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2 
 

ABSTRACT 25 

Background: Machine learning (ML) techniques improve disease prediction by identifying the most 26 

relevant features in multi-dimensional data. We compared the accuracy of ML algorithms for 27 

predicting incident diabetic kidney disease (DKD).  28 

Methods: We utilized longitudinal data from 1365 Chinese, Malay and Indian participants aged 40-29 

80 years with diabetes but free of DKD who participated in the baseline and 6-year follow-up visit of 30 

the Singapore Epidemiology of Eye Diseases Study (2004-2017). Incident DKD (11.9%) was defined 31 

as an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m2 with at least 25% decrease in 32 

eGFR at follow-up from baseline. 339 features including participant characteristics, retinal imaging, 33 

genetic and blood metabolites were used as predictors. Performances of several ML models were 34 

compared to each other and to logic regression (LR) model based on established features of DKD 35 

(age, sex, ethnicity, duration of diabetes, systolic blood pressure, HbA1c, and body mass index) using 36 

area under the receiver operating characteristic curve (AUC).  37 

Results: ML model, Elastic Net (EN) had the best AUC (95% confidence interval) of 0.851 (0.847-38 

0.856), which was 7.0% relatively higher than by LR 0.795 (0.790-0.801). Sensitivity and specificity 39 

of EN were 88.2% and 65.9% vs. 73.0% and 72.8% by LR. The top-15 predictors included age, 40 

ethnicity, antidiabetic medication, hypertension, diabetic retinopathy, systolic blood pressure, HbA1c, 41 

eGFR and metabolites related to lipids, lipoproteins, fatty acids and ketone bodies.  42 

Conclusions: Our results showed ML together with feature selection improves prediction accuracy of 43 

DKD risk in an asymptomatic stable population and identifies novel risk factors including 44 

metabolites.  45 
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INTRODUCTION 53 

Diabetes currently affects an estimated of 415 million people worldwide in 2015, and the number is 54 

expected to increase to 642 million by 2040 with the greatest increase expected in Asia, particularly 55 

India and China [1]. With the rising prevalence of diabetes and population aging, the burden of 56 

diabetic kidney disease (DKD), a leading cause of end-stage renal disease (ESRD), cardiovascular 57 

disease (CVD), and premature deaths, is also set to rise in parallel. Diabetes accounts for 30-50% of 58 

all chronic kidney disease (CKD) cases affecting 285 million people worldwide [2]. As CKD is 59 

asymptomatic till more than 50% of kidney function decline, early detection of individuals with 60 

diabetes who are at risk of developing DKD may facilitate prevention and appropriate intervention for 61 

DKD. Early identification of individuals at risk of developing CKD in type 2 diabetes is challenging. 62 

Therefore, characterization of new biomarkers is urgently needed for identifying individuals at risk of 63 

progressive decline of eGFR and timely intervention for improving outcomes in DKD.  64 

 65 

Several risk prediction models have been developed in the past for predicting progression to end-stage 66 

renal disease, but studies predicting onset of CKD in diabetic populations are limited. These studies 67 

were focused on clinical populations utilizing data from clinical trials [3] or heterogeneous cohorts of 68 

patients with different CKD definitions [4]. Dunkler et al. showed albuminuria and estimated 69 

glomerular filtration rate (eGFR) were the key predictors and addition of demographic, clinical or 70 

laboratory variables did not improve predictive performance beyond 69% [3]. Current CKD risk 71 

prediction models developed using traditional regression models (e.g., logistic, or linear regression) 72 

perform well when there are only small or moderate numbers of variables or predictors but tend to 73 

overfit if there is a large number of variables. Machine learning methods using ‘Big data’, or multi-74 

dimensional data may improve prediction as they have less restrictive statistical assumptions 75 

compared to traditional regression models which assume linear relationships between risk factors and 76 

the logit of the outcomes and absence of multi-collinearity among explanatory variables.   77 

 78 

Diabetes is a metabolic disorder and metabolic changes associated with diabetes lead to glomerular 79 

hypertrophy, glomerulosclerosis, tubulointerstitial inflammation and fibrosis [5]. Several blood 80 
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metabolites have been shown to be associated with DKD. Similarly, genetic abnormalities in diabetes 81 

have also been shown to increase the risk of DKD. We and several others have previously shown that 82 

retinal microvascular changes including retinopathy, vessel narrowing, or dilation and vessel 83 

tortuosity were associated with CKD [6, 7]. Integrating high-dimensional data from multiple domains 84 

including patient characteristics, clinical and ‘Omics’ data has the potential to aid in risk-stratification, 85 

prediction of future-risk besides providing insights into the pathogenesis [8]. These features may 86 

contribute to the prediction in very complicated ways, and they may not fully satisfy the requirement 87 

for a simple linear logistic model. It is thus more appropriate to consider the ML approaches for a 88 

comprehensive study. 89 

 90 

In the current study, we aimed to evaluate the performance of a set of most common ML models for 91 

predicting 6-year risk of DKD compared to traditional logistic regression and identify important 92 

predictors of DKD in a large population-based cohort study in Singapore with multi-dimension data 93 

including imaging, metabolites and genetic biomarkers.  94 

METHODS  95 

Study population 96 

Data for this study was derived from the Singapore Epidemiology of Eye Diseases (SEED) study, a 97 

population-based prospective study of eye diseases in 10,033 Asian adults aged 40-80 years in 98 

Singapore. The follow-up study was conducted after a median duration of 6.08 years (interquartile 99 

range: [5.56, 6.79]) with 6,762 participants. The detailed methodology of the SEED has been 100 

published elsewhere. Briefly, the name list of adults residing in the southwestern part of Singapore 101 

was provided by the Ministry of Home Affairs, and then an age-stratified random sampling procedure 102 

was conducted. A total of 3,280 Malays (2004-2007) [9], 3,400 Indians (2007-2009)  and 3,353 103 

Chinese (2009-2011) [10] participated in the baseline study with response rates of 78.7%, 75.6% and 104 

72.8%, respectively. As all three studies followed the same methodology and were conducted in the 105 

same study clinic, we combined the three populations for the present study. For the current analysis, 106 

we included only those with diabetes defined as random glucose ≥ 11.1 mmol/L, HbA1c ≥6.5% (48 107 

mmol/mol), self-reported anti-diabetic medication use or having been diagnosed with diabetes by a 108 
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physician based on American Diabetes association recommendations. Of the 6,762 participants who 109 

attended both baseline and follow-up visit, after excluding those without diabetes (n=5,307), prevalent 110 

CKD (n=315), missing information on eGFR (n=90), final sample size for analysis was 1,365 (47.5% 111 

Indians, 27.8% Malays and 24.7% Chinese). The sample size available for each dataset after 112 

removing participants missing >10% data was between 976 and 1,364 (Supplementary Table S1). 113 

This study was performed in accordance with the tenets of the Declaration of Helsinki and ethics 114 

approval was obtained from the Singapore Eye Research Institute Institutional Review Board. Written 115 

informed consent was provided by participants. 116 

Assessment of DKD 117 

Incident DKD was defined as an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m2 with 118 

at least 25% decrease in eGFR at follow-up in participants who had eGFR>60 mL/min/1.73m2 at 119 

baseline. Combining change in eGFR category together with a minimal percent change ensures that 120 

small changes in eGFR, for e.g., from 61 to 59 mL/min/1.73m2 is not misinterpreted as incident CKD 121 

as the eGFR is <60 mL/min/1.73m2 [7, 11]. The reduction in eGFR at follow-up was calculated as a 122 

percentage of the baseline eGFR as (eGFR at baseline – eGFR at follow-up)/eGFR at baseline *100%. 123 

GFR was estimated from plasma creatinine using the Chronic Kidney Disease Epidemiology 124 

Collaboration (CKD-EPI) equation [12]. Blood creatinine was measured by the Jaffe method on the 125 

Beckman DXC800 analyzer calibrated to the Isotope Dilution Mass Spectrometry (IDMS) method 126 

using the National Institute of Standards and Technology (NIST) Reference material. Based on the 127 

level of eGFR, DKD severity was classified into 4 groups: eGFR ≥60 (reference representing 128 

normal/high/mild decrease in kidney function, mild-to-moderate (eGFR 45-59), moderate-to-severe 129 

(eGFR 30-44), and severe/renal failure (eGFR<30) [13].   130 

Variables for prediction 131 

We evaluated 339 features such as demographic, lifestyle, socioeconomic, physical, laboratory, retinal 132 

imaging, genetic and blood metabolomics profile. The entire list of variables is presented in 133 

Supplementary Table S2. We organized the variables into five different domains: traditional risk 134 

factors, extended risk factors, imaging parameters, genetic parameters, and blood metabolites. For ML 135 

analysis, based on different combinations of the five domains, we tested six models (A to F): 136 
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A=Traditional risk factors; B= A+ Extended risk factors; C= B+ Imaging parameters; D= B+ Genetic 137 

parameters; E= B+ Blood metabolites; F= B+ Imaging parameters+ Blood metabolites+ Genetic 138 

parameters.   139 

Traditional risk factors (n=7) 140 

Age, sex, ethnicity, body mass index (BMI), systolic blood pressure (BP), duration of diabetes and 141 

HbA1c% were included as traditional risk factors.  142 

Extended risk factors (n=22):  143 

Marital status, educational level, monthly income, smoking status, alcohol consumption, history of 144 

cardiovascular disease, hypertension status, diastolic BP, pulse pressure, blood glucose, total, high-145 

density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol levels, anti-diabetic, anti-146 

hypertensive, and anti-cholesterol medication use were included as part of extended risk factors.  147 

Blood metabolites (n=223):  148 

We quantified 228 metabolic measures from stored serum/plasma samples at baseline using a high-149 

throughput NMR metabolomics platform (Nightingale Health, Helsinki, Finland). The metabolites 150 

included routine lipids, lipoprotein subclasses with lipid concentrations within 14 subclasses, fatty 151 

acids, amino acids, ketone bodies, and glycolysis-related metabolites. The 14 lipoprotein subclasses 152 

include six subclasses of VLDL (extremely large, very large, large, medium, small, very small), IDL, 153 

three subclasses of LDL (large, medium, small), and four subclasses of HDL (very large, large, 154 

medium, small). Lipid concentration within each lipoprotein particle included triacylglycerol, total 155 

cholesterol, non-esterified cholesterol and cholesteryl ester levels, and phospholipid concentrations 156 

[14]. Of the 228 metabolites, pyruvate, glycerol and glycine were not available in Malays. In addition, 157 

creatinine and glucose were measured as part of the blood biochemistry. After excluding these five 158 

metabolites, 223 were included under the metabolites dataset. 159 

Genetic parameters (n=76): We included 76 type 2 diabetes-associated single nucleotide 160 

polymorphisms (SNPs) identified in the largest meta-analysis of type 2 diabetes genome-wide 161 

association studies by the DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) consortium 162 

[15]. 163 

Imaging parameters (n=11) 164 
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Using a semi-automated computer program (Singapore I Vessel Assessment- SIVA) we quantified 165 

retinal imaging parameters from digital retinal photographs. The parameters included retinal arteriolar 166 

and venular diameters, vessel tortuosity, branching angle, fractal dimension etc. [7]. Diabetic 167 

retinopathy (DR) was assessed by trained graders using a standard protocol [16].  168 

Machine learning algorithms 169 

We tested 9 different ML algorithms including logistic regression (LR), LASSO logistic regression 170 

(LASSO), elastic net (EN), classification and regression tree (CART), random forest (RF), gradient 171 

boosting decision tree (GBDT), extreme gradient boosting (XGB), support vector machine (SVM), 172 

and naïve Bayes (NB) [17].  173 

Model development: We split the study samples randomly into training (80%) and test sets (20%) of 174 

equal CKD case rate by stratified sampling, with 40 random repeats of 5-fold cross-validation to 175 

evaluate the model performance. Predictive accuracy was assessed using metrics such as area under 176 

the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity and 177 

specificity calculated at the optimal cut-point (determined by Youden’s index). In preliminary 178 

analyses, testing different combinations of features (Figure 1A to 1F), performance of all ML models 179 

was below 0.80 in dataset D including genetic features (best AUC= 0.785 by RF) and Dataset F 180 

including all 339 features (best AUC=0.788 by XGB). Hence, we dropped these 2 datasets (D and F) 181 

from further analyses. The performance of all ML models based on AUC (IQR) in Dataset 1A-1F is 182 

shown in Supplementary Table S3 and based on sensitivity and specificity is shown in 183 

Supplementary Table S4. 184 

Figure 1. Comparison of 9 machine learning models for DKD incidence prediction. 185 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.22278900doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.17.22278900
http://creativecommons.org/licenses/by/4.0/


9 
 

186 
 Of the ML models, performances of CART, SVM and NB were lower compared to other models, 187 

hence these models were also dropped. Consequently, ML models EN, GBDT, LASSO, XGB and RF 188 

were considered for subsequent analyses using datasets A, B, C, and E including 252 features.  189 

Feature selection: All algorithms included in the current study can perform feature selection but 190 

using different selection criteria. In LR, stepwise selection according to the Akaike information 191 

criterion (AIC) is widely used but it lacks stability. LASSO is an extension of LR with L1 192 

regularization to drop the less important variables. EN is like LASSO but with a milder regularization, 193 

resulting in a larger number of retained variables. In order to select only the most predictive features, 194 

we recursively apply EN until the retained variable subset is optimized, i.e., recursive feature 195 

selection (RFE). In RF, GBDT, and XGB, the most predictive variables were identified based on their 196 

relative importance to model performance. Feature selection was also performed according to their 197 

selection frequency during repeated cross-validation. We identified the top-15 predictors by each of 198 

the best performing ML models, then compared the performance of the ML models based on the top 199 

variables with that of logistic regression based on seven traditional risk factors (age, sex, ethnicity, 200 

BMI, HbA1c, duration of diabetes, and systolic BP) in another 40 random repeats of five-fold cross-201 

validation.  202 

Statistical analyses: We compared the baseline characteristics of participants with diabetes by 203 

incident DKD status using chi-square test or Mann-Whitney U Test as appropriate for the variable. 204 

Statistical significance was defined as a p-value < 0.05. Subgroup numbers such as diabetic 205 

retinopathy status may not add up due to the presence of missing data. For modelling, we used mean 206 
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values/modes for missing value imputation as appropriate for each variable because the missing 207 

proportions were all below 10%. Improvement in prediction accuracy by ML over the traditional risk 208 

factor model was calculated as (ML AUC- traditional model AUC)/traditional model AUC*100%. All 209 

analyses were conducted using R software version 4.0.2. To assess whether the features selected by 210 

ML models are meaningful, we visualized the association of top-15 variables with incident DKD in 211 

forest plots or a variable importance plot as appropriate for the algorithm.  212 

RESULTS 213 

The 6-year incidence of DKD was 11.9% in the study population. Incidence of DKD was highest in 214 

Malays (18.4%), followed by Chinese (12.8%). Although Indians represent nearly half of the total 215 

diabetic population (648 of the 1365 diabetic participants, 47.5%), DKD was lowest in Indians 216 

(7.6%).   217 

Table 1. Baseline characteristics of SEED Diabetic participants by incident CKD status 

Characteristics No CKD 

(n = 1203) 

CKD 

(n = 162) 

p-value Overall  

(n = 1365) 

Age (years) 57.95 (8.78) 64.63 (7.98) <0.001 58.74 (8.95) 

Gender, female 580 (48.2) 87 (53.7) 0.219 667 (48.9) 

Ethnicity   <0.001  

   Indians (Ref) 599 (49.8) 49 (30.2)  648 (47.5) 

   Malays 310 (25.8) 70 (43.2)  380 (27.8) 

   Chinese 294 (24.4) 43 (26.5)  337 (24.7) 

Primary/below education, %  706 (58.7) 121 (74.7) <0.001 827 (60.6) 

Current smoker, % 173 (14.4) 16 (9.9) 0.15 189 (13.9) 

Alcohol consumption, % 111 (9.2) 11 (6.8) 0.389 122 (9.0) 

Hypertension, % 845 (70.4) 155 (95.7) <0.001 1000 (73.4) 

Diabetic retinopathy, % 228 (19.2) 56 (35.4) <0.001 284 (21.1) 

Cardiovascular disease, % 153 (12.7) 32 (19.8) 0.02 185 (13.6) 

Duration of diabetes (years) 2.68 [0.00, 8.56] 6.08 [1.44, 11.63] <0.001 3.20 [0.00, 9.37] 

Anti-diabetic medication, % 681 (56.6) 122 (75.3) <0.001 803 (58.8) 

Body mass index (kg/m2) 26.96 (4.62) 27.05 (4.36) 0.764 26.97 (4.59) 

Systolic blood pressure (mm Hg) 139.42 (18.95) 155.24 (20.01) <0.001 141.29 (19.74) 

Diastolic blood pressure (mm Hg) 78.25 (9.74) 79.14 (10.70) 0.278 78.35 (9.85) 

Random blood glucose (mmol/L) 9.53 (4.26) 10.44 (5.01) 0.052 9.64 (4.36) 

HbA1c, % 7.61 (1.58) 8.04 (1.83) 0.003 7.66 (1.62) 
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Blood total Cholesterol (mmol/L) 5.14 (1.14) 4.98 (1.15) 0.124 5.12 (1.15) 

Blood HDL Cholesterol (mmol/L) 1.12 (0.31) 1.16 (0.35) 0.178 1.12 (0.32) 

eGFR (mL/min/1.73 m2) 89.98 (14.34) 79.40 (11.69) <0.001 88.72 (14.46) 

Abbreviations: HDL, high-density lipoprotein cholesterol; SD, standard deviation; IQL, interquartile 

range.  

Values for categorical variables are presented as number (percentages); values for continuous variables are 

given as mean (SD) or median [IQR]. p-values are given by χ2-test or Mann-Whitney U test as appropriate 

for the variable. 

 218 

As shown in Table 1, compared to those without incident DKD, those with were significantly older, 219 

more likely to be Malays or Chinese, primary/below educated, had higher prevalence of hypertension, 220 

diabetic retinopathy, cardiovascular disease, anti-diabetic medication use; had longer duration of 221 

diabetes, higher levels of systolic BP and HbA1c%. 222 

Performance of LR using traditional risk factors (Reference) and other domain features 223 

The LR using the 7 traditional risk factors (age, sex, ethnicity, BMI, HbA1c, duration of diabetes, and 224 

systolic BP) had an AUC of 0.796. Performance of LR improved to 0.821 using the traditional+ 225 

extended risk factors. With additional features, performance of LR dropped significantly (AUC of  226 

0.622 in E and 0.811 in C).  227 

Performance of ML models using multi-dimensional data 228 

Using datasets, A, B, C, and E, the performances of the 5 ML models (Figure 1A-1C and 1E) were:  229 

1) EN ranked first in performance in all 5 datasets with AUCs ranging from 0.797 in A to 0.843 in E  230 

2) LASSO ranged from 0.781 in A to 0.814 in E  231 

3) GBDT ranged from 0.789 in A to 0.809 in E  232 

4) Performance of RF ranged from 0.772 in E to 0.817 in C  233 

5) XGB ranged from 0.764 in A to 0.804 in C  234 

Figure 2 shows the AUCs of the top 3 performing models. Using the top-15 predictors generated by 235 

feature selection, performance of EN improved further with an AUC (95% CI) of 0.851 (0.847-0.856), 236 

sensitivity and specificity of 88.2% and 65.9% compared to LR using seven established features with 237 

AUC of 0.795 (0.790-0.801) and sensitivity and specificity of 73.0% and 72.8%.  238 
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Figure 2. Comparison of top-3 ML models based on selected variables in dataset E (Risk factors 239 

+ blood metabolites) 240 

 241 

Corresponding estimates for LASSO were 0.820 (0.816-0.825), 84.4% and 67.0%; 0.819 (0.814-242 

0.824), 80.6% and 70.1% for GBDT. AUC of EN, LASSO and GBDT were 7.0%, 3.1% and 3.0% 243 

relatively higher than that of LR. 244 

Top 15 predictors 245 

Figure 3 shows the top 15 predictors visualised using forest plots for EN and LASSO and a variable 246 

importance plot for GBDT.  247 

Figure 3. Association of top-15 ML-selected predictors with incident CKD 248 
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 249 

Among the traditional and extended risk factors, all 3 models chose age, SBP, any diabetic 250 

retinopathy, and lower levels of eGFR as top 15 predictors. In addition, anti-diabetic medication use, 251 

HbA1c, hypertension, and ethnicity (Malay and Chinese as compared to Indians) were chosen as risk 252 

factors by EN and LASSO; anti-hypertensive medication and low housing type by LASSO; duration 253 

of diabetes, BMI and HDL cholesterol by GBDT. Among the metabolites, phospholipids to total 254 

lipids ratio in MHDL and DHA were selected by all 3 models. Free cholesterol to total lipids ratio in 255 

small HDL/XSVLDL, cholesterol esters to total lipids ratio in IDL/LLDL/XLHDL were also found of 256 

high frequency. Additionally, higher levels of acetate were shown to be protective by LR based on 257 

EN-selected variables, while tyrosine and lactate were identified as important factors by GBDT. 258 

Source data for the forest plots are shown in Supplementary Table S5. 259 

DISCUSSION 260 

The results of the current study suggest that prediction using ML models with selected features 261 

provided improved prediction compared to LR model based on seven established features in this 262 

extensively phenotyped large-scale epidemiological study. The best performance was obtained by EN 263 

model based on dataset E including risk factors and metabolites with AUC of 0.851 which was 7.0% 264 

higher than that of LR using seven established risk factors. Sensitivity was also higher by EN (88.2% 265 

and 65.9%) compared to LR (73.0% and 72.8%). Top-15 predictors by EN using RFE identified 266 
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several metabolites related to lipid concentration, lipoprotein subclasses, fatty acids, and ketone 267 

bodies as novel predictors besides confirming traditional predictors including age, ethnicity, 268 

antidiabetic medication use, presence of hypertension, diabetic retinopathy, higher levels of systolic 269 

blood pressure, HbA1c, and lower levels of eGFR. Contrary to conventional risk factors, sex, BMI, 270 

and duration of diabetes did not come in the top 15-predictors.  271 

 272 

Our results showed that ML models combined with feature selection improved the accuracy for 273 

predicting incident DKD in high-dimensional datasets. AUC of MLs based on dataset E including 274 

metabolites (+risk factors) scored highest while the one based on Dataset D including genetic features 275 

scored lowest compared to other domain features. This finding suggests that modifiable risk factors 276 

and metabolites predict DKD risk better than genetic features. Predictive performance was best by 277 

EN, followed by LASSO and GBDT. Top-15 predictors selected by LASSO and GBDT were largely 278 

consistent to that by EN. 279 

 280 

Few previous studies have evaluated the performance of ML models for predicting the risk of incident 281 

DKD (Table 2). Ravizza et al. identified seven key features (age, BMI, eGFR, concentration of 282 

creatinine, glucose, albumin and HbA1c%) by a data-driven feature selection strategy for predicting 283 

DKD using EHR data from 417,912 people with diabetes retrieved from the IBM Explorys Database 284 

and developed a random forest model in 82,912 people with diabetes retrieved from Indiana Network 285 

for Patient Care (INPC). The RF algorithm using seven prioritized key features achieved an AUC of 286 

0.833 as compared to 0.827 by logistic regression [18]. 287 

Table 2. Machine learning model for predicting incident CKD in literature 

Author, journal  Study cohort 

Country 

Study 

population 

Follow up 

CKD 

Definition and 

incidence 

Number of 

predictors 

ML Performance 

Ravizza et al.[18] 

Nature Medicine, 

2019 

EHR data 

from the IBM 

Explorys and 

INPC datasets, 

Development 

cohort (IBM): 

>500,000 

adults with 

ICD 9/10 codes 300 

features 

Based on 7 prioritized 

features, AUC by RF = 

0.833 and The 

Roche/IBM supervised 
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US diabetes. 

Validation 

(INPC)= 

82912 adults 

with T2DM; 

FU=3 years 

algorithm by LR = 0.827 

Song X et al.[19] 

JMIR, 2020 

EHR data, US 

(2007-2017) 

14039 adults 

with T2DM. 

FU=1-year 

eGFR<60 or 

UACR≥30 mg/g;

34.1% 

>3000  GBM 

AUC = 0.83  

Huang et al.[20] 

Diabetes, 2021 

KORA cohort, 

Germany 

1838 adults 

with 

prediabetes 

and T2DM 

FU=6.5y 

eGFR<60 or 

UACR≥30 mg/g 

at FU. 

10.9% 

125 

mets+14 

clinical 

factors 

SVM, RF, Ada Boost  

Best set: Mets- SM and 

PC+ Age, TC, FPG, 

eGFR, UACR, AUC = 

0.857 

Traditional LR using 14 

variables, AUC = 0.809 

Sabanayagam et al. 

(2022) 

Current study  

 

SEED 

population 

data, 

Singapore 

1365 adults 

with diabetes. 

FU=6 years 

eGFR<60 

+25% decline 

in eGFR from 

baseline 

339 

features 

EN+RFE selected 15 

features, AUC = 0.851 vs. 

0.795 using 7 features by 

traditional LR 

 288 

Song et al. predicted 1-year risk of DKD based on EHR data using Gradient Boosting Machine (GBM) 289 

algorithm with an AUC of 83% [19]. As the median duration of development of DKD is ~10 years 290 

since the onset of diabetes, predicting 1 year risk may not be sufficient. Huang et al. predicted DKD 291 

risk in 1,838 adults with diabetes and prediabetes who participated in the KORA Study in Germany. 292 

Authors used ML models Support Vector Machine (SVF), RF and Ada Boost based on 14 clinical 293 

factors and 125 metabolites. The best set AUC was 0.857 which is similar to that of our model using 294 

EN (AUC=0.851).  295 

 296 

In the current study, we observed that when the features are limited to the traditional risk factors, 297 

performance of LR was similar to that of the best ML model EN, but when number of features is 298 

huge, LR performance dropped significantly compared to the top performing ML models including 299 

EN, LASSO and GBDT. In a previous study based on the same dataset as the current study, 300 
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Nusinovici et al. tested the performance of several ML models utilizing 20 risk factors alone, found 301 

that the performance of LR (AUC=0.905) was similar to that of the best ML model, GBDT 302 

(AUC=0.903) for predicting incident CKD in those with and without diabetes [21]. When a large 303 

number of features are present, ML methods may capture the complicated functional dependency of 304 

the incident CKD outcome much better than the linear approach used in LR. 305 

 306 

The risk factors identified by the top-performing ML models (EN, LASSO, GBDT) are established 307 

risk factors such as age, ethnicity, antidiabetic medication use, presence of hypertension, diabetic 308 

retinopathy, higher levels of systolic blood pressure, HbA1c, and lower levels of eGFR. Additionally, 309 

anti-hypertensive medication use, and low housing type were identified by LASSO while BMI, 310 

duration of diabetes by GBDT. Increasing age, longer duration of diabetes, higher levels of HbA1c, 311 

systolic blood pressure/hypertension are well known risk factors of DKD. Older age, hypertension, 312 

lower eGFR, higher levels of BMI, HbA1c and antidiabetic medication use were identified to be 313 

significant risk factors for incident CKD in those with diabetes by Nelson et al. in a meta-analysis 314 

including 15 multi-national cohorts with diabetes as part of the CKD Prognosis Consortium (CKD-315 

PC) [22]. While black ethnicity was a risk factor for CKD in the meta-analysis, in our study, we found 316 

Chinese and Malay ethnicity to be at higher risk of developing incident DKD compared to Indian 317 

ethnicity. One reason for the Indian ethnicity to be at lower risk of developing DKD could be Indian 318 

ethnicity being a high-risk group for diabetes, they may be well aware of the risk, and comply with 319 

screening, medication etc. that could reduce their risk of developing DKD. Malay ethnicity has been 320 

identified to be a high-risk group for CKD by several studies conducted in Singapore. Surprisingly, 321 

gender was not identified to be a risk factor by any of the 3 ML models. This finding is consistent to 322 

Ravizza et al. algorithm based on data-driven feature selection which did not pick up gender as one of 323 

the priority features [18].  324 

 325 

In the current study, several new predictors from the metabolites domain were identified. We found 326 

lipid metabolites including phospholipids in HDL and VLDL subclasses, cholesterol esters, and free 327 

cholesterol in HDL subclasses were associated with increased risk of DKD while cholesterol esters in 328 
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IDL to be protective against DKD. Further, higher levels of DHA, acetate and tyrosine also showed a 329 

protective association (odds ratios not shown). In the ADVANCE trial, similar to our findings, higher 330 

tyrosine levels were associated with increased risk of microvascular complications in diabetic 331 

participants. DHA, a n-3 polyunsaturated fatty acid (PUFA) has been shown to reduce renal 332 

inflammation and fibrosis and slow down the progression CKD in animal models with type 2 diabetes 333 

[23] and PUFA supplementation has been shown to reduce hyperglycemia-induced pathogenic 334 

mechanisms by its anti-inflammatory and anti-oxidant properties and to improve renal function in 335 

diabetic nephropathy patients (Liborio-Neto, meta-analysis). Consistent with our findings, higher 336 

levels short-chain fatty acid acetate, have been shown to be inversely associated with diabetic 337 

nephropathy in type 2 diabetic patients [24] and to have beneficial effects in mice models with type 2 338 

diabetes by reducing oxidative stress and inflammation.  339 

 340 

The strengths of our study include a multi-ethnic Asian population with long follow-up and 341 

availability of a wealth of information. Use of RFE for dimension reduction and feature selection 342 

reduced overfitting of data. ML models identify the relative importance of one domain over the other 343 

domains (like metabolite features in our study compared to genetic features) and best predictors 344 

within one domain. Our study results should be interpreted in the light of few limitations. First, our 345 

definition DKD was based on measurement of single blood creatinine both at baseline and follow-up. 346 

This would have resulted in some misclassification, but the bias would be non-differential and would 347 

be similar across both outcomes. Second albuminuria, an important predictor of DKD was not 348 

included as it was missing in a substantial number of participants. Third, external validation was not 349 

performed. Fourth, ML models are computationally intensive compared to traditional regression 350 

models. 351 

 352 

In conclusion, in a population-based sample of multi-ethnic Asian adults, we found that EN with 353 

specific metabolites outperformed the current DKD risk prediction models using demographic and 354 

clinical variables. Our results provide evidence that combining metabolites and ML models could 355 
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improve prediction accuracy for DKD and that increasing use of ML techniques may discover new 356 

risk factors for DKD. Further testing in external populations would support the validity of the model.  357 

 358 
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Data Availability Statement: As the study involves human participants, the data cannot be made 359 

freely available in the manuscript, the supplemental files, or a public repository due to ethical 360 

restrictions. Nevertheless, the data are available from the Singapore Eye Research Institutional Ethics 361 

Committee for researchers who meet the criteria for access to confidential data. Interested researchers 362 

can send data access requests to the Singapore Eye Research Institute using the following email 363 

address: seri@seri.com.sg. 364 

Processed version of the datasets are provided in Supplementary Tables S1-S5.  365 

 366 
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