapies to treat

hemorrhagic diarrhea infections that are of high relevance in lower income countries

[2].

Biofilm has been identified as a critical point for foodborne bacteria, as they

are related to harbor variants that are resistant to antibiotics and cleaning prod-

ucts [4]. Antibiofilm activity was specifically reported, and usually detected with

ethidium bromide assay or electron microscopy [50, 153]. The plant extracts that

inhibited biofilm formation are listed in Table 2. For instance, the essential oils

from the weed Mikania cordifolia, especially limonene, enhanced the CAAs ac-

tivity against foodborne bacteria, probably via biofilm formation inhibition [89].

Specific polyphenols, alkaloids and terpenoids have also inhibited biofilm forma-

tion, see Table 1. They can be envisioned as drug hits for antibiofilm activity

[154, 155, 36, 156, 157, 158, 159, 160, 161].

The presumptive drug target of MRSA biofilm is dehydroxysqualene synthase

which produces staphyloxanthin, its main biofilm component [162, 163, 164, 53, 115].

Essential oils are also used to treat infections against gram negative bacteria rel-

evant in veterinary in the Syn-NPs-CAAs format [5]. Limonene and other essential

oils, as in Table 1, may be obtained by green extraction methods, they evaporate

with time, and they can be detected by electronic noses, which can facilitate qual-

ity control in the food industry. Other type of components could be also included

in antimicrobial formulations or in the design of plastic polymers that allow for

virulence factors modulation [15, 165, 89, 121, 166, 148].

Increasing Bioavailability and Stimulation of the Host’s Immune System

Several studies using host-pathogen models reported that the enhancement of the

antibiotic activity was related to the host’s metabolism, e.g., stimulation of the

immune system or increasing bioavailability. Beyond whole one type cells assays,

rodent animal models and mammalian cultured cells allows for detection of such

interactions [29, 30, 31, 32, 167, 33, 168, 169, 94, 122, 170].

Those findings highlights the importance of this type of experiments to detect

the induction of favorable host-pathogen interactions, at same time highlights the

need to access and to develop high-through-put protocols that do not necessarily

involves animals but that still can be a probe for those interactions.

Techniques, Methods and Approaches

Several approaches and techniques are being developed in order to find antibiotic en-

hancers. Efforts toward rationale design drug discovery are ongoing, such as natural

products inspired fragment based approach [171] and SARS studies [172]. And non-

targeted mass spectrometry analyses [173] and other metabolomic based methods

(biochemometric) [42] are among several platforms for high-through-put bioassays

are being proposed [174, 175, 176, 161, 177].

If plant extracts are going to be used as the commercial formulation, their quality

control is a key stone for its success. Dettweiler et al. , proposed the Extract Frac-

tional Inhibitory Index—EFICI as quality control method of the extract, testing

the actual bioactivity of the extract instead of its main components [178].
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Raw materials

Examples of research lines related to circular economy are the synergistic effects of

CADS with olive leaf phenols [127], essential oil of melon peel [99], anthocyanins

from wine by-products [179], and with metabolites from tobacco waste [180], fruit

waste material [99].

Nutrient additives for animals food and soil fertilizers based on plant extracts

are attracting interest, they not necessarily contain CADs, but their application

eventually leads to reducing the amount of CADs utilized. In the case of animal feed

additives. They stimulate the immune system thus potentially reducing the impact

of infections and amount of CADs applied. For the case of fertilizers, they not only

enrich the soil’s nutrient composition but they can improve the soil’s microbiota for

further crop planting [94, 181, 106, 182, 183, 184, 185].

Another approach is the derivatization of natural products by linking them with

other privileged scaffolds to improve their potency and ADME properties. For in-

stance, azole derivatives carvacrol and naphtoquinones have been effective in vitro

against gram positive and negative strains [146] and curcumin derivatives have been

prepared aiming to improve their bioavailability [186].

Conclusions and Final Remarks
Future work would involve to study more natural products and to develop materials

that contain antibiotic enhancers. For example: a) to investigate more species and

to characterize their extracts; b) to expand the purified natural products by either

testing more NPs or derivatizing those already identified as drug hits, e.g., for

absorption improvement; c) to systematically explore of plant genus or families; d)

to develop more test to explore inhibition of virulent factors; e) to prepare polymers

and films with bioactive natural products for in-field test of their effectivity; f) to

define formulations to inhibit bacterial growth, that include antibiotic enhancers

such as flavonoids, polyphenols or essential oils.

The mixtures of natural products and commercially available antibiotics already

shown synergistic effects against opportunistic bacteria relevant in health care, food

and plant industries, and several patented formulations related to toothpastes and

beauty products are starting to emerge. Those trends grant further research, devel-

opment and innovation in the food industry and health care systems.

Further activity in this area can led to the surge of non-traditional circular

economies around certain species and even to consolidate as an additional tool

to manage the resistant bacteria era.
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a)

b)

Figure 1 a) Definition of Isbio]Definition of Isbio. b) Prisma scheme of the systematic literature
review of antibiotic synergistic assays of NPs and CAAs. Results of the search are availbale upon
request.

Figure 2 Examples of metabolites that yielded synergistic effects with CAAs and opportunistic
bacteria.
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Figure 3 Summary of results of 279 reports of antibiotic synergistic assays of NPs and CAAs.

Table 1 Antibiofilm agents. a) Polyphenols, alkaloids and terpenoids, as pure compounds, that
yielded antibiofilm activity. b) Essential oils and an EO’s derivative, that yielded antibiofilm activity.

a) Pure compounds, antibiofilm activity

b) Essential oils, antibiofilm activity
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a)

b)

c)

Figure 4 Distribution of the plant genera and families in 439 retrieved registries of antibiotic
synergistic assays of NPs and CAAs, including reports and patents. a) Distribution of the plant
genera. b)Distribution of the plant families with more than six reports and their Isbio, index range
of 0.80 and 1 is highlighted. c) Secondary metabolite distribution of the 170 pure compounds
tested
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a) b)

c)

d)

Figure 5 Distribution of strains and commercially available antibiotics. a) Distribution of the 99
different strains reported grouped by field in 279 reports of antibiotic synergistic assays of NPs
and CAAs. b) Distribution of tested strains by their Gram dying. c) Distribution of tested strains
grouped by genera. d) Distribution of the commercially available antibiotics utilized across those
studies.
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Table 2 Species of the plant extracts that yielded antibiofilm activity.
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