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Abstract: 

Identifying the pathogenic variant in a rare disease (RD) patient is the first step in ending their 

diagnostic odyssey. De novo (Dn) variants affecting protein-coding DNA are a well-established cause 

of Mendelian disorders in RD patients. Constrained coding regions (CCRs) are specific segments of 

coding DNA which are devoid of functional variants in healthy individuals. Furthermore, the most 

constrained regions, those in percentile bin >95 (CCR95), are significantly enriched for functional 

pathogenic variants and could therefore be useful for clinical variant prioritisation.  

We aimed to evaluate the diagnostic utility of incorporating Dn, CCR95 and Dn_CCR95 status into 

the variant prioritisation cascade for RD patients that have undergone genomic sequencing. Using 

data from the Genomics England 100,000 Genomes Project v12, we selected 3,090 trios that have 

undergone diagnostic evaluation and been analysed with an advanced Dn identification pipeline. For 

this analysis we have excluded all non-autosomal variants. 

Our analysis shows the diagnostic rate increased from 71% in the full cohort to 81% when evaluating 

just the CCR95 variants, 84% for Dn variants and 87% for Dn_CCR variants. Of note, manual 

evaluation of the Dn_CCR95 variants from the undiagnosed patients revealed a putative diagnosis in 

64% of patients (25 of 39), suggesting application of this metric can prioritise likely pathogenic 

variants in undiagnosed patients. 

We also identify a striking enrichment of signal in patients with a phenotype of neurology and 

neurodevelopmental disorders, whereby their diagnostic rate increases from 60% in the whole 

cohort to 71%, 73% and 74% in the Dn, CCR95 and Dn_CCR95 categories respectively. This compares 

to the next largest phenotypic group, Ophthalmological disorders, where the corresponding values 

are 10%, 3% 2% and 1%. 

In summary, we demonstrate the potential clinical utility of performing bespoke Dn analyses of RD 

patients and for incorporating CCR information into the filtering cascade to prioritise pathogenic 

variants. We believe such a strategy will aid the identification of pathogenic variants and decrease 

the time taken to make a diagnosis, thus increasing the overall diagnostic rate by allowing more 

samples to be analysed over the same time period. 
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Introduction: 

The use of next generation sequencing (NGS) techniques such as gene panels, exome and whole 

genome sequencing for the diagnosis of patients with rare diseases (RDs) is becoming routine 

practice in genetic diagnostic laboratories world-wide. This has led to improvements in both the 

time taken to reach a diagnosis and the overall diagnostic rate(1-3). With the cost of sequencing 

continuing to fall and automation increasing the number of samples to be sequenced, we have 

reached a position where the interpretation of the data being generated is becoming a bottleneck 

and thus there is the potential the diagnostic rate will plateau(4, 5).  

The difficulty in interpreting NGS data is down to the sheer volume of variants identified when we 

compare a person’s DNA to the reference genome and the observation that even though a great 

number of these variants have characteristics overlapping with pathogenic variants, most, if not all, 

will be benign(6, 7). In order to simplify the interpretation of NGS data, scientists rely on a suite of 

annotation tools to help filter out the benign variants and leave a small list of potentially pathogenic 

variants that can be studied in greater detail. There are now, a range of prioritisation tools available 

to perform this task (reviewed in (6)) and a number of commercial software programs that can semi-

automate this process, for example: Qiagen Clinical Insights (https://digitalinsights.qiagen.com/) and 

Congenica (https://www.congenica.com/). 

Even with these prioritisation tools, the task of distinguishing pathogenic from benign variants is 

time consuming and novel annotation methods are required to improve this efficiency. To this end, a 

novel resource was recently published which is based on creating a map of constrained coding 

regions (CCRs) in the human genome(8). These are regions of the coding genome devoid of 

functional genetic variants. In brief, to determine these regions, the authors utilised the Genome 

Aggregation Database (gmomAD(9)) resource and invoked the principles of survival bias which, in 

this context, involved identifying regions of coding sequence that were devoid of functional variants 

(potentially protein altering) above the average 7bp in size. They next modelled these regions using 

metrics such as the expected mutation rate based on DNA context and then ranked all the regions 

into percentile bins. Their analysis of these bins showed that those above the 95th percentile were 

significantly enriched for known pathogenic variants in ClinVar(10) and mutations underlying 

developmental disorders. The nature of CCRs is such that because they rely on the appearance of 

just a single allele, they are ideally suited for augmenting current variant prioritisation methods 

when evaluating De novo (Dn) variants in studies of autosomal dominant diseases. 

Dn variants are a rich source of pathogenicity in RD patients. To date, the majority of large cohort 

studies have focused on the impact of Dn variants in RD patients with a neurodevelopmental-

associated phenotype and have shown unequivocally that they are pathogenic in excess of 50% of 

patients(11-17). Similar studies in non-neurodevelopmental-associated RD patients have shown Dn 

variants have a substantial impact but at a lower level, for example ~8% in patients with congenital 

heart disease(18). To understand the impact of pathogenic Dn variants in RD patients from across 

the full phenotypic spectrum requires a large, systematically ascertained and analysed cohort. 

To investigate the utility of applying CCR information in a real-life RD study, we have leveraged the 

power of the Genomics England (GeL), 100,000 Genomes Project (100KGP)(19) to perform such an 

evaluation. The 100KGP is a landmark genomics project based in the UK that is aligned with the 

National Health Service (NHS). The RD component covers the full spectrum of RD phenotypes and is 

therefore well suited for assessing variant prioritisation tools that will have a general applicability. 

Currently, the diagnostic rate for large-scale genomic RD studies is around 25% but this measure 

differs substantially depending on the patient phenotype, ranging from as low as 3% in patients with 
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complex aetiologies to almost 50% in patients with neurodevelopmental disorders(20). However, 

the take home message is clearly that the majority of patients are left in a diagnostic odyssey and 

more work is needed to improve the diagnostic rate. 

The purpose of this study is two-fold; firstly we want to test if the addition of  CCR data and Dn 

status into current variant prioritisation pathways can improve the identification of pathogenic 

variants (thereby reducing time-taken-to-diagnosis) and secondly, we want to test whether this 

extra information helps to identify novel pathogenic variants. 

 

Methods: 

Data access: The Genomics England research environment (RE) was used for all data analyses. We 

used the genomic data corresponding to data release v12, accessed through LabKey and extracted 

using RStudio(v1.4.1103)(21) library RLabkey. We used two sources of patient data for this project. 

First, we used the gmc_exit_questionnaire table which contains the diagnostic results provided by 

the clinical scientists from the Genomic Medicine Centres (GMCs) for each patient. This data informs 

to what extent a family’s presented case can be explained by the combined variants reported to the 

GMC from Genomics England and the Clinical Interpretation Providers (CIPs). It also includes 

information on any segregation testing performed, the confidence in the identification and 

pathogenicity of each variant and, the clinical validity of each variant or variant pair in general and 

clinical utility in a specific patient. One Exit Questionnaire is completed per case.  

Secondly, for the Dn variant analysis we used tables denovo_cohort_information which provided the 

ID information for each participant run through the Dn pipeline and denovo_flagged_variants which 

gives a list of all the Dn variants called and their confidence level. Full information on the GeL Dn 

variant research dataset is available at 

https://cnfl.extge.co.uk/display/GERE/De+novo+variant+research+dataset. 

The phenotype data associated with the 100KGP participants is based on the Human Phenotype 

Ontology (HPO) (25) terms provided by the submitting GMC and is made available in the 

disease_phenotype table at three successive levels of detail; Disease Group gives a higher order 

description of the general phenotype class e.g. Skeletal disorders or Cardiovascular disorders, 

Disease Sub Group gives a finer scale description of the phenotype e.g. Skeletal dysplasias or 

Cardiomyopathy and, Specific Disease provides a detailed description of the specific disease e.g. 

Osteogenesis imperfecta or Dilated Cardiomyopathy.  

For the Constrained Coding Region (ref) analysis we downloaded the data from the website of Aaron 

Quinlan (https://s3.us-east-2.amazonaws.com/ccrs/ccrs/ccrs.autosomes.v2.20180420.bed.gz). 

Data cleaning: This was performed primarily using RStudio with the library tidyverse but also 

included substantial manual manipulation to harmonise the data to a consistent format. For the 

gmc_exit_questionnaire, patients were only retained if there was information for a genomic variant 

and the reference genome build. Patients were classified in the ‘case_solved_family’ column as: 

Solved (referred to as yes), Partial (referred to as partially), Unknown and Unsolved. In subsequent 

analyses we combined the Solved and Partial cases into a group termed Diagnosed as each variant 

has been determined to be pathogenic by a clinical scientist, with the Unknown and Unsolved cases 

combined to form the Undiagnosed group. 

To build our cohort for analysis we split the data from the gmc_exit_questionnaire table into 

genomic builds GRCh37 and GRCh38 and for both, we removed any duplicates and those variants 
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from the X chromosome or mitochondrial genome. For the patients with variants classed as Solved 

or Partial, we manually curated the data using the information available to leave only those variants 

that were pathogenic. For the Unknown and Unsolved patients, we kept all the variants that had 

been returned by the GMC. To unite the two genome builds into one cohort (gmc_ALL38), we used 

the UCSC Genome Browser LiftOver tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver) and converted 

the coordinates for all GRCh37 variants into GRCh38. 

To build our Dn cohort we first extracted the denovo_cohort_information table and only kept 

samples labelled as, member = Offspring and affection_status = AFFECTED. For the 

denovo_flagged_variants table we only kept variants with a Stringent Filter score =1. We then 

amended the denovo_flagged_variants table with participant_id information from the 

denovo_cohort table using the Trio Id as a scaffold and then split these samples by genome build 

GRCh37 and GRCh38. Using the UCSC Genome Browser LiftOver tool (http://genome.ucsc.edu/cgi-

bin/hgLiftOver) we converted the GRCh37 variants into GRCh38 and combined the variants 

(Dn_ALL38).  

As only a subset of the gmc_ALL38 were included in the Dn analysis, we used the participant_id 

information from DN_ALL38 to derive a final cohort that contained diagnostic information from only 

those patients present in both cohorts, this is the cohort we used for our analysis (gmc_Dn_ALL).  

To identify which of the variants from the gmc_Dn_ALL cohort were Dn we used the Dn_ALL38 data 

and extracted those variants that matched for participant_id and genomic position (Dn_gmc). 

For the CCR intersection analysis we first removed all the VARTRUE variants from the bed file as 

these correspond to known variants in the gnomAD database(8). Because the CCR region 

coordinates are in genome build GRCh37 we used the UCSC Genome Browser LiftOver tool 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver) to convert the coordinates to GRCh38. We then used 

bedtools-intersect (22) to extract those variants that resided within a CCR and included their 

percentile score. Using the percentile score we were able to filter our variants to only those that 

intersected a CCR with a percentile score of ≥95 (CCR95). 

Combining the results of the Dn_gmc and CCR95 intersection we were able to derive a list of Dn 

variants from the gmc_ALL38 cohort that intersected a CCR95 (Dn_CCR95). 

Disease terms: We used the patient_phenotype table in LabKey to extract the phenotype 

information for the gmc_ALL38 cohort. The disease terms are provided at three levels starting broad 

and becoming more focused (Disease Group, Disease Sub Group and Specific Disease). As the 

phenotype assigned to each patient becomes more specific the overall number of terms increases 

greatly and consequently the number of patients with each term decreases. We therefore set a cut-

off ≥5 patients per term and chose to focus on the highest descriptive level, Disease Group to ensure 

we had sufficient numbers in each group to make meaningful comparisons. 

Analysis strategy: We focused on assessing the proportion of variants present in the following three 

annotation categories; 1) Dn variant, 2) intersecting a CCR95 and, 3) a Dn variant intersecting a 

CCR95. The aims of this were twofold: Firstly we wanted to explore whether there was an 

enrichment of pathogenic variants in one of the three annotation categories to examine whether 

they could be used as an additional filter to identify pathogenic variants more specifically and thus 

potentially allow a diagnosis to be reached quicker. Secondly, we wanted to explore if, in the 

undiagnosed samples, the application of both the Dn and CCR95 annotations would filter the 

number of variants down to a small enough number to highlight novel disease variants. 
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Furthermore, we also explored whether the analysis strategy above was applicable to rare diseases 

across the clinical spectrum or whether certain disease phenotypes were more applicable to this 

approach by splitting our cohort into separate disease classes and looking for enrichment of signal. 

 

Results: 

Sample cohort: For our analyses we used the 100KGP v12 dataset which is comprised of 73,880 RD 

genomes from 71,597 participants. Following mapping and variant calling(20), 33,315 families have 

been processed through an automated analytic pipeline to filter down the variants to rare, 

segregating and predicted damaging candidate variants in coding regions. These variants have been 

classed as tier 1, 2 or 3 (see (20) for full description) and used to make a clinical diagnosis in 30,419 

families. 

Although Dn status can be predicted through simple analysis of the trio data it does not provide a 

robust output and therefore, for our Dn analyses we analysed 13,353 trios using a bespoke Dn 

pipeline that utilised the raw sequence data for each member of the trio (see methods). 

The cohort we used for this analysis was derived from the overlapping patients that had undergone 

a clinical diagnosis and had been run through the bespoke Dn analysis pipeline (n = 3,631). However, 

because the CCR data has been generated for the autosomes only, we removed all samples with a 

variant assigned to the X-Chromosome or mitochondrial genome which resulted in a final cohort of 

3,090 families. 

Diagnostic rate calculation: Following data cleaning we calculated the diagnostic rate for the 

gm_Dn_ALL cohort as a whole was 71% (Table 1 and Supplementary Table 1). When we stratify the 

data for CCR95/Dn annotation, we show the causative variant is Dn in 40% of patients, intersects 

with a CCR95 in 18% of the patients and is a Dn intersecting a CCR95 in 12% of patients (Table 1). 

If we instead look at each annotation class and calculate the diagnostic rate within each group, we 

see that the diagnostic rate increases to 84% for Dn variants, 81% for CCR95 variants and 87% for Dn 

CCR95 intersecting variants (Table 1). That is, for example, if we extract all the Dn CCR95 intersecting 

variants (n=293), 254 of these (87%) have been classed as pathogenic by a clinical scientist, which is 

a highly significant enrichment p=6.42x10-6 (Supplementary Table 2). 

 

 

Further stratification of our data by disease terms revealed that the patients with a phenotype 

within the Neurology and neurodevelopmental disorders domain showed a highly significant 

enrichment of pathogenic variants in all annotation classes (Table 2). This ranged from 53% in the 

whole cohort to 69% in the Dn cohort (Enrichment p_adj = 2.24x10-10), 76% in CCR95 cohort 

(Enrichment p_adj = 7.47x10-10) and 80% in the Dn_CCR95 cohort (Enrichment p_adj = 9.48x10-09). 

In comparison, those patients with a phenotype in the Ophthalmological disorders domain (the next 

largest Disease Group), showed a highly significant negative enrichment in all annotation classes 

(Table 2). This group comprised 10% of the whole cohort, 3% of the Dn cohort (Enrichment p_adj = 

Table 1

Diagnosis Participants % cohort De novo % participants % cohort CCR95 % participants % cohort De novo CCR95 % participants % cohort

Diagnosed 2180 71 873 40 84 395 18 81 254 12 87

Undiagnosed 910 29 164 18 16 90 10 19 39 4 13

Total 3,090 1,037 485 293

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.19.22278944doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.19.22278944
http://creativecommons.org/licenses/by-nc-nd/4.0/


9.39x10-10), 2% in the CCR95 cohort (Enrichment p_adj = 1.24x10-05) and 1% of the Dn_CCR95 cohort 

(Enrichment p_adj = 3.33x10
-04

) (see Supplementary Table 3 for all enrichment P-values).  

Table 2. 

 

 

Discussion 

Our study shows that selecting genetic variants with a Constrained Coding Region percentile score 

≥95 (CCR95) in the variant prioritisation cascade used to clinically diagnose rare disease patients 

enriches for pathogenic variants (from 71% to 81%). This effect is similar to the enrichment seen 

when taking Dn status into account (from 71% to 84%) and is further increased when combing both 

metrics, that is, Dn variants residing within a CCR95 (from 71% to 87%) (Table 1). We hypothesise 

that incorporating this metric into the genomic clinical diagnostic filtering cascade would decrease 

the time taken to identify pathogenic variants and therefore allow more patients to be screened 

over a set period of time, thus resulting in an increase in the diagnostic rate.  

A major advantage of the CCR method is that it offers a focused annotation metric for discrete 

regions of a gene instead of methods such as pLI (probability of being loss-of-function intolerant)(23) 

or Z scores(24) that are provided in gnomAD(9), which annotate the whole gene. The reason this is 

important is because, even in highly constrained genes (pLI ≥ 0.9, positive Z score), there are often 

discrete regions that show low constraint with many functional variants seen in gnomAD(9). 

Therefore, if a potentially pathogenic variant is located in one of these low constrained regions the 

variant could be misinterpreted as pathogenic based on the gene-wide annotation. Conversely, 

there are instances where genes showing low constraint (pLI ≤ 0.5, negative Z score) contain small, 

highly constrained regions that are devoid of functional variation in gnomAD(9) which can lead to a 

pathogenic variant, from within this region, being missed if the gene-wide annotation is used (see(8) 

Figure 1). 

Furthermore, because the number of variants fulfilling the Dn_CCR95 criteria is low, it is feasible to 

use this metric to identify novel pathogenic variants. For example, we identified 39 variants in 

patients classed as undiagnosed that were in the Dn_CCR95 category (Table 1). Inspection of these 

variants in a research setting led to a likely diagnosis for 25 of the undiagnosed patients (64%) 

(Supplementary Table 4). For example, in an undiagnosed patient with HPO(25) terms including 

microcephaly, intellectual disability, small for gestational age, short stature, motor axonal 

neuropathy and congenital microcephaly; we identified a missense variant in the gene MORC2 

(p.Y448C) that was predicted to be deleterious by SIFT(26), probably damaging by PolyPhen-2(27) 

and had a CADD(28) Phred score of 30. Patients with MORC2 pathogenic variants present with a 

phenotype consisting of developmental delay, intellectual disability, growth retardation, 

microcephaly, variable craniofacial dysmorphism, and in some individuals electrophysiologic 

abnormalities suggestive of neuropathy(29). The phenotypic overlap along with the damaging nature 

of this variant make this a strong candidate to be the pathogenic variant for this patient.  

Disease Group Diagnosed Undiagnosed Diagnosed Undiagnosed exp obs p-value p_adj exp obs p-value padj exp obs p-value p_adj

Endocrine disorders 55 25 2 3 22 16 0.33 10 7 0.46 6 4 0.52

Dysmorphic and congenital abnormality syndromes 56 29 3 3 22 29 0.32 10 14 0.41 6 8 0.59

Cardiovascular disorders 59 61 3 7 23 22 0.88 11 7 0.34 7 4 0.36

Metabolic disorders 66 21 3 2 26 22 0.56 12 6 0.15 8 5 0.40

Renal and urinary tract disorders 80 39 4 4 32 14 0.0072 14 4 0.017 9 0 0.0025 0.074

Hearing and ear disorders 81 50 4 5 32 13 0.0041 15 6 0.047 9 3 0.080

Skeletal disorders 120 26 5 3 48 41 0.45 22 5 0.00087 0.026 14 2 0.0023 0.069

Ultra-rare disorders 140 74 6 8 56 61 0.63 25 24 0.88 16 16 1

Ophthalmological disorders 227 49 10 5 90 22 3.13E-11 9.39E-10 41 7 4.13E-07 1.24E-05 26 3 1.09E-05 0.00033

Neurology and neurodevelopmental disorders 1177 510 53 54 467 607 7.45E-12 2.24E-10 211 301 2.49E-11 7.47E-10 135 202 3.16E-10 9.48E-09

2214 938 879 397 254

De novo_CCR95De novo CCR95All % of total
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Interestingly, during our manual curation we identified an unsolved patient from the Renal and 

urinary tract disorders Disease Group that had a missense variant in the gene SETD5 (p.R348L) which 

was predicted to be deleterious by SIFT(26), probably damaging by PolyPhen-2(27) and had a 

CADD(28) Phred score of 32. The HPO(25) terms for this patient were abnormality of the eye, 

hypodontia, pectus excavatum, global developmental delay, abnormal facial shape and mild short 

stature, none of which fit with the Disease Group they were assigned to. Patients with SETD5 

pathogenic variants display variable features including intellectual disability, facial dysmorphism, 

cardiac and skeletal abnormalities, behavioural problems and short stature(30). We therefore 

believe the SETD5 variant in this patient is likely to be pathogenic.  

Although we cannot be sure why this patient was included in the Renal and urinary tract disorders 

Disease Group, this example highlights the power of combining Dn and CCR95 data as it allows a 

disease/gene agnostic approach to identify highly likely pathogenic variants. This approach will 

therefore help in overcoming problems of misdiagnoses or when patients have multi-system 

abnormalities and do not fit a single phenotype grouping. Also, because applying this filter results in 

very few variants qualifying for inspection, it’s use as a first-pass stringent filter in clinical diagnostic 

laboratories has the potential to rapidly identify pathogenic variants from patient cohorts, freeing up 

time to screen more patients overall. 

To explore our data further we next decided to look at recurrent Dn sites for instances where a Dn 

had been called pathogenic in one patient but not in another or where a recurrent Dn was seen in 

greater than one undiagnosed patient (Supplementary Table 5). We reasoned that this approach 

could help diagnose patients where, for whatever reason, there was not enough evidence to call a 

variant pathogenic. We identified 44 Dn variants that were recurrent in 100 individuals. Of these, 36 

were identified in only diagnosed patients, six were a mixture where at least one patient was 

diagnosed and the other was undiagnosed, and in two instances, both patients were undiagnosed.  

For the latter group, our analysis highlighted a Dn canonical splice site variant (c.2493+1 G>A) in the 

Floating-Harbour syndrome gene(31) SRCAP (NM_006662.3)  in two undiagnosed patients with 

intellectual disability. The evidence available (CADD Phred score 36) makes this a highly likely 

pathogenic variant in these patients. At the second loci, we identified two undiagnosed patients with 

a Dn missense variant in the gene FBXO11 in which Dn variants are known to cause an intellectual 

developmental disorder with dysmorphic facies and behavioural abnormalities (IDDFBA)(32). The Dn 

variant we identified at codon 54 (NM_025133) causes a change from an Arginine to Glycine amino 

acid which is not present in gnomAD, is predicted by SIFT(26) to be tolerated, benign by PolyPhen-

2(27) and has a CADD(28) Phred score of 20.1. In ClinVar there is a known Pathogenic/Likely 

pathogenic missense variant (ClinVar ID:559601) at this codon which causes an amino acid change 

from Arginine to Serine which is also not present in gnomAD. Arginine is a basic amino acid and 

therefore a change to Glycine (small) or Serine (nucleophilic) could both potentially have functional 

effects, especially as they occur within a disorganised protein domain. However, the predicted 

deleteriousness of the Dn variant we identified is weak and the CCR percentile score for this region is 

68, meaning we would not be confident in calling this variant Pathogenic/Likely pathogenic without 

additional evidence. 

Although our study shows the benefit of incorporating CCR percentile score information and Dn 

status in the filtering cascade for identifying pathogenic rare disease variants we need to be aware 

of the constraints relating to the cohort we have used. Firstly, in the cohort we have studied the 

diagnostic rate was far higher (71%) than that seen in other rare disease cohorts, including the 

100KGP pilot project (25%)(20). This may be due to many reasons; first, the data in the 100KGP 

gmc_exit_questionnaire table contains entries for  30,419 families, however, many of these entries 
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have no genomic annotations, most of which are from the unsolved group (21,048). This means that 

once we had filtered the data to include only patients that were also included in the Dn cohort and 

filtered out any variants on the X chromosome and mitochondrial genome we had a cohort of 3,090 

patients for our analysis. Because the variants contained in the gmc_exit_questionnaire are returned 

by the gmc centres that recruited the patients following diagnostic evaluation, we can assume that 

no Tier 1 or Tier 2 variants were present in the undiagnosed patients that would explain their 

phenotype. The Tiering of the data is performed by GeL commercial partners and so without 

reanalysing the whole dataset from the raw data we are unable to estimate how many Dn or CCR95 

variants may be present in these un-annotated patients. 

Secondly, the patients recruited to the 100KGP were partly composed of research cohorts and 

patients who previously had negative genetic tests and therefore may represent a distinct cohort of 

patients not fully representative of the diverse patients seen in NHS clinical diagnostic centres. To 

truly estimate the clinical utility of applying Dn and CCR95 status we would need to incorporate 

these annotations to a standard NHS diagnostic laboratory patient cohort and perform a direct 

comparison of the diagnostic rate with these annotations and without them. This would also allow 

us to estimate if the application of these annotations decreases the time taken to reach a diagnosis 

and if so how much it improves the overall diagnostic rate. If this was to be done, it would be 

imperative we include CCR annotations for the X chromosome as we could potentially be missing out 

on a number of diagnoses that reside on that chromosome. 

Finally, the inclusion of Disease Group data showed there was a large bias towards patients with a 

neurology and neurodevelopmental disorders phenotype (>50% of the cohort) which may have 

biased the results somewhat (Table 2). This is especially pertinent for the Dn analysis as Dn variants 

are a well-known source of pathogenicity for patients with such phenotypes (11-17), as shown by 

the highly significant enrichment we saw of Dn variants in this group (p_adj = 2.24x10-10). It should 

be noted however, that we also observed a highly significant enrichment of variants from this group 

that intersected a CCR95 region (p_adj = 7.47x10-10), 28% of which were not Dn variants. 

This observation is in stark contrast to the pattern of enrichment we saw for patients within the 

ophthalmological disorders Disease Group. For these patients we saw a highly significant 

underrepresentation of Dn, CCR95 and Dn_CCR95 variants (Table 2). For patients within the skeletal 

disorders Disease Group, we observed an underrepresentation of variants intersecting CCR95 

regions which was also observed for Dn_CCR95 variants but not for Dn variants alone (Table 2). For 

the remaining Disease Group phenotypes, the numbers were much smaller which reduced our 

power to identify any significant enrichments. 

Why we see such an enrichment for Dn and CCR95 variants in the neurology and 

neurodevelopmental disorders Disease Group patients is open to speculation but is beyond the 

scope of this study. Nonetheless, it does suggest that for patients with a neurology and 

neurodevelopmental disorders phenotype, the greatest diagnostic return will come from a trio 

sequencing approach and that this should be the first-tier test used by clinical diagnostic 

laboratories.  

Where a Dn analysis is not possible, due to unavailability of one or both parents or because of cost 

constraints, it is noteworthy that the use of CCR95 status alone will enable the identification of 

highly likely pathogenic variants. Our analysis shows that, of all the variants that intersected a CCR95 

(n=485), 81% (n=395) were clinically diagnosed pathogenic variants (Table 1). This observation could 

be particularly relevant to clinical diagnostic laboratories in low/middle economic countries where 
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sequencer availability and costs may render a Dn-trio diagnostic approach unfeasible for patients 

with a neurology and neurodevelopmental disorders phenotype. 

In summary, we have constructed a cohort of rare disease patients (n=3,090) that have undergone 

WGS as part of the GeL 100KGP, have been clinically assessed by a diagnostic laboratory and who 

have undergone a bespoke Dn variant calling pipeline. We have sought to determine if taking into 

account a variant’s Dn status, whether it intersects a CCR95 or both (Dn_CCR95) could improve our 

ability to identify clinically pathogenic variants. We show how the rate of diagnosis in our whole 

cohort (71%) increases when we look at just those variants that are classed as intersecting a CCR95 

(81%), Dn variants (84%) or a combination of both (87%) (Table 1). This observation seems to be 

driven primarily by patients with a neurology and neurodevelopmental disorders phenotype. We 

therefore suggest that, where possible patients with such a phenotype should receive WGS trio 

sequencing as a first tier test but where parent availability or cost make this unfeasible, the 

identification of variants intersecting a CCR95 is an alternative route to aid in the detection of highly 

likely clinically pathogenic variants. 

Further work should aim to apply this approach in systematic way in a standard clinical diagnostic 

laboratory to assess its utility and to determine if it can decrease the time taken to reach a diagnosis 

and therefore, allow more diagnoses to be made, thus increasing the overall diagnostic rate. 
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