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Abstract

Background

Clinical Decision Support Systems (CDSS) have the potential to improve and
standardise care with probabilistic guidance. However, many CDSS deploy static,
generic rule-based logic, resulting in inequitably distributed accuracy and inconsistent
performance in evolving clinical environments. Data-driven models could resolve this
issue by updating predictions according to the data collected. However, the size of data
required necessitates collaborative learning from analogous CDSS’s, which are often
imperfectly interoperable (IIO) or unshareable. We propose Modular Clinical Decision
Support Networks (MoDN) which allow flexible, privacy-preserving learning across IIO
datasets as well as being robust to the systematic missingness common to CDSS-derived
data, while providing interpretable, continuous predictive feedback to the clinician.

Methods & Findings

MoDN is a novel decision tree composed of feature-specific neural network modules. It
creates dynamic personalised representations of patients, and can make multiple
predictions of diagnoses and features, updatable at each step of a consultation. The
model is validated on a real-world CDSS-derived dataset, comprising 3,192 paediatric
outpatients in Tanzania.

MoDN significantly outperforms ‘monolithic’ baseline models (which take all features
at once at the end of a consultation) with a mean macro F1 score across all diagnoses of
0.749 vs 0.651 for logistic regression and 0.620 for multilayer perceptron (p < 0.001).
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To test collaborative learning between IIO datasets, we create subsets with various
percentages of feature overlap and port a MoDN model trained on one subset to
another. Even with only 60% common features, fine-tuning a MoDN model on the new
dataset or just making a composite model with MoDN modules matched the ideal
scenario of sharing data in a perfectly interoperable setting.

Interpretation

MoDN integrates into consultation logic by providing interpretable continuous feedback
on the predictive potential of each question in a CDSS questionnaire. The modular
design allows it to compartmentalise training updates to specific features and
collaboratively learn between IIO datasets without sharing any data.

Funding

Botnar Foundation (grant n°6278)

Author summary

Clinical Decision Support Systems (CDSS) are emerging as a standard-of-care, offering
probabilistic guidance at the bedside. Many deploy static, generic rule-based logic,
resulting in inconsistent performance in evolving environments. Machine learning (ML)
models could resolve this by updating predictions according to the collected data.
However, traditional methods are often criticised as uninterpretable “black-boxes” and
are also inflexible to fluctuations in resources: requiring retraining (and costly
re-validation) each time a question is altered or added.

We propose MoDN: a novel, interpretable-by-design, modular decision tree network
comprising a flexible composition of question-specific neural network modules, which
can be assembled in real-time to build tailored decision networks at the point-of-care, as
well as enabling collaborative model learning between CDSS with differing questionnaire
structures without sharing any data.
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1 Introduction 1

Probabilistic decision-making in medicine has the potential to bypass costly and 2

invasive clinical investigations, and holds particular promise to reduce resource 3

consumption in low-income settings. [1] However, it is impossible for any clinician to 4

memorise the increasingly complex, evolving and sometimes conflicting probabalistic 5

clinical guidelines [2], which has driven the need for Clinical Decision Support Systems 6

(CDSS) that summarise guidance into simple rule-based decision trees. [3–5] The 7

digitalization of some commonly used CDSS into mobile apps has shown promise in 8

increasing access and adherence to guidelines, while laying the foundation for more 9

systematic data collection. [6–8] 10

Despite their promise to bridge the ‘know-do gap’, a surprisingly low proportion of 11

popular guideline recommendations are backed by high quality evidence (‘know’), [9] 12

and an even lower proportion of mobile tools have been rigorously tested in practice 13

(‘do’). [10] While likely to generally improve and standardise care, their static and 14

generic logic would result in inconsistent performance in light of changing epidemiology 15

as well as an inequitable distribution of accuracy in underrepresented populations. [1] 16

To address these limitations, there is a move toward data-driven predictions that 17

incorporates machine learning (ML), [11–14] with the goal to leverage more complex 18

multi-modal data and derive self-evolving algorithms [15]. The WHO SMART 19

guidelines [16] advocate for a faster and more systematic application of digital tools. 20

More specifically, the last layer of these guidelines reflects the use of dynamic, 21

big-data-driven algorithms for optimised outcomes and updatable recommendations. 22

This move is predicted to improve CDSS safety and quality, [17] especially in 23

low-resource settings. [18, 19] Additionally, as such models improve with the addition of 24

good quality data, they inherently incentivise better data collection, a positive feedback 25

termed the CDSS Loop [20]. 26

Regardless, the data collected with decision tree logic is fundamentally flawed by 27

biased missingness. [21] Patients are funneled into high-yield question branches, yielding 28

systematic missing values for questions that are not asked. Models trained on such data 29

can easily detect patterns in the missingness of features rather than in their values, thus, 30

not only failing to improve on the rule-based system, but also becoming clinically 31

irrelevant. 32

Such issues of data quality and utility are secondary to the more general limitation 33

of availability. Patient-level data is rarely shared due to well-considered concerns of 34

privacy and ownership. The inability to share data fragments statistical power, 35

compromises model fairness, [22] and results in poor interoperability, where CDSS users 36

and developers do not align data collection procedures. 37

The latter can limit collaborative learning across analogous CDSS tools, restricting 38

them to use only features that are available to all participants. [11] 39

Even if the above issues of data quality, availability and interoperabilty are resolved 40

(for example, with the powerful cross-EHR solution proposed by Google Research [15]), 41

the ‘updating’ of ML models still poses a major regulatory issue which may make them 42

unimplementable. [23] ‘Perpetual updating’ is one of the main motivations for the 43

transition to ML [14] to combat ‘relevance decay’, [24] which can be dramatic in rapidly 44

evolving environments with changing epidemiology and unreliable resources. Indeed, 45

after the laborious processes of data collection, cleaning, harmonisation, model 46

development and clinical validation, the tool could already be outdated. The problem is 47

that while ML models can learn autonomously from updating data streams, each 48

update requires whole-model retraining that invalidates the previous version, which is 49

likely to make the promise of perpetual updates unfeasible. 50

In this work, we propose the Modular Decision Support Network (MoDN) to provide 51

dynamic probablistic guidance in decision-tree based consultations. The model is 52
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extended during the course of the consultation, adding neural network modules specific 53

to each question asked. This results in a dynamic representation of the patient able to 54

predict the probability of various diagnoses at each step of a consultation. 55

We validate MoDN on a real world CDSS-derived data set of 3000 pediatric 56

outpatient consultations and show how the feature-wise modular design addresses the 57

issues above, such as collaborative learning from imperfectly interoperable (IIO) 58

datasets with systematic missingness, while improving data availability, model fairness 59

and interpretability. The feature-wise modularisation makes MoDN 60

interpretable-by-design, whereby it aligns its learning process with the clinician, in 61

step-by-step “consultation logic”. It can thus provide continuous feedback at each step, 62

allowing the clinician to directly assess the contribution of each feature to the prediction 63

at the time of feature collection. A major contribution, is the possibility to 64

compartmentalise updates to affected features, thus retaining validity. 65

Materials and methods 66

Below, we describe MoDN, a deep learning CDSS composed of interchangeable, 67

feature-specific neural network modules. We validate it on a real-world CDSS-derived 68

data set and visualise its capacity to represent patient groups and predict multiple 69

diagnoses at each stage of the decision tree. Two additional experiments are designed to 70

test its portability to imperfectly interoperable data sets, and compartmentalise updates 71

to a targeted feature sub-set. 72

Data set 73

Cohort description 74

We train, test and validate MoDN on a CDSS-derived data set comprising 3,192 75

pediatric (aged 2–59 months) outpatient consultations presenting with acute febrile 76

illness. The data was collected in nine outpatient departments across Dar es Salaam, 77

Tanzania between 2014 and 2016 as part of a randomised control trial on the effect of 78

CDSS on antibiotic use, hereafter referred to as ePOCT. [25] The data had over 200 79

unique feature sets of asked questions (i.e. unique combinations of decision branches in 80

the questionnaire). 81

Ethics 82

Written informed consent was obtained from the caregivers of all participants as 83

described in Keitel et al.ePOCT. [25] The study protocol and related documents were 84

approved by the institutional review boards of the Ifakara Health Institute and the 85

National Institute for Medical Research in Tanzania, by the Ethikkommission Beider 86

Basel in Switzerland, and the Boston Children’s Hospital ethical review board. An 87

independent data and safety monitoring board oversaw the study. The trial was 88

registered in ClinicalTrials.gov, identifier NCT02225769. 89

Features and targets 90

A subset of eight diagnoses and 33 features were selected in order to ensure 91

interpretable reporting and limit computational cost. Selection of both targets and 92

features were based primarily on prevalence (i.e. retaining the most prevalent). Features 93

were additionally tested for predictive redundancy in bivariate Pearson’s correlation, 94

and strongly collinear features were randomly dropped. The features comprise 95
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demographics, medical history, clinical signs and symptoms and laboratory results 96

collected at the time of consultation and are detailed in Table S1. 97

MoDN aims to simultaneously predict eight retrospectively derived diagnoses, 98

namely anaemia, dehydration, diarrhoea, fever without source, malaria, malnutrition, 99

pneumonia, and upper respiratory tract infection. Patients can have none or several of 100

these diagnoses. 101

It is also possible to predict (impute) any of the 33 missing features; experimentation 102

on feature decoding is detailed in the supplement (p 18). 103

Pre-processing 104

As explained, the decision tree logic of questionnaires in CDSS-derived data creates 105

systematic missingness, where diagnostic endpoints may have unique feature sets. We 106

exploit these patterns to derive the consultation logic (i.e. order of asked questions) and 107

thus align training with clinical protocol. For groups of questions that are either all 108

present or all missing according to the outcome, relative ordering is impossible, and thus 109

randomised. 110

To ensure that our model performs well for patients outside of the training data set, 111

we randomly partition the data into train (n = 1914, 60%), validation (n = 639, 20%), 112

and test (n = 639, 20%) splits. We optimize the model on the training set only, tune its 113

hyperparameters based on the validation split, and report its final performance on the 114

test split that was not used in creating the model. We then obtain a distribution of 115

estimates using five iterations of two-fold cross validation [26], where data is randomly 116

re-partitioned. 117

MoDN 118

Model architecture 119

MoDN comprises three core elements: encoders, decoders, and the state as listed below 120

and summarised in Fig 1. 121

• The state, s, is the vector-representation of a patient. It evolves as more answers 122

are recorded. 123

• Encoders are feature-specific and update the state with the value of a newly 124

collected feature based on the current version of the state. 125

• (Diagnosis) decoders are output-specific and extract predictions from the state at 126

any stage of the consultation. Predicted outputs can be any data set element, 127

including the features themselves. These feature decoders provide a dynamic 128

patient-specific imputation of values not yet recorded. All feature-decoding 129

experimentation is detailed in the supplement (p 18) in figures S1 and S2. 130

Encoders and decoders are thus respectively feature or output specific multilayer 131

perceptrons (MLP). This modularises both the input space as well as the predictions 132

made in the output space. More details are provided in the appendix (p 17). 133

We consider the consultation data of a patient as an ordered list of (question, answer)
pairs, (q1, a1), (q2, a2), . . . , (qT , aT ). The ordering of questions asked simultaneously is
randomized. As new information is being collected, the state vector s ∈ Rs evolves as:

s0 = S0 ∈ Rs, a trained constant, (1)

st = Eqt(st−1, at), for t = 1 . . . T, (2)

where Eqt : (R,Rs) → Rs is an encoder specific to question qt. It is a small MLP 134

with trainable parameters. 135
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State
Numerical

representation
of patient

Patient’s age

Age
encoder

Anemia
decoderDecoder 

module

Malaria
decoder

Fever
encoder

Fever yes/no

Anemia
decoder

Continuous feedback

Sequential updates

Diagnosis-specific
multilayer perceptron

Encoder 
module

Feature-specific
multilayer perceptron

with increasing
predictive confidence

as new information
becomes available

Fig 1. The Modular Clinical Decision Support Network (MoDN). The state is
a representation of the patient, which is sequentially modified by a series of inputs.
Here, we show in blue age and fever values as modifying inputs. Each input has a
dedicated encoder which updates the state. At any point in this process, the clinician
can either apply new encoders (to update the state) or decode information from the
state (to make predictions, in green).

After gathering the first t answers, the probability of a diagnosis d is then predicted
as:

pt(d) = Dd(st), (3)

where each decoder Dd : Rs → [0, 1] is also a small MLP with trainable parameters. 136

Model optimisation 137

We optimize the parameters of the trainable components of MoDN, written as 138

calligraphic symbols, using a training set of C completed consultations. In addition to a 139

list of questions and answers, each consultation also features binary ‘ground-truth’ 140

labels ycd that indicate whether consultation c was diagnosed with d. Following the 141

principle of empirical risk minimisation, our training objective is a sum over C 142

consultations c, but also over D potential diagnoses d, and T ‘time-steps’: 143

min

C∑
c=1

D∑
d=1

T∑
t=0

ℓ (pct(d), y
c
d) +R, (4)

The parameters to be optimized are implicit in pct(d). For binary diagnoses, ℓ is 144

cross-entropy loss. The inclusion of different time-steps in the objective ensures that 145

MoDN can make predictions at any stage of the consultation. 146

The regularization term R in our objective ensures that the states do not change
more than necessary to encode the new information:

R =
1

s

C∑
c=1

T∑
t=1

∥sct − sct−1∥2. (5)

We optimize Equation 4 with the Adam optimizer [27]. For each step, we sample a 147

batch of consultations, and sum the decoder losses at the multiple intermediate 148

time-steps T . We randomize the order within blocks of simultaneously asked questions. 149
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Visualizing the MoDN state 150

The state S may become highly dimensional in complex data sets rendering it 151

uninterpretable. To gain some visual insight into this vectorised representation of a 152

patient, we use the t-distributed stochastic neighbor embedding (t-SNE) [28] 153

dimensionality reduction algorithm, where similar data points are mapped close to each 154

other in a lower dimensional embedding. By overlaying the data points (states) with a 155

colour representing the diagnosis, we can visualise how well the state represents the 156

predicted label. 157

Baseline models for MoDN performance 158

MLP and logistic regression are used as baselines to compare with MoDN for binary 159

diagnostic classification tasks (i.e. one model per diagnosis). Train-test splits and 160

pre-processing is identical to MoDN with the exception of imputation. As traditional 161

ML models cannot handle missing values, mean value imputation was performed. 162

Performance is reported as macro F1 scores (the harmonic mean of precision and 163

sensitivity). Models are compared with a paired t-test on a distribution of performance 164

estimates derived from a 5× 2 cross validation as per Dietterich et al. [26] We also 165

report calibration curve. 166

Experimental set up 167

A common issue when CDSS are updated in light of newly available resources (e.g. new 168

questions/tests added to the CDSS) is incomplete feature overlap between old and new 169

data sets. To test the capacity of MoDN in such imperfectly interoperable (IIO) 170

settings, we simulate IIO subsets within the 3, 192-patient CDSS-derived data described 171

previously. These IIO subsets are depicted in Table 1, where data sets A and B 172

comprise 2, 068 and 516 patients respectively. Performance is then evaluated on an 173

independent test set of size 320 (D), in which all of the features are available. Internal 174

validation for each model is performed on the remaining 288 patients (C ′ and C for 175

validation of data sets A and B respectively, which differ in the number of features 176

provided). Three levels of IIO (90%, 80% and 60%) are simulated between data sets A 177

and B by artificially deleting random features in A. These are compared to a baseline 178

of perfectly interoperable feature sets (100% overlap). Within these data sets, all 179

experiments are performed with 5−fold randomisation of data set splits and available 180

features to obtain a distribution of F1 scores which are averaged to a macro F1 score 181

with 95% confidence interval. 182

New IIO user experiment: Modularised fine-tune 183

In this common scenario, a clinical site starts using a CDSS. It has slightly different 184

resources and is thus IIO compared to more established implementation sites. However, 185

it would still benefit to learn from these sites while ensuring that the unique trends in 186

its smaller, local data set are preserved. Due to ethical constraints, data sets cannot be 187

shared. 188

We hypothesise that MoDN is able to handle this scenario via ‘modularised 189

fine-tuning’ as depicted in Figure 2. Here, a MoDN is pre-trained on the larger (unseen) 190

data set A and ported to B where all of the modules are fine-tuned. Thus personalising 191

the existing modules as well as adding new modules unique to B, thus creating a new 192

collaborative IIO model without sharing data. 193
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Split Partition Patients Interoperable Imperfectly interoperable

Train Source (A) 2 068

Features

60% features
80%
90%

Target (B) 516

Validation Source 288
Target 288

Test Source 288

Table 1. Imperfectly interoperable (IIO) data sets. From the 3,192-patient
CDSS-derived data set, we create two training sets with three levels of imperfect feature
overlap (60, 80 and 90%) compared with perfect interoperability (100%). In our
experiments, the owner of a small ‘target’ data set (fewer patients) wants to benefit
from a larger ‘source’ data set without having access to this data. The ‘source’ may lack
several features that are available in the ‘target’, yielding several levels of ‘imperfect
interoperability’. We construct validation sets with and without these missing features,
as well as a held-out test set. The F1 scores we report in this paper are averages over
five randomized folds of this data-splitting procedure.

New IIO resource scenario: Modularised update 194

In this common scenario, a site using a CDSS acquires new resources (e.g. new 195

point-of-care diagnostic tools). It would like to update its CDSS model with the data 196

collected from this new feature, but it cannot break the validity of the existing 197

predictions that have been approved by the regulatory authority after a costly 198

validation trial. 199

We hypothesise that MoDN is able to handle this scenario via feature-wise 200

compartmentalisation of model updates. Keeping all experimental conditions identical 201

as depicted in Figure 2, MoDN is pre-trained on the larger (unseen) data set A and 202

ported to B (hosting new resources). The key difference is that no fine-tuning occurs. 203

Rather, we seek to preserve the predictive validity of the MoDN modules of overlapping 204

features by freezing them. Thus, the modules are first trained on A and then fixed, 205

mimicking a validated model. When including data B, the modules are combined and 206

only the encoders corresponding to the ‘new’ features in B are trained. 207

Baseline models for IIO experiments 208

Three baselines are proposed as depicted in blue, green and purple in Figure 2. 209

• The static model is where modules trained in A are directly tested in B, thus 210

not considering additional IIO features. 211

• The local model is where modules are only trained on the target data set B, 212

thus without insights from the larger source data set. 213

• The global model is the ideal, but unlikely, scenario of when all data can be 214

shared between A and B and the modules are trained on the union of data 215

(A ∪B). 216

Results 217

For simplicity, only results for diagnostic decoders are reported. Results for a model 218

including feature decoding and idempotence (i.e. where a specific question-answer pair 219
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Fig 2. Experimental set up for porting MoDN modules in IIO settings.
MoDN is tested in two ”model porting experiments” (grey), where modules are ported
from a larger source data set (A) for fine-tuning or updating on a smaller, imperfectly
interoperable target data set (B). The two experiments represent either a scenario
where a new user with different resources starts using a CDSS or where an existing user
gains new resources and would like to merge training. Three baselines are proposed.
Static (blue) where modules trained in A are directly tested in B, thus not considering
additional IIO features. Local (green) where modules are only trained on the target
data set B, thus without insights from the larger source data set. Global (purple) is
the ideal but unlikely, scenario of when all data can be shared between A and B and
the modules are trained on the union of data (A ∪B). The modularised fine-tuning
experiment, pre-trains on A and then fine-tunes all modules (for all features) on B
(thus personalising the modules trained on A). The modularised update experiment,
pre-trains the blue modules on A and then adds modules specific to the new IIO
features (in green) which have been independently trained on B (thus preserving the
validity of the modules trained on A). The colors of the MoDN modules illustrate their
training on distinct data sets and their potential re-combination in the porting
experiments. In particular, the modules trained on A (blue) and fine-tuned on B
(green) are thus depicted in teal.

will not change the prediction regardless of how many times it is asked) can be found in 220

1 and 1. 221

Visualizing the MoDN state 222

After encoding all available features and retrieving the resulting states from MoDN, we 223

compute the t-SNE mapping of the ‘vectorised patients’ in order to visualise them as 224

points on a two-dimensional plot. For visual simplicity, we limit this to the patients in 225
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the training set who have one (or a combination) of the top 8 diagnoses, namely, 226

pneumonia +/- anemia, fever without source (FWS) +/- anemia, upper respiratory 227

tract infection (URTI) +/- anemia, diarrhea and ‘other’ (the latter of which is 228

anticipated to have a more distributed placement on the plot). 229

Here, the state is represented as a point and clustered with similar states. Each 230

mapped data point is colored according to their true diagnosis/diagnoses. Figure 3 231

shows several clearly homogenous clusters indicating that patients with the same 232

diagnoses are ‘close’ to each other in our internal model representation (and thus that 233

the state represents the outcome). Furthermore, we see smooth transitions between the 234

clusters. For example, patients with FWS (in green) are mapped next to patients with a 235

combination of FWS and anemia (in turquoise). Conversely, we see the other diagnoses 236

to be more distributed in multiple clusters as would be expected. 237
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Fig 3. Two dimensional t-SNE decomposition of the state vector for the
patients of the training set. The projection for each data point is overlaid with a
color representing the true diagnosis/diagnoses of the patients.
URTI: Upper Respiratory Tract Infection, FWS: Fever Without Source

MoDN diagnosis decoding 238

The predictive performance of MoDN was compared to the best logistic regression and 239

MLP algorithms for each target diagnosis. Figure 4 shows the macro F1 scores 240

(unweighted average of F1 scores for the presence and absence of the disease). An 241

overall performance is computed as the average over all diagnoses. Paired t-tests show 242

that MoDN significantly outperforms the baselines for all binary classifications as well 243

as for the overall diagnosis prediction. Malaria is an exception, where MoDN and 244

baseline models have equivalent performance. 245

The confidence calibration plot in Figure 5 shows the predicted diagnosis 246

probabilities by MoDN versus the correctness likelihood in the test set. For example, 247

out of all the test points for which our model predicts a probability 0.9 of having disease 248

d, our model is perfectly calibrated if 90% of these test points are indeed labeled as 249

having d. In Figure 5, the points representing the confidence of our model are close to 250

the line of perfect calibration. This shows that the predicted probabilities of MoDN are 251

a good reflection of its confidence. 252

August 6, 2022 10/25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.17.22278908doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.17.22278908
http://creativecommons.org/licenses/by/4.0/


0.0 0.2 0.4 0.6 0.8 1.0

Macro F1 score

All diseases
(aggregated)

Anemia

Dehydration

Diarrhea

FWS

Malaria

Malnutrition

Pneumonia

URTI

*
*
*

*
*
*

*

n
s

*
*
*

*
*
*

* *

n
s

*
*
*

n
s

n
s

*

n
s

*

*
*

*
*

*
*

* p < 0.05
** p < 0.005
*** p < 0.001
ns not significant

Logistic regression

Multilayer Perceptron

MoDN (Ours)

Fig 4. MoDN diagnosis decoding performance Mean of the 5× 2 cross-validated
macro F1 scores for the diagnosis prediction on the test sets. Furthermore, MoDN
significantly beats at least one of the baselines for each of the individual diagnoses
except for malaria.
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Fig 5. MoDN calibration curve of the predictions on the test set after having
encoded all available features.

Visualizing diagnostic trajectories 253

The metrics in the previous section show the model performance on unseen data once 254

all the available features have been encoded Figure 4. One of the assets of our model is 255

that it provides the clinician with feedback at any point in the consultation. For a given 256

patient, the clinician can thus see how the predictions evolve as the features get 257

encoded. The two heatmaps in Figure 6 show the predictive evolution for two randomly 258

selected patients from the test set. The possible diagnoses are given by the y−axis and 259

the x−axis shows the sequentially encoded features (from left to right), along with the 260

values for that specific patient. We see how the model shifts towards the colour poles 261
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(blue and red extremes) as it learns more about the patient and gains confidence. The 262

cut-off for binary classification is 50%. Thus, each percentage above 50% is increasing 263

confidence in a positive diagnosis, while each percentage below is increasing confidence 264

in a negative diagnosis. In each case, the model predicts the outcome correctly, but with 265

various levels of confidence, with different patterns of evolution. For example, in 266

Figure 6a predictive confidence accumulates slowly throughout the consultation, while 267

in Figure 6b a confident prediction is achieved early, after a highly determinant question 268

of ”fever only”. In another case (Figure S3), the model predicts correctly but with less 269

confidence (remaining at about 0.6). 270

These feature-wise predictions thus give the clinician an assessment of the impact of 271

that feature on the prediction. 272

The new IIO user scenario: Modularised fine-tuning 273

Here, we test modularised fine-tuning of MoDN in the ‘new IIO user’ scenario as 274

described in Figure 2. With MoDN, we can port the relevant modules pre-trained on 275

the larger more established source data set to another smaller and IIO new data set and 276

fine tune them whilst adding additional modules. Figure 7 shows the performance in 277

macro F1 score for this proposed solution (dark grey, Modular fine-tuning) tested in 278

four levels of feature overlap (from 60—100%), and compared to three baselines 279

described in Figure 2 i.e. global (training on shared data), local (training on full feature 280

set but only on new data), and static (training only on source data and thus with a 281

restricted feature set). 282

We see that a MoDN model built with modularised fine-tuning (without sharing 283

data) matches the performance of the global model (trained on the union of shared 284

data) and that it maintains its performance at all levels of feature overlap tested. This 285

is in contrast to the static model (teal), which is significantly affected by decreasing 286

feature overlap. 287

The new IIO resource scenario: Modularised updating 288

This model isolates training updates to newly added features (in the scenario where new 289

resources become available and are added to the decision tree). We use the trained 290

modules from the source data set as a starting point and keep their parameters fixed. 291

We then apply the frozen modules to the local data set and only train the modules 292

corresponding to new features. The performance of this model is shown in light grey in 293

Figure 7. Similarly to the modularised fine-tuning, we see that modularised update 294

matches the global model where all data is shared. This shows that MoDN decision 295

rules can be adapted to new features without modifying previously validated predictions 296

of existing features, thus preserving the validity of the tool. 297

Discussion 298

With the increasing use and complexity of electronic health records, there is enormous 299

potential for deep learning to improve and personalise predictive medicine. However, it 300

has not yet reached wide-spread use due to fundamental limitations such as insufficient 301

performance, poor interpretability, and the difficulty of validating a continuously 302

evolving algorithm in prospective clinical trials. [29, 30] When deployed, there is a 303

tendency to favor sparsely-featured linear models, probably for their inherent 304

interpretability and as a consequence of exploiting fortuitous feature overlaps between 305

imperfectly interoperable (IIO) data sets, which limits feature diversity. However, the 306
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Fig 6. MoDN’s feature-wise predictive evolution in two random patients.
Each graph represents a single patient randomly selected from the test set. The y−axis
lists the eight possible diagnoses predicted by our model. The true diagnosis of the
patient is in bold and marked by an ‘*’. The x−axis is a sequential list of questions
asked during the consultation (the response of that specific patient is also listed). In
each case the model predicts the true label correctly. The heatmap represents a scale of
predictive certainty from red (positive, has diagnosis) to blue (negative, does not have
diagnosis), where white is uncertain. (a) Patient with the true diagnosis of pneumonia
and anaemia. Here, predictive confidence accumulates slowly throughout the
consultation. (b) Patient with a true diagnosis of FWS. Here, a confident prediction is
achieved early after a highly determinant question of ”fever only”. *: True diagnosis,
URTI: Upper Respiratory Tract Infection, FWS: Fever Without Source, Threshold:
probability at which the model categorises the patient with a diagnosis(50%)
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Fig 7. Comparison between the ported models and the baselines.
Performance metric is the mean macro F1 scores with 95% CIs. Modularised fine-tuning
or updating on additional local features (gray) consistently increases the model’s
performance compared to statically using a source model that only uses shared features
(teal). The modularised update scenario achieves this without changing the model’s
behaviour on patients in the source dataset. The fine-tuning approaches perform almost
as well as the global baseline (purple) that trains on the union of shared data. When
the percentage of shared features is 80 or 100%, fine-tuning is significantly better than
training only locally on the small ‘target’ dataset (green).

August 6, 2022 14/25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.17.22278908doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.17.22278908
http://creativecommons.org/licenses/by/4.0/


personalising patterns in health data are unlikely to be linear nor explained by a few 307

features. [31] 308

In this work, we proposed MoDN, a novel approach to constructing decision support 309

systems that seeks to address the issues above, allowing interpretable deep learning on 310

imperfectly interoperable data sets. 311

In predicting diagnoses Figure 4 and features (supplement p 18), we see that the 312

modularity of MoDN yields a significant performance benefit compared to its 313

‘monolithic’ counterparts, the latter of which process all features at once as opposed to 314

an ensemble of feature-wise models. It outperforms logistic regression as well as MLP 315

for all diagnoses excepting malaria. As malaria is strongly predicted by a single feature 316

(i.e the rapid diagnostic test), it is anticipated that model design would have limited 317

predictive value. Particularly useful is that the gain in performance does not come at a 318

higher computational cost, as MoDN uses a similar number of parameters. 319

The architecture of our model is similar to classic modular neural networks (MNNs) 320

described by Shukla et al. [32] However, there is little literature on the implementation 321

of MNNs in the medical field and in the examples found, the module resolution is 322

limited to pre-defined feature clusters such as in Pulido et al. [33] for the diagnosis of 323

hypertension. The feature-wise modules in our proposed method means that no 324

subgroups of features are constrained to be present together. 325

Visualising the states of MoDN in a 2-dimensional space Figure 3, we see the 326

clustering and granularity of patient representations align with interpretable 327

expectations of patient similarity. For instance, the catchall diagnoses of ‘other’ and 328

‘fever without source’ (FWS) have the most distributed spread, while more specific 329

diagnoses have more homogeneous clusters. Interestingly for FWS, we see the states are 330

distributed into four clear sub-populations, which we hypothesise may relate to the 331

unknown etiology of the patient’s fever. A previous effort to cluster patient profiles 332

using unsupervised auto-encoders showed the potential of deriving a general-purpose 333

patient representation from medical data and how it could facilitate clinical predictive 334

modeling. [34] 335

MoDN sequentially ensembles feature-specific modules into a continuously 336

‘extending’ model. A key benefit of this approach is the ability to make granular 337

interrogations of the predictive impact of each feature. Thus, MoDN aligns the learning 338

process with the clinician, where they can visualise the diagnosis evolve during the 339

consultation. This could act as a training tool, helping them understand the impact of 340

their responses, which may in turn guide more careful collection of highly determinant 341

features. To the best of our knowledge, the evolutive feature importance of MoDN is 342

unique to the literature on CDSS. In traditional monolithic models, feature importance 343

is computed retrospectively, using computationally expensive techniques, which may not 344

allow the user to make corrective steps at the time of feature collection. 345

As stressed in many works, systematic missingness poses a major limitation to 346

traditional deep learning on CDSS data. [21] Typical ML algorithms that operate on a 347

vector of features are particularly affected by missingness because all data points must 348

be encoded in some way in order to use the feature. The result is that the feature is 349

either dropped or imputed, thus either reducing available information or injecting 350

noise/bias. The risk of bias is particularly high when imputing systematically missing 351

data common to CDSS. Thus, traditional models carry the risk of exploiting clinically 352

irrelevant patterns of systematic missingness. The feature-specific modules of MoDN on 353

the other hand, by design, cannot detect cross-feature patterns in missingness, and no 354

imputation or feature limitations are required. Few other options exist for 355

imputation-free neural nets. For instance, Network Reduction proposes a single neural 356

net for each possible configuration of complete features [35]; an idea that has since been 357

iterated by Krause et al. [36] and Baron et al. [37]. However, all these approaches suffer 358
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at scale, where the number of possible configurations grows exponentially with the 359

number of features, creating an unfeasible computational overhead in 360

high-dimensionality data sets. By comparison, the number of NN in our approach is 361

linear in the number of features. 362

As mentioned throughout this work, MoDN seeks to use modularisation to address 363

the issues faced during collaborative algorithm updates, i.e. 1) offering users the ability 364

to update targeted modules in vacuo, thus retaining the validity of previously validated 365

modules, and 2) allowing models to be ported between IIO datasets. A large-scale study 366

on 200,000 patients by Google research, [15] demonstrated an approach to deploying 367

deep learning on IIO data from multiple centers. They developed an automated data 368

harmonisation pipeline, and showed that they could accurately predict multiple medical 369

events. However, such models would still be limited to the fortuitously overlapping 370

feature sets. The results in Figure 7 show that MoDN is able to address the loss of 371

information caused by IIO data in decentralised settings, where it matches performance 372

of a ‘global’ baseline trained on the union of shared data. This portability, also makes 373

MoDN more amenable to distributed learning. 374

Limitations 375

This work sought to validate MoDN on a real-world data set and specifically work 376

within the consultation logic of the CDSS. This also limits its findings to the inherent 377

diversity available in the question structure of this data set (albeit large, with over 200 378

unique question sets detected). A knock on effect of training MoDN on a single fixed 379

questionnaire logic, is that we cannot guarantee the performance of the algorithm if the 380

question order used in a consultation differs from the order in the training set. 381

This could be addressed by simply randomising all questions into a global question 382

block, which would also allow MoDN to provide insights on the ‘next most predictive 383

questions to ask’. 384

Conclusion 385

Modular Clinical Decision Support Networks show the various advantages of 386

modularising neural nets into bite-sized predictions, which not only improves predictive 387

performance on CDSS-derived data but also allows it to interpretably integrate into the 388

sequential logic of a medical consultation. The flexible portability of the modules also 389

provides more granular options to building collaborative models which may address 390

some of the most common issues of model validity as well as data ownership and privacy. 391
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Supporting information 414

Methods 415

Feature selection 416

number of available values minimum value maximum value description

agem 3192 2.069815 59.794659 Age in months
ex 3192 0.000000 1.000000 Sex
hiv mom 3185 0.000000 9.000000 Mother’s HIV status
ttt before 1725 0.000000 16.000000 Treatment received before D0 visit
vac pcv1 1569 0.000000 9.000000 History: 1st pneumococcal vaccine
vac pcv3 1159 0.000000 9.000000 History: 3rd pneumococcal vaccine
bcx id 622 1.000000 25.000000 Blood cx ID, D0
pglucose 305 3.100000 14.100000 blood sugar (mmol/L), D0
udip ket 687 0.000000 4.000000 Urine ketones
udip nit 686 0.000000 2.000000 Urine nitrites, D0
udip spec 673 1.000000 6.000000 Urine Spec Grav, D0
urine cx id 74 1.000000 15.000000 Urine culture: Microbe identified
urine type 553 1.000000 3.000000 Urine: type of collection, D0, F23
convulscomplex 3191 0.000000 1.000000 Sign: Complex convulsion ¿=2/24h (d0)
pallor 3192 0.000000 1.000000 Sign: Any sign of anemia (d0)
respdistress 3192 0.000000 1.000000 Sign: respiratory distress (d0)
skin sev 3192 0.000000 1.000000 Sign: Severe skin or soft tissue infection (d0)
hr1 3142 93.000000 214.000000 Heart rate, initial, D0
hypox 1596 0.000000 1.000000 Vital Sign: Hypoxemia, D0
muaclow 2811 0.000000 1.000000 Vital Sign: MUAC ¡11.5cm & age¿6 months
rr1 3180 20.000000 90.000000 Initial RR entered, D0
temp 3186 37.500000 42.000000 Axillary temperature, D0
waz 3188 -6.950000 5.310000 Weight-for-age z-score
complaint 3192 0.000000 8.000000 NaN
eye 3191 0.000000 1.000000 Symptom: Any eye problem (d0)
abdopain 3191 0.000000 1.000000 Chief Complaint Abdominal Pain, D0
dyspnea 3191 0.000000 1.000000 Chief Complaint Difficulty Breathing, D0
dysuria 3191 0.000000 1.000000 Chief Complaint Dusuria, D0
fev 3192 0.000000 1.000000 Chief Complaint Fever, D0
feveronly 3192 0.000000 1.000000 Chief Complaint Fever Only, D0
loa 3191 0.000000 1.000000 Chief Complaint Loss of Appetite, D0
pharyngitis 3191 0.000000 1.000000 Chief Complaint Mouth/Throat problem, D0
uri 3192 0.000000 1.000000 Chief Complaint URI, DO

Tab S 1. Summary statistics of the features of the e-POCT data set.

Model architecture and implementation details 417

The different modules of MoDN are multilayer perceptrons (MLP). MLPs are fully 418

connected feedforward neural networks. The weights and biases of each neuron are 419

optimized via the backpropagation algorithm. 420
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We used ReLU activations and one or two hidden layers for each module. The 421

overall architecture thus remained quite simple. For each training data point, the state 422

S is initialized as a random PyTorch [38] tensor of size s. The initial state is also 423

optimized throughout the training process. The input layers are of size 1 + s, s and s 424

respectively for the encoders, feature decoders and disease decoders. The output layer is 425

of size s for the encoders and 2 for the continuous feature decoders (predicting the mean 426

and standard deviation). The disease decoders and the categorical feature decoders also 427

both have an output of size 2, with a softmax activation applied to the output layer to 428

compute the probabilities of the two classes. 429

Feature decoding 430

We present here an extended version of the MoDN, including some additional modules 431

to perform ‘feature decoding’. This allows the clinician to retrieve the values for 432

previously encoded features or to get predictions for unavailable features. For each 433

feature, we defined a feature decoder. Depending on the nature of the feature, they are 434

either continuous or binary. The feature decoders are applied to the state S to predict 435

the value of the feature. If feature j is continuous, Fj , Fj : Rs −→ (R, R+). It predicts 436

the mean and standard deviation of feature j. If feature j is binary, we have 437

Fj : Rs −→ {0, 1}. 438

In the optimization process of our model we included an auxiliary loss function to 439

train our model to perform feature decoding. The feature decoding loss is made of two 440

components. A ‘known’ part, corresponding to the features that have already been 441

encoded, and an ‘unknown’ part, for the features from a later stage in the tree. The 442

‘known’ part ensures that the model retains past information, and the ‘unknown’ infers 443

correlations between encoded features and later features in the tree. 444

The continuous features are optimized using the negative log-likelihood loss and the 445

binary features with the cross-entropy loss. 446

Let ztp = [(q0p, a
0
p), (q

1
p, a

1
p), . . . , (q

t
p, a

t
p)] be the ordered list of (question, answer) pairs 447

for patient p as defined in Equation 4. cθ(z
t
p, j) is the prediction of the model for 448

patient p and feature j given the patient information up to t and ajp is the true value of 449

feature j. For the “known” part of the loss, we sum the predicted feature values for 450

features known to the model. 451

feature loss known =
N∑

p=1

T∑
t=1

∑
j<=t

ℓ(cθ(z
t
p, j), a

j
p) (6)

where ℓ is the negative log-likelihood loss or the cross-entropy loss, depending on the 452

nature of the feature. We sum over all the N patients in the dataset and their 453

corresponding ordered lists ztp. Similarly, the unknown part of the model is given by 454

feature loss unknown =
N∑

p=1

T∑
t=1

∑
j>t

ℓ(cθ(z
t
p, j), a

j
p), (7)

where we sum over the predicted information that has not yet been provided to the 455

model. 456

As explained in section 1 during each SGD step, once all the features in a level of 457

the consultation tree have been encoded, the disease decoders are applied. At this stage, 458

we also apply all the feature decoders and compute the feature loss known and 459

feature loss unknown. 460
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Idempotence 461

We trained the MoDN to be idempotent. An operator is idempotent if it has the same 462

effect whether it is applied once or several times. In our setting, it means that the 463

information vector for a patient should not change even if the same feature is encoded 464

twice or more. To enforce that constraint, an additional loss, the idempotence loss was 465

added to the global loss minimized during the optimization. For each feature, we 466

computed the mean squared error between the state after having encoded all the 467

features once and the state after re-encoding the given feature. Let F be the number of 468

different features in the model, Sp
b the state for patient p once all the features have 469

been encoded once, and Sf
p the state after re-encoding feature f . Then, the loss is given 470

by 471

idempotence loss =
N∑

p=1

F∑
f=1

(
Sb
p − Sf

p

)2
. (8)
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Results 472

Calibration curves 473

The calibration curve in Figure 5 was computed using the observations of the test set. 474

The probability space was split into 13 equally space bins. The x−axis shows the mean 475

final predicted probability by the MoDN for the observations in each bin. The y−axis 476

shows the proportion of positive diagnoses for the observations in each bin. For a given 477

disease d, let P̂ (d) = p be the estimated probability by the MoDN of having d. Then 478

the y−axis is an estimate of P
(
d | P̂ = p

)
, the true probability of having d, knowing 479

that the MoDN predicted p. 480

MoDN with feature decoding 481

We present here the predictive performance results for MoDN when trained additionally 482

to perform feature decoding. As for the main model, 1 shows that MoDN outperforms 483

the baselines significantly for the overall disease prediction. Furthermore, it outperforms 484

the performance of at least one of the baselines for each of the individual diseases, 485

except for pneumonia. The calibration curve in 2 shows that the model with feature 486

decoding is calibrated close to the perfect calibration line. These results indicate that 487

with accurate tuning, the model maintains a competitive predictive performance even 488

with the increased complexity due to the additional feature decoding loss function.
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Fig S 1. Macro F1 scores for the disease prediction on test set. The baselines of MLP
and logistic regression with L2 penalty were tuned to achieve maximal performance.
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Fig S 2. MoDN calibration curve of the predictions on the test set after having
encoded all available features.
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Fig S 3. MoDN’s feature-wise predictive evolution in a random patient. This
graph represents a single patient randomly selected from the test set. The y−axis lists
the eight possible diagnoses predicted by our model. The true diagnosis of the patient is
in bold and marked by an ‘*’. The x−axis is a sequential list of questions asked during
the consultation (the response of that specific patient is also listed). In each case the
model predicts the true label correctly. The heatmap represents a scale of predictive
certainty from red (positive, has diagnosis) to blue (negative, does not have diagnosis),
where white is uncertain. This patient has a true diagnosis of FWS and anemia. The
model predicts these correctly but with less confidence, as can be interpreted from
lighter colours
*: True diagnosis, URTI: Upper Respiratory Tract Infection, FWS: Fever Without
Source
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