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Abstract 16 

Studying the plasma proteome as the intermediate layer between the genome and the phenome 17 

has the potential to identify disease causing genes and proteins and to improve our 18 

understanding of the underlying mechanisms. Here, we conducted a cis-focused proteogenomic 19 

analysis of 2,923 plasma proteins measured in 1,180 individuals using novel antibody-based 20 

assays (Olink® Explore 1536 and Explore Expansion) to identify disease causing genes and 21 

proteins across the human phenome. We describe 1,553 distinct credible sets of protein 22 

quantitative trait loci (pQTL), of which 256 contained cis-pQTLs not previously reported. We 23 

identify 224 cis-pQTLs shared with 578 unique health outcomes using statistical colocalization, 24 

including, gastrin releasing peptide (GRP) as a potential therapeutic target for type 2 diabetes. 25 

We observed convergence of phenotypic consequences of cis-pQTLs and rare loss-of-function 26 

gene burden for twelve protein coding genes (e.g., TIMD4 and low-density lipoprotein 27 

metabolism), highlighting the complementary nature of both approaches for drug target 28 

prioritization. Proteogenomic evidence also improved causal gene assignment at 40% (n=192) of 29 

overlapping GWAS loci, including DKKL1 as the candidate causal gene for multiple sclerosis.   30 

Our findings demonstrate the ability of broad capture, high-throughput proteomic technologies 31 

to robustly identify new gene-protein-disease links, provide mechanistic insight, and add value 32 

to existing GWASs by enabling and refining causal gene assignment.  33 

  34 
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Introduction 35 

Rare and common sequence variation across the genome contributes to the risk of most human 36 

diseases investigated to date (1). However, the translation of the many established and emerging 37 

genome-to-phenome links is limited by the uncertainty around the underlying causal genes. This 38 

presents a major limitation for experimental follow-up, mechanistic understanding, and use of 39 

the emerging genomic evidence in drug development. Different approaches, such as integration 40 

of tissue-specific gene expression data (2), experimentally derived functional genomic data such 41 

as ChIP-seq or ATAC-seq (3), or functional characterization of candidate variants using CRISPR 42 

screens in cellular models (4) have been used to address this gap and to identify likely causal 43 

genes at risk loci. However, complex regulatory processes take place at each stage of 44 

transcription and translation, which often leads to low correlation between transcripts and 45 

proteins, and cellular models can only approximate complex human biology. Compared to these 46 

methods, the proteogenomic approach has the advantage of focusing on the biologically active 47 

entity - the protein.  48 

The development of broad-capture proteomic assays, targeting thousands of proteins in parallel, 49 

now enables proteogenomic approaches which can efficiently identify causal genes by 50 

systematically testing for shared genetic regulation of protein levels or function and disease 51 

susceptibility. This has catalyzed substantial advances in the identification of a) causal genes and 52 

proteins underlying established disease ‘loci’, and b) molecular ‘hubs’ that connect the genome 53 

not to one but many diseases through the encoded protein (5-18). Previous large-scale 54 

proteogenomic studies covering thousands of proteins have almost exclusively used aptamer-55 

based assays (10, 11, 15, 16). Correlations of protein measures from aptamer versus antibody-56 

based technologies have been shown to vary widely, and proteogenomic results are concordant 57 

for around only 65% based on around 900 overlapping proteins targets (16). To date, antibody-58 

based proteomic assays have only been available for selected protein panels at scale (9, 14, 18), 59 

but this is changing with the availability of the Olink® Explore 1536 and Olink® Explore Expansion 60 

assays measuring ~1,400 proteins each.  61 
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The UK Biobank Pharma Proteomics Project (UKB-PPP) project which measured ~1,400 proteins 62 

using Olink® Explore 1536 assay in over 50,000 participants successfully demonstrated the power 63 

of scaling up by cataloguing over 10,000 mainly novel pQTLs (17). However, this study provided 64 

few insights about the translational potential of pQTLs to systematically inform candidate gene 65 

annotation at known risk loci and more importantly, to reveal novel biological roles of proteins 66 

for human health at scale. UKB-PPP and others did demonstrate that genuine and biologically 67 

relevant protein quantitative trait loci (pQTL) can be discovered in as few as hundreds of 68 

individuals (14, 17, 19), suggesting that broader proteomic coverage in even small-scale 69 

proteogenomic studies can make substantial advances to the understanding of diseases if 70 

integrated with large-scale phenomic data. 71 

Here we generate antibody-based proteomic data using the Olink® Explore 1536 and Explore 72 

Expansion assays to capture 2,923 proteins in 1,180 individuals. We perform genetic fine-73 

mapping at protein coding genes (±500kb) and enhance the understanding of disease 74 

mechanisms by systematically integrating cis-pQTLs with thousands of diseases and health 75 

measures to (a) refine the candidate causal gene assignment at existing disease susceptibility loci 76 

at scale and (b) identify novel disease mechanisms in phenome-wide colocalization analyses.  77 

  78 
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Results 79 

Identification and fine-mapping of cis-proteogenomic signals for 2,923 protein targets 80 

We adopted a Bayesian fine-mapping strategy (20) to identify proximal acting genetic variants 81 

(cis-pQTLs, ±500kb around the protein coding gene) that were associated with plasma abundance 82 

of 2,923 proteins measured in 1,180 participants of the EPIC-Norfolk cohort (21) (Supplementary 83 

Table 1). We identified a total of 1,553 independent credible sets for 914 unique protein targets 84 

for which sentinel variants reached genome-wide significance (p<5x10-8) when modelled jointly 85 

at each protein coding locus (Fig. 1A, Supplementary Table 2). The number of independent 86 

credible sets for each protein target ranged between one and eight (mean=1.64, IQR=1-2), 87 

illustrating wide-spread allelic heterogeneity at protein coding loci. We observed a high 88 

replication rate (89.9%, 910 out of 1,013) for credible sets of 590 protein targets overlapping with 89 

the UKBB-PPP effort. Conversely, we identified 4.5% of the 20,540 reported signals in as few as 90 

1,200 participants that were reported based on more than 35,000 participants of the UKB-PPP. 91 

A total of 256 (16.5%) credible sets contained cis-pQTLs not previously reported, including 131 92 

proteins that have not been measured by previous platforms (Fig. 1B) (5-18). Notably 125 signals 93 

were for 101 previously targeted proteins, the majority of which (n=92 proteins) have been 94 

targeted using non-antibody-based technologies in samples sizes up to 30 times larger than ours  95 

(10, 11, 15, 16) (Fig. 1B).    96 

Effect size and minor allele frequency distributions of unreported cis-pQTLs were comparable to 97 

the 1,297 (83.5%) successfully replicated cis-pQTLs (5-18) (Supplementary Table 2), illustrating 98 

that complementary proteomic technologies can still identify genetic variants that would have 99 

been anticipated to be seen in previous studies (Fig. 1A, Fig. 1D).  100 

We observed a strong inverse relationship between the absolute effect sizes of cis-pQTLs and the 101 

log10-transformed frequencies of their minor alleles (r=-0.78; p<1x10-300), likely due to the more 102 

severe predicted consequences of rarer alleles, such as stop-gain mutations (Fig. 1B-C). We also 103 

report 482 cis-pQTLs with a minor allele frequency (MAF) above 5% with large absolute effect 104 

sizes (range 0.5-1.72 s.d. per allele), suggesting strong genetic control of the associated proteins. 105 

Of these, less than half (35.9%) were protein altering variants themselves or were in strong 106 
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linkage disequilibrium (LD; r2>0.6) with one, potentially affecting the binding affinity of 107 

antibodies. Proteins with at least one significant cis-pQTL were enriched for characteristics of 108 

secreted proteins, like the presence of disulfide-bonds (odds ratio: 4.47; p-value=3.0x10-74) or 109 

glycosylation sites (odds ratio: 2.22; p-value=1.1x10-13), but depleted of sites for posttranslational 110 

modifications that are important for intracellular signaling, like phosphorylation (odds ratio: 0.42; 111 

p-value=5.5x10-14) or ubiquitination (odds ratio: 0.30; p-value=4.2x10-11).  112 

Finally, for more than half of the protein targets (n=532) with at least one pQTL, we observed 113 

strong evidence of colocalization (PP>80%) between a cis-pQTL and the corresponding gene 114 

expression QTL (eQTL) signal in at least one out of 49 tissues of the GTEx resource 115 

(Supplementary Table 3). These results suggest altered expression of protein coding genes in one 116 

or multiple tissues as the major source for cis associations observed with plasma protein levels.   117 

 118 

  119 
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  120 

 121 

 122 

Figure 1: Genetic regulation of 2,923 proteins measured by the Olink Explore 1536 and Olink Explore 123 
Expansion platforms in 1,180 individuals. Previously unreported and reported pQTLs are represented 124 
with a filled and hollow circle, respectively. Only the variants which are genome-wide significant (p-125 
value<5x10-8) in the joint model (see Methods) are presented. A. Miami plot representing the 126 
independent lead cis-pQTLs identified through Bayesian fine-mapping for 914 unique proteins. Shown 127 
are p-values from a linear regression model modelling all identified credible set variants for a given protein 128 
target jointly. Top: Lead cis-pQTL signals unreported to date. Bottom: Lead cis-pQTL signals which were in 129 
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linkage disequilibrium (LD; r2>0.5) with a previously reported pQTL. B. Minor allele frequency vs effect 130 
size of unreported pQTL signals, coloured by whether the protein has previously been targeted. 131 
Unreported pQTL signals for a previously targeted protein are coloured grey and those for a previously 132 
untargeted protein are coloured orange. C. Minor allele frequency vs effect size of unreported pQTL 133 
signals, coloured by most severe variant consequence prediction. The colour coding represents the most 134 
severe Variant Effect Predictor (22) consequence of the lead cis-pQTL, or variants in LD (r2>0.6)  within the 135 
protein encoding gene. The most severe consequence is coloured red (Ensembl consequence rank = 1) 136 
and the least severe consequence is coloured blue (Ensembl consequence rank = 37). D. Minor allele 137 
frequency vs effect size of reported pQTL signals, coloured by most severe variant prediction. The colour 138 
coding represents the most severe Variant Effect Predictor (22) consequence of the lead cis-pQTL, or 139 
variants in LD (r2>0.6) with the lead cis-pQTL within the protein encoding gene. The most severe 140 
consequence is coloured red (Ensembl consequence rank = 1) and the least severe consequence is 141 
coloured blue (Ensembl consequence rank = 37). 142 

 143 

From genome to phenome via the proteome 144 

The genome is linked to the phenome via the proteome and the translational potential of pQTLs 145 

is due to their ability to link insights about the genetic regulation of protein levels and function 146 

to diseases (15). We identified 1,110 robust protein – phenotype pairs (Fig. 2; posterior 147 

probability [PP] > 80% of a shared genetic signal) comprising 224 protein targets for 575 unique 148 

traits by systematically testing for a shared genetic architecture at protein coding loci (±500kb) 149 

across the phenome (see Methods; Supplementary Table 4). This included well-described 150 

examples, such as UMOD and kidney disease or established drug targets like PCSK9 and LDL-151 

cholesterol, but importantly 93 protein targets connected with at least one phenotype that have 152 

been missed by previous aptamer-based efforts. 153 
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 154 

 155 

Figure 2: Protein – disease network. Results from phenome-wide colocalization at protein coding 156 

loci (±500kb) are shown. For simplicity, only proteins with at least one binary outcome (i.e., 157 

mainly diseases) association are included. Proteins are presented with a square, binary outcomes 158 

are presented with large circles, and continuous outcomes are presented with small circles. The 159 

colour for the circles present the trait category. Edges between proteins and phenotypes 160 

represent strong evidence for a shared genetic signal (PP>80% and LD between regional sentinel 161 

variants >0.8). Effect directions are indicated by the line type (solid = higher protein abundance, 162 

increased risk, dashed = higher protein abundance, reduced risk) and derived based on the lead 163 

cis-pQTL at the corresponding locus. The full list of colocalization results can be found in 164 

Supplementary Table 4. Abbreviations: GIT, gastrointestinal tract. 165 
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 166 

One of the examples is gastrin releasing peptide (GRP, encoded by GRP), for which we observed 167 

strong evidence of colocalization (posterior probability [PP] =82.5%) between plasma levels and 168 

type 2 diabetes (T2D) risk at an established GWAS locus (18q21) for which different genes had 169 

been prioritized, including SEC11C, GRP, and MC4R (23-25). The GRP-increasing G-allele of the 170 

lead cis-pQTL (rs1517035; MAF=0.18) was associated with a reduced risk for T2D (odds 171 

ratio=0.96, p-value=7.8x10-10). GRP is a neuropeptide named for its ability to stimulate secretion 172 

of the gastric acid secretagogue, gastrin, in the stomach (26, 27), but it is likely involved in other 173 

metabolic pathways. We obtained strong evidence that GRP likely mediates T2D risk via an effect 174 

on overall obesity, based on the convergence of evidence from mice studies, human trials, and 175 

human genetic data. We established a shared genetic signal between plasma GRP, body mass 176 

index and fat, and T2D risk using multi-trait colocalization with coherent effect directions (Fig. 3). 177 

GRP induces satiety in mice via its cognate GRP receptor (Grpr) (28, 29). Further, mice lacking 178 

Grpr show impaired glucose tolerance after gastric glucose administration (30) and gain excess 179 

body weight under ad libidum conditions (29). These observations have been corroborated by 180 

human trials, in which treatment with human recombinant GRP (hrGRP) led to weight loss 181 

through reduced food intake (31). In summary, our results motivate investigations into hrGRP for 182 

appetite control and body weight lowering to possibly assist in T2D management and remission, 183 

an approach similar to recently implemented treatment strategies targeting incretins, like GLP-184 

1, and associated receptors, with preliminary evidence of an additive effect in rats (32). 185 

 186 

 187 
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 188 

Figure 3: Stacked regional association plots for the multi-trait colocalization. A. Stacked regional 189 

association plots for the multi-trait colocalization of the GRP cis-pQTL with gynoid fat, android fat, total 190 

body fat, body mass index and type 2 diabetes. The top candidate SNP highlighted by multi-trait 191 

colocalization (rs7243357) and lead cis-pQTL for GRP (rs1517035) are in strong LD (r2=0.8). Gynoid fat, 192 

android fat and total body fat phenotypes are based on UK Biobank and were analysed in-house using 193 

BOLT-LMM (33). B. Stacked regional association plot the multi-trait colocalization of the FGFR4 cis-pQTL 194 

with type 2 diabetes in East Asian populations. Red colouring represents a positive effect direction in 195 

reference to the protein increasing allele for GRP whereas blue represent an inverse association. The hue 196 

of the colour represents the strength of r2 representing the LD structure, as indicated on the legend. 197 

European Type 2 diabetes summary statistics were obtained from dbGAP Million Veteran Program (MVP) 198 

European subset (ncases= 148,726, ncontrols= 965,732) (34). East Asian Type 2 diabetes summary statistics 199 

were obtained from Mahajan et al (2022) (ncases= 56,268 , ncontrols= 227,155) (25). The body mass index 200 

summary statistics were obtained from Pulit et al. (2019) (n=806,834) (35).  201 

 202 

 203 
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Several T2D loci have been reported to be specific to certain ancestries (23-25). In the absence 204 

of strong differences in allele frequency, such ancestry specific effects could be caused by a 205 

variety of different factors, including environmental factors such as dietary intake. We obtained 206 

robust evidence that FGFR4 is the candidate causal gene at the East Asian-specific FGFR4-NSD1 207 

locus supported by a high posterior probability (PP=97%) for a shared genetic signal with plasma 208 

levels of the gene product fibroblast growth factor receptor 4 (FGFR4) and trans-ancestral 209 

conserved LD between regional sentinel variants (r2>0.96; Fig. 3). The protein-increasing A-allele 210 

of the lead cis-pQTL (rs351855, beta= 1.01, p-value=9.8x10-234, EAFEuropean=0.30, EAFEastAsian=0.46) 211 

was associated with an increased risk for T2D (beta=0.05, p-value=1.1x10-7). Candidate gene 212 

studies have implicated rs351855 (p.G388R) in cancer susceptibility (36-38), and subsequent 213 

mechanistic studies showed a gain of function of the mutant FGFR4 by binding transducer and 214 

activator of transcription 3 (STAT3) (39). While we found no evidence for an association to cancer, 215 

there are different studies that support our observation of FGFR4 in T2D-related pathways 216 

including hepatic glucose, bile, and lipid metabolism, and possibly insulin signaling in a diet-217 

dependent manner (40-43). Briefly, Fgfr4-/- mice fed a normal chow diet exhibit insulin resistance 218 

and impaired glucose tolerance compared to wild-type controls, however, this difference is not 219 

observed in high-fat diet fed mice. A similar masked genetic effect is seen with the mutant protein 220 

in mice and small observational studies in humans (44). The ability of diet to obscure genetic 221 

effects may explain the ancestral-specific effect in the absence of strong differences in allele 222 

frequencies, with high-fat diet conditions being substantially more common in Western-style 223 

countries of predominantly European ancestry compared to East Asia (45), in particular Japan, in 224 

line with Biobank Japan (p-valueT2D<7.6x10-11) being the largest contributing population to the 225 

East Asian T2D meta-analysis (25). 226 

 227 

Proteogenomic guided annotation of genes at loci reported for diseases and traits related to 228 

human health 229 

Annotation of the candidate causal genes at disease susceptibility loci is the major bottleneck in 230 

the translation of GWAS into biological and possibly clinical insights (46). We exploited the 231 
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genomic proximity between cis-pQTLs and the protein coding gene for gene annotation by 232 

systematically overlapping identified credible sets in this study with reported risk loci (p<5x10-8) 233 

from the GWAS catalog (downloaded on 23/03/2022; (1)). We identified 480 credible sets 234 

targeting 395 unique proteins (43.2% of all, 914 unique protein targets) for which the lead cis-235 

pQTL or a proxy (r2>0.8) had been reported for one or more of 5,391 collated traits in the GWAS 236 

catalog (Fig. 4 and Supplemental Tab. 5, see Methods). For 40% (n=192) of those, we prioritized 237 

a gene that was different from the one originally reported, of which 50% (n=96) were not the 238 

gene nearest to the GWAS sentinel variant. We further refined a longer list of putative causal 239 

genes to a single one for an additional 31 cis-regions (6.5%). These results exemplify the unique 240 

potential of cis-pQTLs for gene annotation of loci reported across diseases and traits related to 241 

human health (Fig. 4 and Supplemental Tab. 5), with one example outlined in more detail below.  242 

Multiple Sclerosis (MS) is an autoimmune, inflammatory, and neurodegenerative disease of the 243 

central nervous system that is caused by both genetic and strong environmental factors (47). A 244 

strong signal at 19q13.33 is one of 233 reported GWAS loci (48). Several variants in high LD 245 

(r2>0.9) reported for this locus have been linked to different candidate causal genes, including 246 

DKKL1, CD37, and SLC6A16 which was the most recently annotated gene based on a sophisticated 247 

ensemble of methods (48) . We identify a shared genetic signal (PP=96.1%, Supplemental Fig. 1) 248 

between dickkopf like acrosomal protein 1 (DKKL1), encoded by DKKL1, and MS at this locus, led 249 

by a cis-pQTL (rs2288480; MAF=0.25) in high LD (r2=0.97) with the lead MS variant (rs1465697; 250 

MAF=0.33, OR=1.09, p-value=3x10-18). We note that the lead cis-pQTL was also in LD (r2=0.97) 251 

with a recently identified variant at the same locus for systemic lupus erythematosus (SLE) among 252 

East Asians (49). 253 

The lead cis-pQTL is in strong LD (r2>0.8) with a cluster of three common missense variants 254 

(rs2288481, rs2303759, and rs1054770) that might impair protein function or processing. Little 255 

is known about the biological role of DKKL1 in general, but a non-essential role in 256 

spermatogenesis has been described (50). However, a link towards MS and/or SLE might be 257 

conceivable via a possible role of DKKL1 in adaptive immunity and hence the inflammatory 258 

component of MS. Briefly, DKKL1 expression is enriched among memory B-cells (51) and an 259 

independent secondary cis-pQTL (rs66532151, MAF=22.4%) for DKKL1 tagged (r2>0.96) a cluster 260 
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of variants associated with different characteristics of CD20+ memory B-cells (52). This cis-pQTL 261 

(rs66532151) was associated with MS at p-value=3.4x10-7, providing late genetic evidence for 262 

depletion of B-cells being one of the most effective treatments for MS, a therapeutic strategy 263 

that originally emerged from clinical and neuropathological studies (53, 54). Further follow-up 264 

studies are needed to clarify a possible role of DKKL1 in immune cells and whether DKKL1 may 265 

play a role in B-cell hyperactivity observed in MS (53).   266 

 267 

 268 

 269 

 270 
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 271 

Figure 4: Candidate causal gene assignment at reported GWAS loci using pQTLs. The overlap between 272 
existing GWAS risk loci and pQTL loci (n=480) are marked on the human chromosome karyotypes 273 
(chromosomes 1-22). The locus is coloured orange if the pQTL provides a novel candidate causal gene 274 
assignment for one or more traits, light blue if it refines a candidate causal gene from a longer list of 275 
reported or closest genes, and dark blue if it confirms the candidate causal gene assignment provided by 276 
the GWAS. 277 

 278 

Multiple independent genetic variants associated with the same protein target at the same locus, 279 

so-called allelic heterogeneity, provides the highest confidence in gene assignment but can also 280 

highlight differential biological roles for the same protein. We observed 73 such protein targets 281 
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with two or more credible sets including distinct GWAS variants for related and unrelated traits. 282 

For example, we discovered three distinct credible sets for plasma levels of interleukin 34 (IL-34) 283 

at 16q22.1. Two contained independent (r2=0.07)  lead cis-pQTL variants with distinct structural 284 

consequences on the protein, that were also associated with two distinct outcomes – Alzheimer’s 285 

disease (55) and childhood obesity (56) (Fig. 5). rs4985556 is associated with increased risk for 286 

Alzheimer’s disease (MAF=12.2%; beta=0.07, p-value<2.3x10-8) and introduces a premature stop 287 

(p.Tyr213Ter), truncating the protein and likely affecting dimerization and possibly secretion. 288 

rs8046424 (alternate allele: C; r2=0.96 with lead sentinel childhood obesity variant rs4985555) is 289 

associated with reduced childhood obesity (MAF = 48.2%; beta=-0.008, p-value<4.4x10-9). It is a 290 

missense variant (p.Glu123Gln) of moderate consequence (CADD score 11.6) that maps to a 291 

binding domain of the cognate IL-34 receptor CSF-1R (57). Therefore, both variants will likely 292 

strongly (rs4985556) or moderately (rs8046424) attenuate signaling via CSF-1R, which has been 293 

shown to drive cerebrovascular pathologies that are common in Alzheimer’s disease (58). While 294 

the gradient of structural consequences translates into a graded effect on Alzheimer’s disease 295 

(rs8046424, beta=0.03, p<3.6x10-4), the absence of any effect of the more detrimental variant 296 

(rs4985556) on childhood obesity (beta=-0.001, p=0.59) might point to a different, yet to be 297 

defined, pathway.  298 

We observed a similar segregation of phenotypes across distinct cis-pQTLs for alpha-L-299 

iduronidase encoded at IDUA. Briefly, three out of four detected credible sets contained GWAS 300 

risk loci or strong proxies (r2>0.8) for fractures (59) (rs115134980; MAF=16.1%; beta=-0.06, p-301 

value=7.4x10-12), waist-to-hip ratio adjusted for BMI (60) and inflammatory diseases (61) 302 

(rs11724804; MAF=44.7%; beta=-0.017, p-value<7.6x10-21), as well as type 1 diabetes (62) 303 

(rs3796622; MAF=35.2%; beta=-0.07, p-value<1.7x10-7) (Fig. 5). Alpha-L-iduronidase is essential 304 

for the breakdown of glycosaminoglycans within lysosomes and numerous rare pathogenic 305 

variants within IDUA are known to cause accumulation of glycosaminoglycans in lysosomes 306 

(mucopolysaccharidosis type I [MPS-1]). Patients present with a wide spectrum of complications, 307 

such as skeletal deformities or organomegaly, that has been attributed to the variable impact of 308 

mutations on enzyme activity, with nonsense mutations causing most severe diseases (Hurler 309 

syndrome) (63). While skeletal abnormalities in rare disease patients may relate to bone 310 
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phenotypes seen for the common cis-pQTL, there are no reports for an elevated risk for 311 

inflammatory or autoimmune disease among MPS-1 patients or other evidence from rare variant 312 

analysis. Tissue-dependent effects of common variants might be one explanation for the 313 

different phenotypes linked to distinct cis-pQTLs for alpha-L-iduronidase.    314 

 315 

  316 

Figure 5: Allelic heterogeneity at protein coding loci translates into distinct phenotypic consequences 317 

at IL34 and IDUA. Left Regional association plots centered around IL34 (±200kb) for plasma interleukin 34 318 

levels, comparative body size at age 10 (56), and Alzheimer’s disease (55). Shown are association statistics 319 

(p-values) from genome-wide association analysis. Single genetic variants were coloured based on LD with 320 

two distinct cis-pQTLs (rs4985556 – orange; rs8046424 – purple). Right Regional associations plots 321 

centered around IDUA (±400kb) for plasma alpha-L-iduronidase levels, type 1 diabetes (62) , waist-to-hip 322 

ratio (WHR) adjusted for body mass index (BMI) (60), and risk of fractures (59). Shown are association 323 

statistics (p-values) from genome-wide association analysis. Single genetic variants were coloured based 324 

on LD with three distinct cis-pQTLs (rs3796522 – orange; rs115134980 – purple; rs11724804 – green). 325 

Lead cis-pQTLs are highlighted by hollow diamonds. 326 

 327 

Phenotypic convergence of rare variant burden and common cis-pQTLs for protein coding 328 

genes 329 

Much effort and funding has been invested into biobank-scale whole-exome sequencing studies 330 

(ExWAS) to identify rare deleterious genetic variants and novel disease candidate genes for the 331 

development of treatment strategies (64, 65). However, it is unknown how efforts focusing on 332 
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the rare deleterious end of gene (and protein) dysfunction relate to less extreme alterations of 333 

protein levels or function. To explore whether evidence from ExWAS and our cis-based phenome-334 

wide colocalization analyses converge for disease-linked genes, we systematically integrated our 335 

results with those from a recent ExWAS among ~450,000 UK Biobank participants across almost 336 

4,000 phenotypes (64).  337 

Among 2,939 protein coding genes covered by the Olink Explore 1536 and Explore Expansion 338 

platforms, 40 (1.3%) showed evidence for phenotypic associations with a rare variant gene-339 

burden and statistical colocalization with a cis-pQTL, whereas 281 and 184 protein coding genes 340 

were linked to phenotypes through ExWAS or cis-pQTLs only, respectively (Fig. 6). Out of the 40 341 

overlapping genes, we observed phenotypic convergence for only 12 genes across 21 phenotypes 342 

following manual review to harmonize phenotype definitions (Supplementary Tab. 6). These 343 

results clearly exemplify the complementary nature of both approaches and the unique ability of 344 

bespoke proteogenomic experiments to prioritize disease mediators and hence putative 345 

therapeutic targets.  346 

 347 
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Figure 6:  Phenotypic convergence of rare variant burden and common cis-pQTLs for protein coding 348 
genes and TIMD4 as an example. A. Venn diagram showing the number of genes with a significant rare 349 
variant gene burden association (p<1E-06) with at least one trait (64) in blue and the number of genes 350 
with a significant pQTL colocalization (PP>80%) with at least one trait in orange.  All 2,939 unique genes 351 
covered by Olink Explore 1536 and Explore Expansion assays were investigated. B. Forest plot comparing 352 
the effect size estimates between TIMD4 cis-pQTL (rs58198139) and rare TIMD4 loss of function (LoF) 353 
gene-burden results (variant group: missense and loss of function variants with a minor allele frequency 354 
< 1%) for low density lipoprotein cholesterol, total cholesterol and triglyceride levels. Rare TIMD4 loss 355 
of function (LoF) gene-burden results are shown in blue and TIMD4 cis-pQTL associations are shown in 356 
orange. C. Stacked regional plot of the multi-trait colocalization of TIMD4 cis-pQTL with lymphocyte 357 
count, low density lipoprotein cholesterol, and triglycerides. Red colouring represents a positive effect 358 
direction with protein increasing allele with TIMD4 whereas blue represent an inverse association. The 359 
hue of the colour represents the strength of r2 representing the LD structure, as indicated on the legend.  360 

 361 

Convergence of phenotypic consequences from rare gene burden and common cis-pQTLs not 362 

only provides compelling evidence for causal gene assignment but can establish dose-response 363 

relationships that are an essential prerequisite for genetically informed drug discovery (66). We 364 

observed such a dose-response relationship between putative functional consequences for T-cell 365 

immunoglobulin and mucin domain containing 4 (TIMD4) and LDL-cholesterol as well as total 366 

triglyceride, but not HDL-cholesterol levels in blood (Fig. 6C). The protein-decreasing T-allele of 367 

the lead cis-pQTL (rs58198139) was associated with moderate effects on LDL-cholesterol in UK 368 

Biobank (MAF=0.26; betaLDL=0.03, p-valueLDL=7x10-44), likely mediated by altered protein 369 

expression, while the cumulative burden of rare loss-of-function variants was associated with 370 

substantially higher LDL levels (betaLDL= 0.25, p-valueLDL= 1.51x10-9, variant mask: predicted loss 371 

of function and deleterious missense variants with MAF<1%), in line with this locus being one of 372 

the earliest discovered loci for polygenic dyslipidemia but with few functional insights gained 373 

since (67). TIMD4 is best known for its role in tissue-dependent macrophage efferocytosis of 374 

apoptotic cells (68, 69) but does also participate in T-cell activation and recruitment (70). 375 

Accordingly, Timd4-/- mice show impaired macrophage phagocytosis and increased lymphocyte 376 

cell counts (71), an observation recapitulated by our phenome-wide colocalization analyses 377 

identifying an inverse association for the protein-decreasing T-allele for lymphocyte counts 378 

(beta=1.02, p-value=1.4x10-12) with high certainty (PP = 97.5%). Circulating leucocytes and 379 

resident M2 macrophages can take up cholesterol from circulating LDL particles and sequestered 380 

lipoproteins in the vasculature, but classical pathways, like the LDL-receptor mediated uptake, 381 
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were shown, at least in mice, to have no substantial effect on plasma LDL-cholesterol levels (72). 382 

In contrast, more recent work demonstrated the ability of TIMD4+ adipose tissue macrophages 383 

to significantly contribute to the regulation of post-prandial HDL-cholesterol levels in mice (73). 384 

While there were was no difference in triglycerides or non-HDL cholesterol following TIMD4 385 

blockade, TIMD4 blockade inhibited LDL-induced lysosomal activity in vitro, suggesting a role for 386 

TIMD4 in peripheral LDL cholesterol processing. These findings provide evidence of a role for 387 

TIMD4 in the regulation of systemic lipoprotein metabolism, and taken together with our 388 

proteogenomic findings, provide a compelling rationale to explore the role of TIMD4+ 389 

macrophages in systemic LDL cholesterol metabolism. In general, increased uptake of modified 390 

LDL-cholesterol particles by resident macrophages contributes to atherosclerotic foam cell 391 

formation, a major cardiovascular risk factor (74). We observed no conclusive evidence that 392 

either the cis-pQTL (protein decreasing T-allele; odds ratio [95% CI] = 1.04 [1.02-1.07], p-393 

value=0.002) or the cumulative burden of the loss of function variation in the gene (odds ratio 394 

[95% CI] = 1.3 [0.90-1.88], p-value=0.16) were associated with coronary artery disease (CAD; the 395 

currently most powered GWAS for atherosclerotic consequences). However, our findings urge 396 

further investigations into the functional role of TIMD4 in immune cell-mediated LDL-cholesterol 397 

turnover and foam cell formation. Although the extent to which this mechanism can contribute 398 

to addressing CAD burden is currently unclear, blocking of TIMD4 using monoclonal antibodies 399 

increased atherosclerotic lesion size in Ldlr-/- mice although in a possibly cholesterol-independent 400 

manner (75). 401 

  402 
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Discussion  403 

Proteogenomic approaches have the potential to establish a direct link from rare and common   404 

variation in or closeby protein-encoding genes to human health via the protein product (5-18). 405 

Despite recent advances and early successes, the field is still in its infancy with respect to the 406 

scale and protein capture, with existing broad-capture technologies currently targeting less than 407 

a third of all proteins encoded in the human genome (5-18), not capturing posttranslational 408 

modifications, or providing absolute protein quantification.  409 

Here we identified more than 200 novel cis-pQTLs that have not been reported so far, even in 410 

studies 30-times larger than ours using non-antibody-based technologies, by capitalizing on 411 

recent assay developments. The fact that we identified hundreds of cis-pQTLs for proteins that 412 

have been investigated in studies much larger than ours might be best explained by the need to 413 

develop further orthogonal methods to measure protein targets as we have outlined previously 414 

(14).  415 

We demonstrate that systematic application of cis-pQTLs to large-scale genetic studies of human 416 

diseases can 1) guide causal gene annotation at GWAS loci (e.g., DKKL1 for multiple sclerosis), 2) 417 

identify pathways that link genes to diseases guided by a protein-phenotype network, and 3) 418 

complement gene-burden testing of rare variants to discover novel biology. We highlight specific 419 

examples in more detail and share a large number of high-confidence protein–phenotype 420 

associations that provide a direct guide for functional follow-up and future investigations of 421 

variant protein with disease relevance about which little is known to date. 422 

The vast majority (~90%) of genetic variants identified in GWASs reside in non-coding regions of 423 

the genome (76), creating a challenge for variant-to-function annotation. In line with previous 424 

studies, we demonstrate the efficiency and ability of cis-pQTLs to prioritize causal candidate 425 

genes including reassignments at 40% of overlapping loci. In contrast to other annotation 426 

approaches, the particular value of the integration of proteogenomic studies lies in the 427 

instrumentalization of the likely biological effector molecules. Studies using proteomic profiling 428 

in disease relevant tissues or single cell-types are needed to further elucidate the mechanisms 429 

underlying the many thousands of unassigned GWAS loci.  430 
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This study is a powerful demonstrating that even moderately sized proteomic studies can result 431 

in the identification of novel biology when combined with bespoke analysis pipelines designed 432 

for the identification of cis-pQTL and systematic integration and follow-up of disease GWAS 433 

summary statistics. Eventually multiple different technologies will be needed at scale to capture 434 

not only proteins of interest but also the vast spectrum of proteoforms with possible distinct 435 

phenotypic consequences (14). This prediction is supported by power calculations of the UKB-436 

PPP (17), but also based on the observation that our study identified cis-pQTLs for genes that are 437 

under less evolutionary constraint as indicated by higher observed/expected scores for missense 438 

(+0.15; p-value=5.0x10-50) and loss-of-function (+0.22; p-value=7.5x10-51) variation in gnomAD 439 

(77). This observation is in line with recent findings among eQTL studies (78).   440 

We observed convergence of gene–phenotype associations between ExWAS and our 441 

proteogenomic approach only at a small number of genes. Gene identification with overlapping 442 

or converging evidence, as shown for TIMD4, provides high confidence about the underlying 443 

causal gene, while the incomplete overlap clearly indicates the complementary nature of both 444 

approaches for drug target prioritization. An important distinction between both approaches, 445 

beyond the different genetic variants covered, is the ability of proteogenomics to emulate 446 

protein variation across the whole spectrum of abundance and in some cases function, and not 447 

only putative loss-of-function (rarely gain of function), which might explain differences seen in 448 

phenotypic consequences between both approaches. In addition, in terms of practicality, 449 

integration of pQTLs into colocalization and GWAS loci annotation enabled us to uncover 450 

unreported disease biology with a small sample size of 1,180 individuals, whereas substantially 451 

larger sample sizes, even millions of individuals, are needed to reach enough power to detect 452 

rare variant associations in ExWAS studies for disease endpoints (79). 453 

Our study has some limitations that need to be considered. Affinity-based reagents allow for the 454 

quantification of protein abundance but are inherently limited to quantify the level of activity, 455 

although a general correspondence between the two can be assumed. This limits insights about 456 

the role of protein targets using a proteogenomic approach. Further, numerous posttranslational 457 

modifications can change the function and abundance of proteins but are currently not 458 

distinguishable using affinity reagents at scale. We deliberately decided to restrict genetic 459 
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analysis of protein targets to the corresponding protein coding regions (±500kb) for two reasons: 460 

1) the high biological prior to identify genetic variants directly linked to protein 461 

function/abundance, and 2) to increase power for statistical analysis by limiting the multiple 462 

testing burden. Larger studies are needed to explore the spectrum of trans-pQTLs that have 463 

generally smaller effect sizes but can identify protein interaction partners and facilitate 464 

systematic dose-response analysis in the two-sample Mendelian randomization frameworks. 465 

In summary, we demonstrate the clear potential of broad-capture proteogenomic studies to 466 

identify novel biological pathways that link protein-encoding genes to human diseases. 467 

Systematic integration of human genomic with proteomic and phenomic data enables such 468 

investigation even in relatively moderately sized studies and can help to prioritize targets and 469 

indications for the development of safe and effective therapeutic interventions. 470 

 471 

  472 
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Materials and Methods  473 

  474 

Study participants  475 

We measured protein levels among 1,180 participants of the European Prospective Investigation 476 

into Cancer (EPIC)-Norfolk study, a cohort of 25,639 middle-aged, individuals from the general 477 

population of Norfolk, a county in Eastern England which is a component of EPIC (21). The study 478 

was approved by the Norfolk Research Ethics Committee (ref. 05/Q0101/191) and all participants 479 

gave their informed written consent before entering the study. Information on lifestyle factors 480 

and medical history was obtained from questionnaires as reported previously (21). We selected 481 

a random sub-cohort of 771 participants and a set of 429 participants with selected incident 482 

events during follow-up for cost-efficient proteomic profiling.  483 

 484 

Proteomic profiling   485 

We used serum samples from the baseline assessment (1993 - 1997) that had been stored in 486 

liquid nitrogen for proteomic profiling using the Olink Explore 1536 and Explore Expansion 487 

platforms targeting 2925 unique proteins by 2943 assays, of which 2923 unique proteins mapped 488 

to a protein encoding locus in genome assembly GRCh37. Details regarding the assay have been  489 

have been described in detail (80). Briefly, proteins are targeted by two separate unique 490 

antibodies, each of which are labelled with complementary single stranded oligonucleotides 491 

(proximity extension assays (81)). These proximity extension assays hybridization occurs 492 

subsequent to the binding of antibody pairs with complementary oligonucleotides which can be 493 

quantified using next generation sequencing (NGS). NGS read-outs undergo quality control 494 

procedures where internal (incubation, extension and amplification controls) and external 495 

(negative, plate and sample controls) controls are included.  Normalized protein expression (NPX) 496 

units are generated by normalization to the extension control and further normalization to the 497 

plate control and reported on a log2 scale. We excluded 3 samples as they were shown to be 498 

extreme outliers using principal component analysis from their entire proteomic profiles. For 499 

downstream genetic analysis (fine-mapping and region-based association analysis) we first rank-500 

inverse normal transformed NPX-values and corrected for age, sex, and the first ten genetic 501 
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principal components using linear regression models. The residuals of this analysis were used 502 

throughout the study. 503 

 504 

Genotyping 505 

EPIC-Norfolk samples (n=21,448) were genotyped on the Affymetrix UK Biobank Axiom array chip 506 

by Cambridge Genomic Services, University of Cambridge, UK. Sample and variant QC followed 507 

the Affymetrix Best Practices guidelines. Samples were excluded based on DishQC < 0.82 508 

(fluorescence signal contrast), call-rate <97%, heterozygosity outliers and sex discordance 509 

checks. Variants were excluded if call-rate <95% or HWE<=1e-6. Monomorphic variants and those 510 

with cluster problems detected using Affymetrix SNPolisher were excluded. Genotype imputation 511 

was performed using two different reference panels, the Haplotype Reference Consortium (HRC) 512 

(release 1) reference panel and the combined UK10K+1000 Genomes Phase 3 reference panel. 513 

After pre-imputation QC, 21,044 samples remained for imputation. All SNPs imputed using the 514 

HRC reference panel were included, and additional variants imputed using only the UK10K+1000 515 

Genomes reference panel were added to create a combined imputed set. Variants with 516 

imputation quality INFO < 0.4 or MAF of < < 0.0001 were excluded. All positions are on genome 517 

assembly GRCh37. After excluding ancestry outliers, individuals without a high-quality proteomic 518 

profile for each panel and pruning the sample set for related individuals, 1,180 and 1,178 519 

individuals were included in proteogenomic analyses for Olink Explore 1536 and Explore 520 

Expansion platforms, respectively. 521 

 522 

Fine mapping 523 

We used statistical fine-mapping as implemented in the ‘sum of single effects’ model (SuSiE) (82) 524 

using individual level genotype and protein data to identify credible sets at protein encoding loci 525 

(±500kb). Briefly, SuSiE employs a Bayesian framework for variable selection in a multiple 526 

regression problem with the aim to identify sets of independent variants each of which likely 527 

contain the true causally underlying genetic variant (82). We implemented the workflow using 528 

the R package susieR (v.0.11.92 ) and default prior and parameter settings. However, we noticed 529 

that SuSiE sometimes reports overlapping credible sets or credible sets that contained variants 530 
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in high LD with already selected ones. Therefore, we adopted a grid search by first iterating the 531 

maximum number of credible sets from 2 to 10 (L in SuSiE terminology) and subsequently 532 

selecting the output for the maximum L so that none of the credible sets reported variants in LD 533 

(r2>0.1). We further tested for independent effects of all lead credible set variants (selecting using 534 

highest posterior inclusion probability) by including them in a joint regression model. We only 535 

report credible sets which showed genome-wide significance (p<5x10-8) in those joint models. 536 

We used R v.4.1 to compute regression models.     537 

 538 

Region-based association testing 539 

To complement fine-mapping analysis, we computed regional association statistics at protein 540 

coding loci (±500kb) using fastGWA software provided by GCTA (v. 1.93.2beta) (83). To account 541 

for the different selection designs of the sub- and the case-cohort, we performed these analyses 542 

within each cohort separately and combined in an inverse-variance fixed-effects meta-analysis in 543 

METAL (84).  544 

 545 

Gene, Variant, and Protein annotation  546 

We obtained conservation scores for all protein coding genes from gnomAD. We used the Variant 547 

Effect Predictor software (22) (version 98.3) with the --pick option to annotate all independent 548 

lead variants and proxies (r²>0.6) of identified pQTLs in our data set and report possible 549 

functional consequences. We collapsed pQTLs mapping to the same functional variant to reduce 550 

redundancy. We further obtained protein characteristics, e.g., glycosylation sites, from UniProt 551 

(85). 552 

 553 

Annotation of GWAS catalog loci  554 

We downloaded genome-wide significant summary statistics from the GWAS catalog (date 555 

23/03/2022; (1)) and tested whether any of the lead credible set variants (cis-pQTLs) or proxies 556 

(r²>0.8) have been reported to be associated with any non-proteomic trait, that is omitting any 557 

results that related to multiplex proteomic assays. Out of 347,165 entries (n=9,997 unique traits), 558 

212,628 entries (n=5,391 unique traits) passed this and additional filtering steps (missing effect 559 
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estimates, missing risk allele, and not passing genome-wide significance). For each cis-pQTL – 560 

GWAS variant mapping, we compared the reported or mapped gene (closest gene assigned by 561 

the GWAS catalog) to the protein-encoding gene at the locus.  562 

 563 

Phenome-wide analyses at protein-encoding loci  564 

We performed phenome-wide analyses using statistical colocalization for 914 protein targets 565 

where we had evidence for at least one cis-pQTL. To this end, we queried the Open GWAS 566 

database (86, 87) using a defined region (±500 kb) around the protein-encoding gene body and 567 

tested whether any of the traits in the databases showed a high posterior probability (PP) of 568 

shared genetic signal with plasma concentrations of the encoded protein target using statistical 569 

colocalization (88). We chose a cut-off of PP>80% to declare that a protein target and a 570 

phenotypic trait are highly likely to share a genetic signal at a locus. We used a conservative prior 571 

setting with p12=1x10-6 and further ensured that regional sentinel variants were in strong LD 572 

(r2>0.8). To avoid spurious colocalization results due to imperfect overlap of SNPs, we filter all 573 

results for which the strongest cis-pQTL or sufficient proxy (r2>0.8) in the overlapping set was not 574 

included in the overlapping set of SNPs or if less than 500 SNPs were overlapping. We used the 575 

igraph package in R to visualize protein – disease colocalization results as a network to account 576 

for cross-disease dependencies established by proteins.  577 

 578 

Incorporation of gene expression data  579 

We systematically tested for a shared genetic signal between plasma abundances of a protein 580 

and gene expression levels (eQTL) of the protein coding gene in 49 tissues from the GTEx project 581 

(v8) (89). We used a similar colocalization framework as described above but adopting a less 582 

stringent p12 prior (p12=1x10-5) to account for the higher biological prior of genetic signals in the 583 

protein encoding region. All GTEx variant-gene cis-eQTL and cis-sQTL associations from each 584 

tissue were downloaded in January 2020 from 585 

https://console.cloud.google.com/storage/browser/gtex-resources.  586 

 587 
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Phenotypic convergence between pQTL colocalization and rare loss of function gene-burden 588 

associations 589 

To compare the phenotypic convergence of rare loss of function gene-burden and cis-pQTLs 590 

colocalization results, we downloaded single variant and gene-burden results for 3,986 591 

phenotypic outcomes from UK Biobank respectively which were analysed by Backman et al. 592 

(2021) (downloaded on: 07/12/2021); (64). We filtered the results for 2,939 protein coding genes 593 

covered by the Olink Explore 1536 and Explore Expansion platforms. We compared the 594 

phenotypic convergence of genes that were significant for at least one phenotypic outcome in 595 

the exome-wide association analysis at exome-wide significance (p<1x10-6) with the pQTLs that 596 

showed significant statistical colocalization for at least one trait (PP>80%). If ExWAS results were 597 

significant for more than one variant group for the same gene – trait association, we have filtered 598 

the results to only take forward the most significant finding. 599 

Multitrait colocalisation 600 

We used hypothesis prioritisation in multi-trait colocalisation (HyPrColoc) (90) at selected protein 601 

loci to identify a shared genetic signal across various traits, including gene expression, plasma 602 

protein levels, and prioritized phenotypes from the disease-wise colocalization framework. 603 

HyPrColoc provides for each cluster three different types of output: 1) a posterior probability (PP) 604 

that all phenotypes in the cluster share a common genetic signal, 2) a regional association 605 

probability, that it, that all the phenotypes share an association with one or more variants in the 606 

region, and 3) the proportion of the PP explained by the candidate variant. We considered a 607 

highly likely alignment of a genetic signal across various phenotypes if the PP>80% and report 608 

obtained PPs otherwise.   609 
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