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Abstract16

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but one in three patients continue17

to have seizures one year after surgery. In order to improve the chances of good outcomes, computational models of18

seizure dynamics are being integrated into surgical planning to simulate the effects of the planned surgeries. These19

modelling frameworks require several conceptual and methodological choices, as well as large amounts of patient-20

specific data, which hinders their clinical applicability. To address this problem, we considered the patient-specific21

brain network, derived from magnetoencephalography (MEG) recordings, and a simple epidemic spreading model as22

the dynamical basis for seizure propagation. This simple model was enough to reproduce the seizure propagation23

patterns derived from stereo-tactical electroencephalography recordings (SEEG) of all considered patients (N = 15),24

when the patients’ resected areas (RA) were used as the origin of epidemic spreading. The model yielded a more25

accurate fit for the seizure-free (SF, N = 11) than the non-SF (NSF) group and, even though the difference between26

the groups was not significant, the goodness-of-fit distinguished NSF from SF patients with an area under the curve27

AUC = 84.1%. We also explored the definition of a population model that combined data from different patients to28

fit the model parameters but was still individualized by considering the patient-specific MEG network. Even though29

the goodness-of-fit decreased compared to the individualized models, the difference between the SF and NSF groups30

held, and in fact became stronger and significant (p = 0.023), and the group classification also improved slightly31

(AUC= 88.6%). Therefore, combining data from different patients may pave the way not only to generalize this32

framework to patients without SEEG recordings, but also to reduce the risk of over-fitting and improve the stability33

of the models. Finally, we considered the individualized models to derive alternative hypothesis of the seizure onset34

zones and to test the surgical strategy in silico for each patient. We found that RA regions were on average more35

likely to originate the seizures, but that alternative explanations were possible. Virtual resections of the RA when36

considering these alternative seeds significantly reduced seizure propagation, and to a greater extend for SF than37

NSF patients (although the difference was not significant). Overall, our findings indicate that spreading models based38

on the patient-specific MEG network can be used to predict surgical outcomes, with better fit results and greater39

reduction on seizure spreading linked to higher likelihood of seizure freedom after surgery.40

1 Introduction41

Epilepsy is a highly prevalent neurological disorder, affecting between 4 and 10 per 1000 people worldwide [1]. About42

1 out of 3 people who suffer from epilepsy do not respond to medication, i.e. they present drug-resistant or refractory43

epilepsy [2]. In these cases, epilepsy surgery (ES), consisting of the removal or disconnection of the necessary brain44

regions to stop seizure propagation -/namely the epileptogenic zone [3]– is the treatment of choice. Several conditions45
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must be met for the surgery to proceed, including that a focal origin of the seizures can be found, and that the46

proposed surgery can be performed safely, i.e. without unwanted side-effects such as sensorimotor deficits, amnesia, or47

aphasia. Surgery outcomes vary greatly depending on epilepsy type, with seizure freedom attained for about 2/3s of the48

patients one year after surgery [4]. Although the majority of patients still experience a reduction in seizure frequency49

or intensity after surgery, even when surgery is not completely successful, side-effects and cognitive complaints are50

also common, and can be difficult to predict accurately on an individual basis [5].51

In recent years, several efforts have been made to improve the outcome of epilepsy surgery. One important52

conceptual leap forward is the notion of epileptogenic networks [6], according to which even in case of focal epilepsy53

the epileptogenic focus should not be considered as solely responsible for seizure generation or propagation, but rather54

the existing brain network also plays a role in promoting (or inhibiting) the ictal state [7–9]. Within this perspective55

it has been found that several properties of the brain networks of epilepsy patients deviate from those of healthy56

controls [10–14]. In particular, abnormalities are often found relating to the brain network hubs, which often suffer57

from targeted damage in patients with neurological disorders (see Stam [8] for a review). In the case of epilepsy, hubs58

may facilitate the propagation of epileptiform activity throughout the brain [15, 16]. In fact, several studies have59

pointed out the existence of pathological hubs: abnormal, hyperconnected regions in the vicinity of the epileptic focus,60

which mediate seizure propagation [15, 17–19].61

Within the network perspective, the effect of surgery is no longer straightforward to predict: local changes in a62

network may have widespread effects, or be compensated by the remaining network [20, 21]. Moreover, the specific63

effect of a surgery will depend on the individual network configuration [22], making it fundamental to consider patient-64

specific connectivity in order to tailor the surgery specifically to each patient. Network-based studies have found65

group-level differences between seizure-free and non-seizure free patients [19, 21, 23], for instance Nissen et al. [18]66

found that the removal or a pathological hub, or a region highly connected to it, was strongly associated with seizure67

freedom.68

A data-driven manner to address this problem is via computational models of epilepsy surgery, which simulate in69

silico different resection strategies to help predict their impact before hand, with the goal of improving the planning70

of resective epilepsy surgery [24–33]. In order to tailor the resection strategy for each patient, and thus increase71

the chances of seizure freedom, the models are fitted to patient-specific data such as the underlying brain network72

connectivity (derived via different imaging techniques), stereo-typical patterns of seizure propagation and clinical73

biomarkers of the suspected location of the epileptogenic focus. Once the models have been defined, they can be used74

to predict the outcome of surgery [30, 31], or to propose alternative resection strategies, for instance in the case of a75

previous bad outcome or inoperable regions [31], or with a smaller impact than the actual surgery [25, 33–35].76

The computational models of epilepsy surgery rely on the definition of a dynamical model of seizure generation77

and propagation. However, the specific mechanisms underlying seizure dynamics are not well known, and likely not78

unique: epilepsy is a heterogeneous disorder, and at least 6 different stereotypical patterns of seizure dynamics have79

been distinguished [24, 36, 37]. Thus, assumptions must be made in the modeling of seizure dynamics, and different80

levels of description, at different scales, are possible [38]. Realistic models make use of highly detailed non-linear81

dynamics [39], such as population-rate models [40] or neural-mass models, combined with one or several slow variables82

to account for the transition from normal to ictal activity [26, 30]. Within this perspective, several studies have tried83

to model seizure dynamics and predict the outcome of epilepsy surgery, with remarkable success at a group level:84

Sinha et al. [31], using a dynamical model based on EEG connectivity to identify epileptogenic regions, found that the85

overlap between these regions and the RA predicted surgery outcome with 81.3% accuracy. Proix et al. [37] found that86

their seizure model, the epileptor model [41], defined over MRI networks, could distinguish between good (Engel class87

I) and bad (Engel class III) outcomes. Further studies within this modelling framework also found a better match88

between the hypothesized EZ and propagation zone (i.e. the first regions to which ictal activity propagates to) for89

SF than NSF patients [42, 43]. On a virtual resection study, Sip et al. [44] found that the effect of the resection in90

the model correlated with surgical outcome, so that patients with Engel score I and II presented a significantly larger91

effect of virtual resections in the model. Finally, Goodfellow et al. [28] also found significant differences in the model92

prediction for Engel Class I and class IV patients, using an electrocorticogram (ECoG) modelling framework.93

Detailed models of ictal activity, however, come at a high cost: several parameters need to be adjusted beforehand,94

with unavoidable arbitrary choices. This complicates the setting of the model parameters and either large quantities95

of data are needed, or several assumptions must be made. As a consequence there is a high risk of over-fitting, and96

generalizing the results to new data-sets becomes troublesome. In order to solve this problem, in-depth studies to97

characterize the dynamical properties of the models, and the interplay between network structure and emergent dy-98

namics, are needed [45–47], often in combination with elaborate modelling optimization frameworks, such as Bayesian99

inference [43, 44, 48, 49] or deep learning [50]. Another possibility to circumvent these issues is by considering simpler,100

abstract models that focus only on the behavior of interest: the propagation of ictal activity throughout the brain [33,101

34], accounted for by the slow permittivity variable of the epileptor and similar highly dimensional models Sip et al.102

[44]. Conceptually, this process is equivalent to other spreading processes on networks, a problem that has been well-103

characterized by means of epidemic spreading models [51]. Epidemic spreading models simulate the propagation of an104

agent from some given location on a network to other connected areas, a basic phenomenon appearing in a multitude105

of systems. In the case of brain dynamics, such models have been used to study the spreading of pathological proteins106
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on brain networks [52, 53], or the relation between brain structure and function [54]. Due to their ubiquity and107

relative mathematical simplicity, epidemic spreading models are supported by a wealth of mathematical background108

characterizing the emergent dynamics in relation to different properties of the underlying network. This information109

can later be useful for clinical applications, e.g. general rules for spreading phenomena on complex networks that can110

be applied to understand seizure propagation.111

In previous studies we considered epidemic spreading models as the basis for seizure propagation over the brain,112

without trying to mimic the complicated biophysical mechanisms involved in the process [33, 34]. Within this frame-113

work, we found that epidemic spreading models fitted with patient-specific data could reproduce the stereotypical114

patterns of seizure propagation on patient-specific brain networks, individually for each patient. Moreover, by taking115

into account this patient-specific connectivity, alternative or smaller resections could be found with the model, which116

we hypothesized could lead to fewer side effects with the same outcome, in terms of seizure reduction [33, 34].117

Here we consider an epidemic spreading model to generate individualized seizure propagation models that are118

based on the patient-specific MEG connectivity and seizure propagation pathways as derived from invasive EEG119

recordings. This framework generalizes on previous studies by our group [33, 34] by including a recovery mechanism120

in the spreading model, allowing the return to the healthy (post-ictal) state, so that seizures may remain local (i.e. if121

the affected regions recover before spreading the ictal state to distant regions) or generalize. We considered a group122

of 15 epilepsy patients who underwent epilepsy surgery, and for whom the surgical outcome at least one year after123

surgery was known. We illustrate how the present model can be used to generate alternative hypotheses on the seizure124

onset zone and test different resection strategies, and we discuss the challenges associated to the model fitting, even125

in this simple scenario, and associated risks. We also present a population model that integrates spreading data from126

all patients but can still be individualized and applied to patients without SEEG recordings. We discuss how this127

approach can help reducing the over-fitting risk and noise effects, and how it may increase the generizability and128

clinical application of epilepsy surgery models.129

2 Results130

The individualized seizure propagation models were based on an epidemic spreading model –the Susceptible - Infected131

- Recovered or SIR model– equipped with patient-specific data, as depicted in figure 1. A total of 15 patients (9132

females) were included in the study, 11 of whom were seizure free (SF) one year after surgery (Engel Class 1A, see133

table 2 for the patient details).134

2.1 Seizure propagation as an epidemic spreading process135

Seizure propagation was modelled using the SIR model such that the susceptible (S), infected (I) and recovered (R)136

states accounted respectively for the healthy (pre-ictal), ictal and healthy (post-ictal) states. The SIR model describes137

the spreading of an epidemic process on a network from a set of seed regions to the other nodes, and it has been138

applied in a multitude of scenarios involving spreading phenomena. The emerging behavior of the system under this139

dynamics is well-characterized in relation to the underlying network structure [51, 55]. In this scenario, the model140

does not try to mimic the detailed biophysical processes involved in seizure generation and propagation, instead it141

is used here as an abstraction that includes only the most relevant features of seizure propagation [33, 34, 44, 51].142

The model is characterized by two control parameters, the global spreading rate β characterizing the probability of143

spreading of the infected state, and the recovery rate γ characterizing the recovery probability of each infected node.144

The model was simulated on top of the patient’s brain network reconstructed from resting-state MEG recordings145

using the Brainnetome Atlas (246 nodes). Each region of interest (ROI) was represented via a node i in the network,146

and each connection via a link (i, j), with the weight wij of link (i, j) indicating the strength of the coupling between147

ROIs i and j. The weight distribution affected the spreading pattern as wij modulated locally the spreading rate: the148

probability that an infected node i infected a neighbour j was given by βwij . Thus, strongly connected neighbours149

were more likely to propagate the infected state. As coupling metric we considered the uncorrected AEC (Amplitude150

Envelope Correlation). AEC-MEG networks include both short- and long-range functional connections, combining in151

one network aspects of structural and functional connectivity [34]. The networks were thresholded (but not binearized),152

with the link density κ acting as the third control parameter of the model. An exemplary case of the final weight153

matrix is shown in figure 1.154

2.2 Individualized seizure propagation models155

The seizure propagation model was adapted individually for each patient by fitting the simulated propagation patterns156

to patient-specific seizure propagation data derived from SEEG recordings and by setting the seed of epidemic spreading157

as the resected area (RA) (see 5.5.2 for more details). Two seizure propagation patterns were constructed, the SIR158

and the SEEG seizure patterns, depicting respectively the activation order of the sampled ROIs in the SIR- and159

SEEG-derived seizures. An exemplary case is shown in figure 1). The total correlation between the two patterns, C,160
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Figure 1: Sketch of the methodology followed in this study. The SIR model was used to simulate seizure propagation. As
the backbone for the model dynamics, we used the patient-specific AEC-MEG network, and the seed regions were initially
defined as the resection area (RA), which was reconstructed from the pre- and post-surgery MRIs. By analyzing the
seizures generated by the model, we derived the SIR seizure pattern, describing seizure propagation in the model. This
was compared to the SEEG seizure pattern as derived from SEEG recordings of ictal activity. The spreading patterns
describe the activation order the active (i.e. infected, in the ictal state) and sampled (by the SEEG electrodes) ROIs.
Comparison between the model and the data (see figure 2) allowed us to fit the model parameters to the SEEG pattern
and create an individualized seizure propagation model for each patient.

as defined by Eq. 2 in the Methods, and illustrated in figure 2 (for the same exemplary case as in figure 1), was used161

as the goodness of fit of the model (see sec. 5.5.2).162

Within this framework, we found the set of parameters (κ, β, γ) yielding the best model fit C for each patient163

(see Methods for details and figure 3A for the fit results). On average, we obtained a model fit of C = 0.30 (with164

standard deviation stdC = 0.20). The model provided a (not significantly) better fit for the SF (CSF = 0.35) than165

NSF (CNSF = 0.15) patient groups (CSF − CNSF = 0.20, t(13) = 1.79, p = 0.097, unpaired t-test), as shown in figure166

3B. A ROC classification analysis based on the goodness of fit returned a good classification result with an area under167

the curve (AUC) of AUC = 0.841. There were no significant differences in the fit parameters between the groups168

(average ± standard deviation: κ = 25± 22, β = 0.02± 0.03, γ = 0.03± 0.04).169

2.3 Population model170

The population model C̄(βRS , γ) was defined by measuring the average fit across patients, and by re-scaling the171

spreading rate βRS to combine in a single quantity the main parameters controlling the expected number of infected172

nodes, i.e. the original spreading rate, the density of connections (as given by κ) and the size of the seed. Details173

of this procedure are given in the methods (section 5.5.3). The resulting fit diagram (figure 4A) resembles a familiar174

phase transition diagram, with an interface of high goodness of fit (yellow regions) corresponding to a roughly constant175

spreading-to-recovery ratio βRS/γ = const. Most individual best fits (black markers) fell within this region, although176

there was large variability among the individual results (in fact, we found low signal to noise ratios of aprox. 1/5 as177

shown in the Supp. Information, Supp. Fig. S2).178

Within this population model, the best fit was C̄ = 0.13±0.19, corresponding to βRS = 0.01, γ = 10−4 (highlighted179

rectangle in figure 4). Remarkably, when considering the fit results for each patient at the optimal population180
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Figure 2: Total correlation C between the SIR and SEEG seizure patterns. First, the set of active (i.e. infected) ROIs
in both patterns was identified, and the weighted correlation Cw between the activation orders was calculated (panel
A, blue line). As correlation weights we used the probability that the ROI i was infected in the SIR pattern, PIR(i),
depicted in the figure by the size of the black circles. Then, to control for the extension of the seizure in both patterns,
we computed the weighted overlap between the active and inactive regions (panel B), Poverlap. PIR(i) is the probability
that the ROI i becomes infected during the spreading process. Conversely, 1 − PIR(i) is the probability that it does
not become infected. S and H stand respectively for the sets of ROIs that are infected (i.e. in the seizure state) and
not infected (i.e. in the healthy state) in the SEEG pattern. The total correlation was then defined as C = CwPoverlap.
For more details see section 5.5.2. The spreading patterns corresponding to this data are shown in figure 1 under “SIR
Seizure Pattern” and “SEEG Seizure Pattern”, respectively.

Figure 3: Model fitting results. A Best fit found for each patient. The model parameters (κ, β, γ) form the three axes
and the color-code indicates the goodness of fit C. Note that some points overlap. B Group comparison of the goodness
of fit, for the NSF and SF groups (unpaired t-test). Each color represents a different patient, as indicated by the legend.
The solid lines on each box indicate the mean values. In panels A and B, SF (NSF) patients are indicated by circles
(triangles). C ROC curve corresponding to the group classification according to the goodness of fit. A positive result
was defined as a good outcome (SF). FPR indicates the false positive rate (NSF patients classified as SF), and TPR the
true positive rate (SF patients classified as SF).

point, we found that the SF group (C̄(SF ) = 0.20 ± 0.18) presented a significantly better fit than the NSF group181

(C̄(NSF) = −0.07 ± 0.16, CSF − CNSF = 0.27, t(13) = 2.59, p = 0.02), as shown in figure 4B. Moreover, the ROC182

classification analysis in this case also provided a good classification (AUC = 0.886) between the SF and NSF groups183

(see figure 4C).184
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Figure 4: Population model. A Phase diagram showing the population fit C̄ (βRS , γ). Black markers indicate the location
of the best individual fits in this diagram, with circles (triangles) corresponding to SF (NSF) patients. The highlighted
rectangle indicates the best fit. B Comparison between the population fit for the SF and NSF groups. Solid lines indicate
the mean values for each group. C ROC classification analysis between the SF and NSG groups, with an AUC = 0.886.

2.4 Alternative Seizure Onset Zones185

Once the model was fitted to the patient-specific seizure propagation patterns, we estimated the likelihood of each186

individual ROI acting as the SOZ, as given by the total correlation metric, CR, when ROI R was used as the single187

seed for the SIR dynamics. For this we considered the individualized spreading models (i.e. fitted individually for each188

patient) as they provided a better characterization of the individual SEEG spreading patterns. For all patients, single189

seeds could be found that provided a good approximation to the seizure propagation pathways, i.e. with high CR190

values, as shown in figure 5 (left panels) for two exemplary cases. The seed likelihood maps depicted different degrees191

of localization and sparseness for different patients, as well as different degrees of overlap with the RA (also shown in192

figure 5 for comparison purposes, middle panels). From visual inspection, the RA tended to appear in regions with193

relatively high CR, but did not include the maximum. In order to test whether RA ROIs tended to have higher CR194

than non-RA ROIs, we compared the seed likelihood for the two ROI sets, for each patient, as shown in the right-side195

panels in figure 5. In these two exemplary cases, RA ROIs were significantly more likely to be the seed than non-RA196

ROIs. However, this was the case only for 7 out of 15 cases, of which 1 was NSF. For the remaining 8 cases, no197

significant difference between the groups was found (see Supp. Table S1).198

At a group level, we found that RA ROIs were on average more likely to be the seed than non-RA ROIs, as shown199

in figure 6A (CRA − CNRA = 0.077, p = 0.016, t(14) = 2.74, paired t-test). However, the ROI with the maximum200

likelihood, Cbest, did not belong to the RA for any case (see for instance the two exemplary cases shown in figure 5).201

Thus, the most likely single seeds were close to the RA, but did not belong to it. Despite the individual best seeds202

(Best) performing better than the RA, the difference was not significant. Moreover, both the Best and RA seeds203

performed better than the averaged individual RA ROIs, ⟨RA⟩, and than random seeds of the same size as the RA,204

RND (see Supp. Information for details of the comparisons).205

No difference in the average seed-likelihood of the RA was found between the SF and NSF patients (CRA,SF −206

CRA,NSF = −0.006, t(13) = −0.09, p = 0.93, unpaired t-test), or in the maximum single seed-likelihood, Cmax207

(Cbest,SF − Cbest,NSF = 0.08, t(14) = 0.6, p = 0.5), as shown in figure 6C. Moreover, the difference between the SF208

and NSF groups also vanished when considering random seeds (CRND,SF −CRND,NSF = −0.02, t(14) = −0.3, p = 0.8,209

figure 6).210

2.5 Virtual resection analysis211

We performed a virtual resection analysis to simulate the effect of the surgery for each patient, considering optimal212

seeds of increasing sizes (derived with a recursive procedure) and virtual resections of the RA (see the Methods section213

for details). For each patient, there was a significant decrease in seizure propagation with the surgery for all considered214

seed sizes, as given by the normalized decrease in spreading δVR. We found that, on average, the SF group presented215

larger δVR (see figure 7A) for all considered sizes, but the difference was not significant in any case (see Supp. Fig.216

S2 for details of the comparisons). Finally, when considering the normalized decrease as a classification metric for SF217

versus NSF patients we found AUC values between 0.636 and 0.750 (average = 0.691), as shown in figure 7B.218

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.22279085doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.22.22279085
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5: Seed-likelihood maps for two representative cases. Left panels show the seed-likelihood of each ROI, CR, for two
exemplary cases (cases 13 and 15, respectively from top to bottom), whereas the middle panels show the corresponding
resected areas in red. The right panels indicate the comparison between RA and non-RA (NRA) ROIs, for these two cases
(unpaired t-test). The solid lines stand for the mean values. Red pluses mark outliers (1.5 times over the interquartile
range).

In order to understand what defines the effect of the resection, we computed the correlation between the normalized219

decrease in logarithmic scale log (δVR) and different dynamical and network properties (see table 1) that characterize220

the network structure before and after the resection, as well as the effect of the resection. We found that the largest221

amount of variance was explained by the size of the resection SRA, with larger resections leading to a larger effect of222

the VR, as one might expect. The centrality of the RA (given by the out-connectivity ERA and betweenness centrality223

BCRA) also correlated significantly with the effect of the resection, although the effect was weaker. Remarkably, the224

baseline centrality properties of the seed regions (i.e. size Sseed, out-connectivity Eseed and BC, BCseed) did not show225

significant effects, but the properties of the seed after the resection did show a significant negative correlation with226

the effect of the resection on spreading. The structural effect of the resection, given by the decrease in centrality of the227

seed (both out-connectivity ∆Eseed and BC ∆BCseed) was significantly and positively correlated with the dynamical228

effect. The model parameters also played a role in the effect of the virtual resections, with larger spreading-to-recovery229

ratios associated with larger effects of the surgery.230

The variables considered in the previous analysis are not independent: the different centrality metrics are re-231

lated, and the properties of the RA also impact the structural effect of the resection, for instance. Therefore, to232

identify the most relevant model properties determining the effect of the resection, we performed a step-wise linear233

regression analysis. As dependent variable we considered the normalized effect of the resection, in logarithmic scale,234

log (δIR (i, seedj)), for each patient i and seed j. The resulting (adjusted) model is shown in figure 8. We found that235

only three variables survived: the size of the RA, SRA, the BC of the seed in the resected network, BCseed,VR, and the236

decrease in BC of the seed due to the resection, ∆BCseed. The partial effect of all other variables was not significant237

once these three metrics were included. The adjusted model achieved a goodness-of-fit r2 = 0.468.238

These analyses indicate that the effect of virtual resections in the model is predominantly characterized by the size239

of the RA, as one might expect, but also by the centrality properties of the seed in relation to the RA. That is, both240

the hub status of the seed after the resection, and the decrease in hub status due to the resection were important for241
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Figure 6: Analysis of alternative seeds. A RA regions had a significantly higher model fit (given by the total correlation
when considering each ROI as the single epidemic seed, CR) than non-RA regions (NRA, paired t-test) on average. Stars
indicate a significance difference at the patient-level. B Effect of the seed choice on the model fit. Best stands for the
best single seed, RA for using the whole RA, ⟨RA⟩ for the average of the RA ROIs single seed fits, and RND for random
seeds of the same size as the RA. C Group difference (SF vs NSF) found for each of the seed fits. The two groups only
differed significantly when using the RA as seed.

Figure 7: Virtual resection analysis. A Normalized decrease in spreading δVR for seeds of increasing sizes. Each data
point indicates an individual patient, blue circles stand for SF patients and red triangles for NSF patients. The thick lines
indicate the average values for the whole group (black, “All”), the SF (blue) and NSF (red) groups. B ROC classification
analysis for SF versus NSF outcome, for each considered seed size as indicated in the legend.

the decrease in spreading, but not the initial hub status per se.242

3 Discussion243

We have defined a computational framework to simulate seizure propagation and epilepsy surgery based on epidemic244

spreading models that integrate patient-specific data. A model was built for each patient based on their individual245

AEC-MEG brain network to combine structural and functional connectivity, and the propagation of ictal activity over246
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Effect r2 p
Model: βκ/γ + 0.09 0.01

Baseline:

SRA + 0.33 8 · 10−8

Sseed − 0.00 0.7
ERA + 0.11 0.004
Eseed − 0.02 0.2
BCRA + 0.08 0.0
BCseed − 0.05 0.06

Resection:

Eseed − 0.10 0.006
∆Eseed + 0.06 0.04
BCseed − 0.11 0.004
∆BCseed + 0.15 5 · 10−4

Table 1: Relation between the effect of VRs of the RA (as given by the normalized decrease in spreading after the
resection) and the properties of the model, baseline and post-resection networks. As model parameter we consider the
spreading-to-recovery ratio βκ/γ, which combines the three model parameters in one. The baseline state is characterized
by the size S, the out-connectivity E and the betweenness centrality BC of the RA and the seed. The resected network
(i.e. the network after the VR of the RA was performed) is characterized by the new out-connectivity E and BC of the
seed, and by their respective decreases due to the virtual resection, i.e. ∆Eseed = Eseed(baseline)−Eseed(resection) and
similarly ∆BCseed = Eseed(baseline)− BCseed(resection). Significant effects are indicated by bold font in the p-value.

the brain was modelled by means of a simple epidemic spreading model. The model was further individualized for247

each patient by fitting the main parameters, namely the spreading and recovery rates, and the network density, to the248

patient-specific seizure propagation pathways, as derived from SEEG data. We found that the model reproduced the249

main aspects of seizure propagation for all patients, indicating that these simple spreading rules are enough to encode250

the basic aspects of seizure propagation. Once fitted for each patient, the model can be used to generate alternative251

hypotheses about the seizure onset zone, or to test the effect of resection strategies, as we have illustrated in this252

study.253

Epidemic spreading models capture the basic mechanisms of processes that propagate on networked systems,254

and are supported by a well-grounded mathematical and computational framework [51, 56] that we can use to our255

advantage in the context of epilepsy surgery. For example, the fundamental role of hubs on surgical outcomes is256

expected from the perspective of epidemic spreading, as the epidemic threshold is known to vanish for networks with257

a scale-free degree distribution (and therefore high-degree hubs) [51]. On the contrary, a strong community structure258

can trap the epidemic in one of the communities, preventing large-scale spreading [57, 58], which relates to the clinical259

observation that seizure propagation can often be restricted to one or a few brain lobes [1], as is the case in focal260

epilepsy. The fact that epidemic spreading provides a good representation of seizure propagation suggests that other261

network characteristics that are known to play an important role in epidemic spreading processes, such as temporal262

changes in connectivity [59–62] due to mal-adaptive plasticity over long time scales (months to years) [63], degree263

correlations [64] or dimensionality [56, 65, 66], may also affect seizure propagation.264

In this study we decided to use MEG networks as the backbone of seizure propagation, in contrast with other265

studies [30, 33, 37, 44] based on DTI (Diffusion Tensor Imaging) data. In a previous study we showed that the AEC266

metric, whilst based on functional connectivity, retains information on the structural pathways [34] and can be used as267

a cost-effective proxy for structural connectivity: DTI is not typically part of the standard pre-surgical evaluation of268

the patients, has a much higher computational cost than AEC-MEG, and has low sensitivity to long range connections,269

in particular inter-hemispheric ones [67].270

3.1 Epidemic spreading predicts surgery outcome271

One of the main goals of computational studies of epilepsy surgery is to predict surgery outcome and optimize surgical272

planning. In our modeling framework, we found that the model, when considering the RA as the epidemic seed, yielded273

a better fit (as given by the correlation between the modelled and recorded seizures) for SF than for NSF patients,274

and the difference was significant when considering the population model. Moreover, considering the model fit as a275

classification parameter led to a good differentiation between the SF and NSF groups, with an AUC of 0.841 for the276

individual models and 0.886 for the population model, indicating that the goodness-of-fit could be used as a predictor277

for surgical outcome. This result also suggests an explanation for the different surgical outcome for the SF and NSF278

groups as, according to the model, the RA was a better approximation to the SOZ for SF patients, and consequently279

its removal was more likely to lead to seizure freedom, as was indeed the case. Thus, if a better hypothesis on the SOZ280

could be made for NSF patients using the computational model, then the resection strategy could also be improved,281

potentially leading to a better outcome.282
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Figure 8: Added variable plot (partial regression leverage plot) of the linear regression model resulted from the step-wise
regression analysis. Data-points indicate the adjusted response values against the adjusted predictor variable values, the
solid line indicates the adjusted linear fit, and the shaded areas the 95% confidence intervals. The bars over the variable
names indicate adjusted variables. The statistical details of the fit are: number of observations = 75, degrees of freedom
df = 71, root Mean Squared Error rmse = 0.397, r2 = 0.489, Adjusted r2 = 0.468, F-statistic vs. constant model = 22.7,
p = 2.1 · 1010.

It is important to notice, however, that other interpretations are possible. The model fit results are dependent283

on the SEEG sampling, which may have been inadequate for NSF patients, so that relevant aspects of the seizures284

were missed [44]. In this case, the models would not be able to improve the hypothesis on the SOZ, although a poor285

fitting result could still be used as an indication that more pre-surgical evaluations are needed, with e.g. alternative286

spatial sampling. Finally, it is also possible that the worse fit of the model may have been caused by more prevalent287

non-linear or multi-scale effects for NSF patients, that would make seizure dynamics deviate from a spreading process288

[68]. In this case the mismatch would not indicate an error in the SEEG sampling or the surgery planning, but point289

towards an intrinsic difference in seizure dynamics.290

In order to shed light on this question, we made use of the seizure model to generate alternative hypotheses on the291

SOZ by measuring for each individual ROI the likelihood of generating the observed seizures (Fig. 5). At a group level,292

RA ROIs were significantly more likely to generate the observed seizures than non-RA ROIs, as expected. However,293

for 8 out of 15 cases RA regions did not show higher seed-likelihood than non-RA regions, and the ROI with the294

maximum seed-likelihood did not belong to the RA for any case. This suggests that the most likely seeds according to295

the model were close to the RA, but did not belong to it. This result is in agreement with other modelling studies that296

found modelled SOZ that did not completely overlap with the resected areas, even for SF patients [28, 31, 37], and is297

likely associated with the incomplete sampling of the SEEG electrodes. We hypothesize that it may also be related298

to the finding of pathological hubs whose disconnection from the SOZ can be enough to lead to seizure freedom, even299

when the SOZ or the pathological hub remain unresected [18, 21, 25, 35].300

Remarkably, we also found that the difference in goodness-of-fit between the SF and NSF groups disappeared when301

considering the optimal single-seed fit. This suggests that one can find alternative hypotheses of the SOZ for NSF302

patients that lead to a good model fit. Then, a resection targeting these regions might lead to a better outcome, in303

agreement to our finding that the goodness-of-fit is a good predictor for surgical outcome. However, as this study304

comprised only 4 NSF patients, more data would be needed to validate this finding.305

Finally, we performed a virtual resection analysis to simulate the effect of the resective surgery in silico for each306

patient [31, 33, 34]. We found that virtual resections of the RA led to a significant decrease in seizure propagation.307

Here we considered the relative decrease in spreading and not seizure extinction to characterize the effect of a resection308

in the model, as spreading in the model is never null (since the seed is always infected) and the considered VRs seldom309

disconnected the seed completely. Therefore, the relative decrease is more informative than absolute post-surgery310

spreading, as it reduces the influence of specific modelling choices. We found that the effect of the resection was311

predominantly affected by i) the size of the resection, ii) the decrease of betweenness centrality of the seed as a312

consequence of the resection; and iii) the betweenness centrality of the seed after the resection. Remarkably, the313

centrality of the RA has been associated before with surgery outcomes, with the removal of network hubs being314

associated with seizure freedom [18, 21, 33]. Here we have found that, more than the centrality of the removed315

10

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.22279085doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.22.22279085
http://creativecommons.org/licenses/by-nc/4.0/


regions, it is the centrality of the SOZ in relation to the RA that will determine the effect of the resection. Given that316

the gold-standard for the actual SOZ in the clinical setting cannot be known, and this often needs to be approximated317

by the RA, a direct comparison with clinical results is difficult. Prospective studies that include alternative hypothesis318

for the SOZ, however, can be used to gain more insight in this regard. Finally, other model properties, such as the319

spreading-to-recovery ratio, also correlated significantly with the relative decrease in spreading, but the effect did not320

survive the step-wise linear regression analysis, and was mediated by the size of the resection and the centrality of the321

seed.322

In our study, we found that the relative effect of VRs was larger for the SF +than for the NSF group, and we found323

AUC values between 0.63 and 0.75 when using the normalized decrease in spreading to classify the patients according324

to surgical outcome. This again indicates, in agreement with our results based on the goodness-of-fit, that the RA is325

a better approximation of the SOZ for SF patients, which is information that can be gained with the model prior to326

the surgery for a given resection strategy. However, the small sample size in this study limits the predictive power of327

the results, and the difference in effect between the SF and NSF was not significant. Overall, a larger patient group,328

including more than one SEEG seizure pattern per patient, would help to improve the predictive power of the model.329

3.2 Modeling considerations and clinical application330

Epilepsy surgery models need to be individualized for each patient if they are to be of clinical use, in order to take into331

account the patient-specific brain network and seizure dynamics. This presents a transversal problem in the modeling332

of epilepsy surgery, as individualizing the models requires extensive data, which is not always available. The existing333

data on seizure spreading is typically based on SEEG recordings which, whilst presenting high temporal and spatial334

resolution, are limited by sparse spatial sampling, which is known to impact the characterization of the seizures and335

outcome prediction [69], and can lead to bias in the results [46]. Here we have considered the role of the whole brain336

network in seizure spreading by using a whole brain atlas and MEG data, to reduce the bias due to sparse sampling,337

but even then only the regions sampled by the SEEG electrodes could be taken into account to fit the model.338

In order to simplify the modelling framework, in this study we considered a simple spreading model as the basis339

for seizure propagation, but there were still specific limitations associated with the modeling scheme. In particular,340

the propagation of ictal activity captured by the SEEG electrodes is not a binary process, as it was assumed here. On341

the contrary, ictal activity presents in different qualitative and quantitative forms, and the reduction of the seizure342

propagation dynamics to a binary activation-inactivation sequence is an oversimplification. Moreover, in order to343

avoid introducing arbitrary time-scales in the model, the seizure patterns only considered the activation order of the344

ROIs, and not the activation times, which reduces the resolution of the pattern further (as it cannot distinguish fast345

from slow spreading).346

Despite the low dimensionality of the model, there was still noise in the fitting method. This noise is intrinsic to347

the limited clinical data and fitting method, and it is not due to the stochastic nature of the SIR dynamics, which348

was already taken into consideration: the SIR dynamics were run 104 times per iteration, and 10 iterations were349

performed, and averaged, for each set of parameters. Moreover, the total correlation metric defined by Eq. 2 also350

takes into account the stochastic nature of the dynamics by weighting every node by its probability of activation in the351

model. The parameter noise can lead to a noisy parameter landscape, with several local maxima. As a consequence,352

there is the risk of over-fitting the individual models, and only limited information can be extracted from the fitting353

parameters (i.e. from the values of κ, β and γ leading to the best individual fits).354

In light of these considerations, it is even more important to refine and simplify the modelling frameworks so355

as to minimize over-fitting problems and improve the generalizability of the models. A deeper understanding of356

the biophysical mechanisms leading to seizure generation and propagation will help reducing the number of model357

parameters that need to be fitted numerically. For instance, considering spreading models, one could systematically358

–over a large enough patient cohort– study whether the spreading dynamics of epilepsy patients is poised in the359

supercritical regime and it moves to the sub-critical regime after the surgery. This general information could then be360

integrated into the model to simplify the fitting algorithm.361

3.3 Population model362

The population model was defined here as the model (as defined by the set of control parameters) leading to the best363

average fit over the patient group. Despite its name, this model is still individualized for each patient: it considers364

the patient-specific network (including the link weights that define the local spreading probabilities) and seed regions.365

As it is shown in figure 4, the resulting fit diagram displays the familiar behavior of a phase transition, with an366

intermediate region of high correlation (good population fit), separating regions of low correlation (poor population367

fit). Remarkably, most individual fit points were located in this intermediate region, with the exception of three368

patients who presented very “bulky” activation patterns (by visual inspection, not shown), i.e. in which several ROIs369

got infected simultaneously. More studies with improved data resolution and larger patients cohorts should be able370

to establish whether there are actual differences in the dynamical repertoire of these two types of patients.371
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The average model fit achieved by the population model at its optimal point was much smaller (about 1/3 on372

average) than those obtained with the individual models. However, the difference between the SF and NSF groups373

not only still held in this model, but it became stronger and significant (C̄(SF ) − C̄(NSF) = 0.267, p = 0.02 and374

AUC = 0.886). This suggests that the loss of detail in the fitting does not affect the main aspects of seizure375

propagation, and signals towards the possible over-fitting of the individual models due to parameter noise. In this376

case, the population model, even though reducing the overall fit, provided a more reliable description of the system.377

A reliable population model would drastically increase the clinical applicability of this framework, as its application378

would not rely on patient-specific SEEG data. SEEG studies are highly invasive, and are avoided in the pre-surgical379

evaluation whenever possible. Thus, a computational model that could provide relevant information on surgery380

outcome without the need to be fitted to patient-specific invasive data would provide a valuable tool. Information from381

other imaging modalities could potentially also be included, such as ictal EEG recordings of epileptiform abnormalities382

found in MEG or MRI lesions. This information could be incorporated into the model for example as factors that383

affect the seed-likelihood of the involved ROIs.384

3.4 Limitations385

As we have discussed above, modeling of seizures presents inherent limitations associated with the choices of the386

dynamical model and fitting procedures [46, 48]. In our case, this translated into difficulties defining alternative387

seeds and characterizing virtual resections. Identifying seed regions dramatically increases the dimensionality of the388

fitting problem, even when considering linear approximations as we have done here. Estimating seed-probability maps389

for seeds of increasing sizes becomes a combinatorial problem that soon loses tractability. The use of optimization390

algorithms (such as simulated annealing, genetic algorithms or deep learning, for instance [33, 34]) would reduce391

the computational burden but still be affected by an exponentially larger number of local maxima as the seed size392

increases, due to the parameter noise. In our analysis we have opted for a linearization approach, characterizing the393

effect of single seeds and following a recursive method to derive seeds of increasing sizes. Deriving more detailed seeds394

would require larger amounts data, for instance by considering several seizures per patient.395

The use of SEEG data to fit the model posses another limitation for its clinical use, given that SEEG recordings396

are highly invasive and not always part of the presurgical evaluation. A reliable population model (that can be397

individualized for each patient by considering their individual brain connectivity) would allow us to also use the model398

for patients without SEEG recordings, as we have discussed above. Moreover, as we have shown in this study, such a399

model can also help reducing parameter noise, leading to more robust results than the individual models.400

Another main limitation of the study is the small size of the patient group, which complicates the validation of401

the results. For instance, the VR analysis points towards a larger decrease in seizure propagation after the virtual402

resections for the SF group, but the difference is not significant. A larger cohort would allow us to improve the403

classification analysis to clarify this finding. Moreover, increasing the patient group size would also improve the404

formulation of the population model.405

Modeling of virtual resections suffers from some inherent limitations we well. First of all, virtual resections are406

typically modelled by removing or disconnecting nodes or links from the network [1, 30, 70]. However, this does not407

account for the generalized effect that a local resection can have on the network [71] nor does it consider plasticity408

mechanisms [8, 61, 72–74] which are known to occur following brain lesions and resections [75, 76]. An even more409

fundamental limitation is the difficulty of the validation of the results, as different resection strategies cannot be tested410

clinically. Validation must always be done indirectly, by comparing the model predictions (regarding for instance the411

location of the SOZ or surgery outcome) with the clinical results [28, 29, 31, 33, 34]. In this work, we have made use412

of multi-modal patient-specific data to optimise and validate the model and, as final validation mechanism, we have413

considered surgery outcome. This can only be the first step, however, as the ultimate goal is to use the computational414

models to aid epilepsy surgery planning. Prospective or pseudo-prospective studies in which the models are used415

before or without knowledge of the surgery to predict outcome at an individual level (i.e. not only at a group level)416

will be necessary in the future to test the applicability of the model on a clinical setting.417

4 Conclusion and outlook418

Epidemic spreading models fitted with patient-specific data reproduce the individual seizure propagation patterns.419

This simple framework is sufficient to encode the fundamental aspects of seizure propagation on brain networks. Our420

results highlight that such individualized computational models may aid epilepsy surgery planning by identifying421

alternative seed regions and/or resection strategies, with the ultimate goal of improving surgery outcome rates.422
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Case Sex Resected Area S Engel Score #E #ECP NSR

P1 F R Frontal 4 1A 13 128 47
P2 F R Temporal, Occipital 13 1A 14 142 50
P3 F L Temporal, Occipital 5 1A 15 144 53
P4 M R Temporal 13 1A 13 126 49
P5 F R Temporal 10 1A 11 109 42
P6 F R Lat. Temporal 5 2A 9 99 40
P7 F L Temporal 5 1A 11 110 44
P8 F L Parietal 4 1A 10 104 37
P9 M R Post. Lat. Temporal,

Post. Insula, Post. Parietal
3 1A 12 102 38

P10 F R Temporal 13 2D 11 114 45
P11 F L Frontal 4 2C 13 117 47
P12 M L Frontal 6 1A 12 124 40
P13 M L Temporal 5 1A 12 106 30
P14 F L Temporal 6 3A 15 194 60
P15 M R Temporal 12 1A 10 107 32

Table 2: Patient data. Ep. = Epilepsy, y = years, S= number of resected ROIs, #E = number of intracranial electrodes,
#ECP = total number of electrode contact points, NSR = number of BNA ROIs sampled by the SEEG electrodes. F =
female, M = male, R = right, L = left.

5 Methods423

5.1 Patient group424

We retrospectively analyzed 15 patients (9 females) with refractory epilepsy. All patients had undergone resective425

surgery for epilepsy at the Amsterdam University Medical Center, location VUmc, between 2016 and 2019. All patients426

had received a magnetoencephalography (MEG) recording, had undergone an SEEG (stereo-electroencephalography)427

study, including post-implantation CT-scans, and underwent pre- and post-surgical magnetic resonance imaging428

(MRI). All patients gave written informed consent and the study was performed in accordance with the Declara-429

tion of Helsinki and approved by the VUmc Medical Ethics Committee.430

The patient group was heterogeneous with temporal and extratemporal resection locations and different etiology431

(see Table 2 for details). Surgical outcome was classified according to the Engel classification at least one year after432

the operation [77]. Patients with Engel class 1A were labelled as seizure free (SF), and patients with any other class433

were labelled as non seizure free (NSF). 4 patients were deemed NSF.434

5.2 Individualized Brain Networks435

The individualized computer model was based on the brain network of each patient, which was reconstructed in the436

Brainnetome Atlas (BNA) from MEG scans, as follows:437

• Pre-operative MRI scans were used for co-registration with the MEG data. MRI T1 scans were acquired438

on a 3T whole-body MR scanner (Discovery MR750, GE Healthcare, Milwaukee, Wisconsin, USA) using an439

eight-channel phased-array head coil. Anatomical 3D T1-weighted images were obtained with a fast spoiled440

gradient-recalled echo sequence. During reconstruction, images were interpolated to 1 mm isotropic resolution.441

• MEG recordings were obtained during routine clinical practice using a whole-head MEG system (Elekta442

Neuromag Oy, Helsinki, Finalnd) with 306 channels consisting on 102 magnetometers and 204 gradiometers.443

The patients were in supine position inside a magnetically shielded room (Vacummshmelze GmbH, Hanau,444

Germany). Typically, three eyes-closed resting-state recordings of 10 to 15 minutes each were acquired and used445

in the presurgical evaluation for the identification and localization of interictal epileptiform activity. The first of446

these recordings of sufficient quality was used here to generate the brain network. The data were sampled at 1250447

Hz, and filtered with an anti-aliasing filter at 410 Hz and a high-pass filter of 0.1 Hz. The head’s position relative448

to the MEG sensors was determined using the signals from 4 or 5 head-localization coils that were recorded449

continuously. The positions of the head-localization coils and the outline of the scalp (roughly 500 points) were450

measured with a 3D digitizer (Fastrak, Polhemus, Colchester, VT, USA).451

• MEG pre-processing. The temporal extension of Signal Space Separation (tSSS) [78, 79] was used to remove452

artifacts using Maxfilter software (Elekta Neuromag, Oy; version 2.1). For a detailed description and parameter453

settings see Hillebrand et al. [80]. The MEG data were filtered in the broadband (0.5− 48.0 Hz).454
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• MEG & MRI co-registration. The points on the scalp surface were used for co-registration of the MEG455

scans with the anatomical MRI of the patient through surface-matching software. A single sphere was fitted to456

the outline of the scalp and used as a volume conductor model for the beamforming approach.457

• Source reconstruction: beamforming. Neuronal activity was reconstructed using an atlas-based beamform-458

ing approach, modified from Hillebrand et al. [81], to reconstruct the time-series of neuronal activation of the ROI459

centroids [82]. We considered the 246 ROIs of the BNA atlas [83], whose centroids were inversely transformed460

to the co-registered MRI of the patient. Then, a scalar beamformer (Elekta Neuromag Oy; beamformer; version461

2.2.10) was applied to reconstruct each centroid’s time-series, as detailed elsewhere [82].462

• Processing. The time-series of each centroid were visually inspected for epileptiform activity and artifacts. On463

average, 58± 11 interictal and artefact-free epochs of 16384 samples were selected for each patient. The epochs464

were further analyzed in Brainwave (version 0.9.151.5 [84]) and were down-sampled to 312 Hz, and filtered in465

the broadband (0.5 - 48 Hz).466

• Functional networks were generated considering each brain region as a node. The elements wij of the con-467

nectivity matrix, indicating the strength of the connection between ROIs i and j, were estimated by the AEC468

(Amplitude Envelop Correlation) [85–88]. The uncorrected AEC (i.e. without correcting for volume conduc-469

tion) connectivity metric was selected as it maintains information on the structural connectivity pattern, whilst470

including information on long-range functional connections. AEC values were re-scaled between 0 (perfect471

anti-correlation) and 1 (perfect correlation), with 0.5 indicating no coupling [89]. Functional networks were472

thresholded at different levels θ indicating the percentage of remaining links in the network, and the resulting473

average connectivity κ of the network, indicating the average number of links that each node had, was deter-474

mined. Notice that the networks were thresholded but not binearized, so that wij takes values between 0 and 1.475

An exemplary adjacency matrix is shown in figure 1 under “Brain Network”.476

5.3 Resection Area477

The resection area (RA) was determined for each patient from the three-month post-operative MRI. This was co-478

registered to the pre-operative MRI (used for the MEG co-registration) using FSL FLIRT (version 4.1.6) 12 parameter479

affine transformation. The resection area was then visually identified and assigned to the corresponding BNA ROIs,480

namely those for which the centroid had been removed during surgery. An exemplary RA is shown in figure 1 under481

“RA”.482

5.4 Individualized Propagation Pattern483

All patients underwent stereo-electroencephalography (SEEG) electrode implantation. The number and location of the484

intracerebral electrodes (Ad-Tech, Medical Instrument Corporation, USA, 10-15 contacts, 1.12 mm electrode diameter,485

5 mm intercontact spacing; and DIXIE, 10-19 contacts, 0.8 mm electrode diameter, 2 mm contact length, 1.5 insulator486

length, 16−80.5 insulator spacer length) were planned individually for each patient by the clinical team, based on the487

location of the hypothesized SOZ and seizure propagation pattern. The number of electrodes per patient (see table488

2 for details) varied between 9 and 15 (average = 12.1 ± 1.8) and the total number of contacts between 194 and 99489

(average = 121± 24).490

The locations of the SEEG contact points (CPs) were obtained for each patient from the post-implantation CT491

scan (containing the SEEG electrodes) that was co-registered to the preoperative MRI scan using FSL FLIRT (version492

4.1.6) 12 parameter afine transformation. Each electrode CP was assigned the location of the nearest ROI centroid.493

Because BNA ROIs are in general larger than the separation between contact points, different CPs can have the same494

ROI assigned.495

The activation time of each sampled ROI was determined according to the SEEG recording as follows. First, the496

onset time of ictal activity was identified for each SEEG channel by a clinician expert. Then, the CPs were grouped497

into activation steps and a seizure pattern was built from one typical seizure for each patient. This activation pattern498

was then translated into the BNA space, so that the each sampled ROI i was assigned an activation step. This499

constituted the SEEG seizure pattern.500

5.5 Seizure Propagation Model501

5.5.1 SIR Dynamics502

Seizure propagation was modelled using the Susceptible-Infected-Recovered (SIR) model [51]. Simulation of the503

epidemic spreading process on the network took place as follows. Initially, all nodes were set in the susceptible state504

S, except for a set of seed nodes in the infected state I. At each subsequent step, each infected node could propagate505

the infection to any of its neighbours with probability βwij , where β characterizes the global spreading rate and wij506

the link weight as defined above. Each infected node had a probability γ of recovering to the R state. Depending on507
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the network structure, the epidemics can show different spatio-temporal spreading profiles described by the probability508

pi(t) that each ROI i becomes infected at step t.509

SIR dynamics was simulated in custom-made Matlab algorithms using Monte-Carlo methods, with NR = 104510

iterations of the algorithm for each configuration to assure convergence.511

5.5.2 Individualized Propagation Model512

The seizure propagation model was fitted for each patient by comparing the spatio-temporal propagation pattern in513

the model to the patient’s clinical seizure pattern (constructed as described above), when the RA was used as the514

seed for epidemic spreading. The mean activation time for each ROI was calculated as ti =
∑T

t=0 pi(t), where T is the515

maximum integration time. ti described the activation sequence of the ROIs during a modelled seizure. By sorting the516

ROIs according to their mean activation time, we defined the SIR spreading pattern, which indicated the activation517

order of the involved ROIs. Given that not all BNA ROIs were sampled by the SEEG electrodes, ti was sub-sampled518

to the sampled ROIs. This constituted the SIR seizure pattern, as shown in figure 1 (under “SIR Seizure Pattern”),519

which could be compared with the SEEG seizure pattern.520

The goodness of fit of the model was estimated by taking into account two factors, as illustrated in 2. The first one521

is the correlation between activation orders of ROIs that became infected both in the SEEG and SIR patterns (see522

2A). In order to take into account the noisy nature of the SIR dynamics, such that not the same ROIs get infected523

in each realization, we considered the weighted Pearson’s correlation coefficient, Cw. As correlation weights we used524

the fraction of realizations that each ROI i got infected during a modelled seizure, PIR(i). Thus, ROIs that were525

consistently involved in the spreading weighted more in the correlation than ROIs that were only rarely involved.526

The second factor Poverlap (see 2B) computed the overlap between active and inactive ROIs in the two patterns,527

to also take into account the actual extension of the seizures, i.e.528

Poverlap = N−1
SEEG

[∑
i∈S

PIR(i) +
∑
i∈H

(1− PIR(i))

]
= Pact + Pinact, (1)

where NSEEG is the number of ROIs sampled by the SEEG electrodes (on average = 43.6 ± 7.9), and S and H are529

respectively the sets of active (in the seizure state) and inactive (in the healthy state) ROIs in the SEEG pattern.530

Thus, the total correlation between the two patterns was defined as531

C = Cw · Poverlap, (2)

This metric equals 1 in case of exactly equal activation patterns, 0 in the case of null-overlap or correlation, and −1532

in the case of complete anti-correlation of activation times (but equal seizure areas). We note however that C decays533

from 1 faster than a simple correlation metric when there are discrepancies between the patterns, since it takes into534

consideration not only the activation times, but also the activation areas.535

In order to fit the model to the SEEG data, the RA was set as the seed of the epidemics, and the model pa-536

rameters (κ, β, γ) were fitted to the data by maximizing C, independently for each patient. In order to do so,537

the SIR dynamics was simulated for a range of values of the free parameters (β, γ ∈
{
10−4, 10−3, 10−2, 10−1

}
,538

κ/N = {0.025, 0.05, 0.10, 0.20, 0.30}), leading to the 3-dimensional fit-map C (κ, β, γ). Two exemplary fit-maps539

are shown in Supp. Fig. 1. In order to minimize noise effects and be able to estimate the error in the measure, C540

values were averaged over 10 iterations of the model (each comprising 104 repetitions for the SIR dynamics), and the541

error in the measure was defined as the standard deviation across these 10 iterations.542

5.5.3 Population model543

We defined the population model as the model that provided the best fit overall, by averaging the fit results of all544

patients. Given that spreading in the model is strongly influenced by the connectivity of the seed, we defined a re-scaled545

spreading rate, βRS = βE(seed), where E(seed) =
∑

i∈seed

∑
j∈nseed wij is the total link weight from the seed to the546

rest of the network, and nseed is the set of nodes that do not belong to the seed. For a given β, E(seed) characterizes547

the expected number of infected regions in the first steps of the seizure spreading. Thus, βRS characterizes the actual548

spreading probability of the seizure in the model, combining in a single parameter κ and β, and also taking into549

account the different seed sizes. Therefore, in order to build the population model, we expressed the individual fit550

results in terms of C(βRS , γ), and averaged the individual fit maps to obtain the population fit C̄(βRS , γ).551

5.5.4 Alternative seed regions552

Alternative seed regions were found in the model by considering each ROI R as the single seed of epidemic spreading,553

once the model was fitted to the patient-specific seizure propagation patterns. Then, the seed-likelihood of the ROI554

was defined as the total correlation between the SEEG and SIR patterns, CR. Only ROIs leading to spreading were555

included in the analyses. From this analysis we estimated the best fit given by a single ROI, referred to as “Best”556

and the average value of the fit given by the RA regions, when considered individually as seeds, referred to as ⟨RA⟩.557
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Finally, for comparison purposes we also estimated the average model fit given by random seeds (N = 20) of the same558

size of the RA, referred to as RND.559

5.6 Simulation of Resections560

We conducted virtual resections (VRs) of the ROIs that were part of the RA to simulate the effect of the surgery in the561

model. In order to do this, the nodes belonging to the RA were disconnected from the network by setting to 0 all their562

connections. The effect of each resection was characterized by the normalized decrease in spreading in the resected563

network (VR) with respect to the original (or baseline, BS) spreading: δVR = (IRBS − IRVR)/IRBS, where IR is the564

fraction of nodes that became infected at any point during the modelled seizure, that is, IR = I(t → ∞)+R(t → ∞).565

The model parameters were chosen as the optimal fitting parameters for each patient, whereas the seed regions566

were defined following a recursive optimization method. Starting from the best single seed, all possible combinations567

of this node with the remaining 245 nodes were tested as spreading seeds, and the one leading to the best model568

fit (i.e. maximum total correlation) was chosen. This process was subsequently iterated until seeds of size 5 were569

obtained. To account for the large differences in seed sizes and connectivity, we re-scaled the spreading rate by the570

fraction between the out-connectivity (number of links to the rest of the network) of the RA and the considered seed.571

To understand what network and model characteristics relate to the effect of the resection on spreading we estimated572

the Pearson correlation coefficient between the normalized decrease in spreading due to the resection, δVR, and different573

network and model metrics. In particular, as model metric we considered the spreading-to-recovery ratio, βκ/γ, which574

takes into account that spreading is enhanced by β and κ and slowed by γ. As network metrics we considered the575

size S (number of nodes), out-connectivity E (number of links to the rest of the network) and average betweennees576

centrality BC of the RA and the seed. For the seed we considered three scenarios: the baseline level (BS, prior to the577

resection), the post-resection level (VR) and the decrease due to the resection, ∆.578

In order to identify the most relevant model variables to predict the effect of a virtual resection in the model, we579

performed a step-wise linear regression model analysis. We used the Statistical and Machine Learning Toolbox with580

standard settings (stepwiselm function with default settings). Only linear effects, and no interaction effects, were581

allowed in the linear model. As dependent variable we considered the normalized effect of the resection in logarithmic582

scale, log (δIR). As independent variables we considered the same network and model metrics as in the pairwise583

correlation analyses.584

5.7 Statistics585

The weighted correlation coefficient was used to determine the correlation between the SEEG and SIR seizure prop-586

agation patterns. For comparisons between resected and non-resected areas, and between different seed definitions,587

we used paired Student’s t-tests, whereas for comparisons between SF and NSF patients, we used unpaired Student’s588

t-tests. Significance thresholds for statistical comparisons were set at p < 0.05.589

We performed a receiver-operating characteristic (ROC) curve analysis to study the patient classification based on590

the goodness of fit of the models and the normalized effect of virtual resections. A positive result was defined as good591

(SF) outcome.592

In order to account for the noise in the SIR model, the dynamics were run 104 to attain each SIR seizure pattern,593

and this was repeated 10 times to obtain averaged values. The errors were defined as the standard deviation between594

the 10 realizations of the model. The same procedure was used in the virtual resection analysis.595

5.8 Data availability596

The data used for this manuscript are not publicly available because the patients did not consent for the sharing of597

their clinically obtained data. Requests to access to the data-sets should be directed to the corresponding author. All598

user-developed codes are publicly available in GitHub.599

6 Acknowledgements600

Ana P. Millán and Ida A. Nissen were supported by ZonMw and the Dutch Epilepsy Foundation, project number601

95105006. The funding sources had no role in study design, data collection and analysis, interpretation of results,602

decision to publish, or preparation of the manuscript.603

7 Competing Interests604

The authors declare that they have no competing interests.605

16

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.22279085doi: medRxiv preprint 

https://github.com/anapmillan/computer_model_for_epilepsy
https://doi.org/10.1101/2022.08.22.22279085
http://creativecommons.org/licenses/by-nc/4.0/


8 Author Contributions606

A.P.M., E.C.W.S., C.J.S., I.A.N, A.H. conceptualized the study, E.C.W.S., C.J.S., I.A.N, S.I., J.C.B., P.V.M., A.H.607

participated in the funding acquisition, A.P.M, E.C.W.S., C.J.S, A.H. devised the Methodology, A.P.M. performed608

the formal analysis, A.P.M, I.A.N, A.H. devised the software and visualization E.C.W.S., C.J.S., P.V.M., A.H. partic-609

ipated in the supervision, E.C.W.S., S.I., J.C.B. provided resources, A.P.M. wrote the original draft and all authors610

participated in writing, review and editing.611

References612

[1] P. N. Banerjee, D. Filippi, and W. A. Hauser. “The descriptive epidemiology of epilepsy—a review”.613

Epilepsy Research 85.1 (2009), pp. 31–45.614

[2] P. Kwan et al. “Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of615

the ILAE Commission on Therapeutic Strategies”. Epilepsia 51.6 (2010), pp. 1069–1077.616
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