Impact of the COVID-19 Pandemic on Personal Networks and Neurological Outcomes of People with Multiple Sclerosis: A Case-Control Cross-sectional and Longitudinal Analysis

Claire S. Riley, MD¹*, Shruthi Venkatesh, BS²*, Amar Dhand, MD, DPhil^{3, 4}, Nandini Doshi, BS², Katelyn Kavak, MS⁵, Elle E. Levit, MD⁶, Christopher Perrone, MD⁷, Bianca Weinstock-Guttman, MD⁵, Erin E. Longbrake, MD, PhD⁶, MSReCOV investigators, Philip L. De Jager, MD, PhD¹, Zongqi Xia, MD, PhD²[#]

- 1. Multiple Sclerosis Center and the Center for Translational & Computational NeuroImmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY
- 2. Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- 3. Department of Neurology, Division of Hospital Medicine, Division of Stroke and Cerebrovascular Diseases, Brigham and Women's Hospital, Boston, MA
- 4. Harvard Medical School, Boston, MA
- 5. Jacobs MS Center for Treatment, Jacobs Medical School and Biomedical Sciences, SUNY at Buffalo
- 6. Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT
- 7. Department of Neurology, University of Pennsylvania, Philadelphia, PA

* CR and SV share co-first authorships.

[#] Corresponding Author:
 Zongqi Xia, MD, PhD
 Department of Neurology, University of Pittsburgh
 Biomedical Science Tower 3, Suite 7014, 3501 5th Avenue, Pittsburgh, PA 15260
 Phone: 412-383-5377; Fax: 412-648-7233; Email: zxia1@post.harvard.edu

ABSTRACT

Background: The COVID-19 pandemic has negatively impacted the social fabric of people with multiple sclerosis (pwMS).

Objective: To evaluate the associations between personal social network environment and neurological function in pwMS and controls during the COVID-19 pandemic and compare with the pre-pandemic baseline.

Methods: We first analyzed data collected from 8 cohorts of pwMS and control participants during the COVID-19 pandemic (March-December 2020). We then leveraged data collected between 2017-2019 in 3 of the 8 cohorts for longitudinal comparison. Participants completed a questionnaire that quantified the structure and composition of their personal social network, including the health behaviors of network members. We assessed neurological disability using three interrelated patient-reported outcomes: Patient Determined Disease Steps (PDDS), Multiple Sclerosis Rating Scale – Revised (MSRS-R), and Patient Reported Outcomes Measurement Information System (PROMIS)-Physical Function. We identified the network features associated with neurologic disability using paired t-tests and covariate-adjusted regressions.

Results: In the cross-sectional analysis of the pandemic data from 1130 pwMS and 1250 control participants, higher percent of network members with a perceived negative health influence was associated with greater neurological symptom burden in pwMS (MSRS-R: Beta[95% CI]=2.181[1.082, 3.279], p<.001) and worse physical function in controls (PROMIS-Physical Function: Beta[95% CI]=-5.707[-7.405, -4.010], p<.001). In the longitudinal analysis of 230

pwMS and 136 control participants, the networks of both pwMS and controls experienced an increase in constraint (pwMS p=.006, control p=.001) as well as a decrease in network size (pwMS p=.003, control p<.001), effective size (pwMS p=.007, control p=.013), maximum degree (pwMS p=.01, control p<.001), and percent contacted weekly or less (pwMS p<.001, control p<.001), suggesting overall network contraction during the COVID-19 pandemic. There was also an increase in percentage of kin (p=.003) in the networks of pwMS but not controls during the COVID-19 pandemic when compared to the pre-pandemic baseline. These changes in personal social network were not associated with worsening neurological disability during the pandemic.

Conclusions: Our findings suggest that perceived negative health influences in personal social networks are associated with worse disability in all participants during the COVID-19 pandemic. While the personal social networks of pwMS and controls both contracted during the pandemic, the networks of pwMS (but not the controls) comprised more kins when compared to the prepandemic period.

INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system and causing neurodegeneration and neurological disability.^{1, 2} While a multitude of factors potentially influence MS susceptibility, such as genetic variants, cigarette smoking, Epstein-Barr virus infection, adolescent obesity, and Vitamin D deficiency, factors that influence disease severity and progression are less well defined.³ Studies of personal social networks raise intriguing possibilities that social environments impact health outcomes and neurological function.⁴

Personal social network features are associated with the quality of life of people living with neurological diseases, including stroke, traumatic brain injury, and MS.⁵⁻⁷ Our prior research implicates the personal social network as a potentially modifiable environmental contributor to neurological disability in people with MS (pwMS).^{8, 9} Adverse personal social networks are associated with social isolation and loneliness, which may have direct biological effects by altering inflammation, recovery from injury, and resilience against neurodegeneration.¹⁰⁻¹³ Personal social network structures (*e.g.*, larger network size, more diffuse connections among network members) are associated with language function and regional brain volume in pwMS.¹⁴ Examining personal social network structure (*e.g.*, network size, density) and composition (*e.g.*, demographics, health behaviors of the network members) in relation to disability accumulation in MS could potentially inform novel interventions. Further, pwMS are often more vulnerable to isolation and loneliness than the general population and have experienced more pronounced negative impacts during the coronavirus disease 2019 (COVID-19) pandemic partially due to their greater need for social distancing.¹⁵⁻¹⁷

In this study, we assessed the personal social networks of pwMS and control participants during the COVID-19 pandemic and identified network features associated with worse neurological outcomes. Additionally, we examined changes in personal social networks due to the COVID-19 pandemic in a subset of previously characterized individuals.^{8, 9}

METHODS

Study Cohort

For cross-sectional analyses, we included pwMS and healthy control participants from clinicbased cohorts at University of Pittsburgh Medical Center (UPMC, 2 cohorts)^{18, 19}, Columbia University Irving Medical Center (CUIMC, 2 cohorts), Yale University, University of Pennsylvania, and University of Buffalo recruited between March and December 2020 through the Multiple Sclerosis Resilience to COVID-19 (MSReCOV) Collaborative.¹⁵⁻¹⁷ Additionally, we included participants from a national cohort of first degree relatives of MS patients (Genes and Environment in Multiple Sclerosis [GEMS] Study), including both pwMS and controls.^{20, 21} The inclusion criteria were adults aged 18 or older either with or without a neurologist-confirmed diagnosis of MS. We deployed a modified personal network questionnaire (PERSNET, see Supplementary Material) to assess demographic, clinical and personal social network features through a secure online platform (Research Electronic Data Capture).²² For longitudinal analyses, we leveraged PERSNET data collected prior to the COVID-19 pandemic (2017-2019) from UPMC, CUIMC, and the GEMS cohorts (**Figure 1A**).⁹

Ethics Approval

The institutional review board of each enrolling site approved the study. All participants provided informed consent.

Personal Network Metrics

We deployed an updated version of the PERSNET, adapted from the foundational General Social Survey.^{5-9, 23} PERSNET assesses two categories of features characterizing the interconnectedness of the relationships maintained by each person.^{24, 25}

Network structure includes 6 quantitative features: size (number of individuals in the network, excluding the index person), density (sum of ties, excluding the index person' ties, divided by all possible ties), constraint (a more granular density that assesses the extent to which the index person's connections are to individuals who are connected to one another), effective size (number of non-redundant network members), maximum and mean degrees (highest and average number of ties by a network member).

Network composition quantifies demographic characteristics and health behaviors of network members. Network demographics include percent kin (percent of network members who are family), standard deviation (SD) of age (age range of network members), diversity of sex index (proportion of sexes from 0 to 1, where 0 indicates single sex and 1 indicates equal ratio of men and women), diversity of race (similar proportion of represented races where 0 indicates a single race). Network health behaviors include the percent of network members who smoke, consume alcohol, exhibit poor dietary habits, lead sedentary lifestyles, and exert perceived negative health influence. Other network composition features include the frequency, duration, and the living distance of social contact, which quantify the depth of the relationships. Compositional features account for network size.

Neurological Outcomes

To assess neurological function, we used three interrelated patient-reported outcomes (PROs). Patient Determined Disease Steps (PDDS) score indicates the extent of the gait impairment and highly correlates with the clinician-determined Expanded Disability Status Scale (EDSS). PDDS scores range from 0 to 8 where 0 corresponds to normal while 8 indicates bed-bound status.²⁶ Multiple Sclerosis Rating Scale-Revised (MSRS-R) assesses the global neurological symptom burden, including walking, function in the extremities, vision, speech, swallowing, cognition, sensation, bladder and bowel function.^{27, 28} Each symptom domain score ranges from 0 to 4 where 0 indicates no impairment and 4 indicates severe impairment. Higher cumulative MSRS-R scores (0-32) indicate greater neurological symptom burden and worse neurological function. Patient-Reported Outcomes Measurement Information System (PROMIS)-Physical Function (version 1.2) is a generalizable measure of physical function but also validated for pwMS.^{29, 30} PROMIS Physical Function is reported as normally distributed T-score on a 0-100 scale, where 50 represent the average for the US population and higher scores indicate better function. While PDDS and MSRS-R are specific for pwMS, PROMIS is applicable to both pwMS and controls. All participants completed PRO assessment when completing the PERSNET during the COVID-19 pandemic, while a subset also completed the PROs before the pandemic.

Covariates

We considered the following confounding factors that could potentially influence neurological function: age, sex, race, ethnicity, disease duration, employment, education, occupation, income, marital status, and cohabitant status. Race was categorized as African or African American, American Indian or Native Hawaiian or Pacific Islander, Asian, White, Multi-racial or other. Ethnicity was categorized as Hispanic (or Latino) and Non-Hispanic. Due to the relatively small number of racial and ethnic minorities in our cohorts, race and ethnicity were dichotomized as Non-Hispanic White versus others (encompassing individuals of Hispanic and/or non-European descent) in subsequent analyses. Disease duration was defined as the time from the first selfreported neurological symptom onset to time of the most recent PRO assessment. Employment status was categorized as employed for wages, self-employed, out of work and looking for work, out of work but not currently looking for work, homemaker, student, military, retired, or unable to work. Education level was classified based on the highest level of education achieved: some high school or less, high school graduate, some college, associate degree, bachelor's degree, or graduate degree. Occupation was categorized as business owner, executive/manager, professional, sales/clerical worker, service worker, or other. Household income level included the following brackets: 0 to \$19,999, \$20,000 to \$34,999, \$35,000 to \$49,999, \$50,000 to \$64,999, \$65,000 to \$79,999, \$80,000 to \$94,999, \$95,000 to \$109,999, \$110,000 to \$124,999, or \$125,000 or higher. Marital status was categorized as married or unmarried. Cohabitant status was categorized as living alone versus otherwise. Some covariates were missing because certain questions (e.g., employment status, income) in PERSNET were made optional in order to reduce patient discomfort when completing the questionnaire.

To narrow the list of covariates, we assessed the correlation between these features and PROs in univariate analyses (**eFigure 1**). We selected features that met the following pre-defined criteria as covariates for downstream analyses: feature presence in over 70% of pwMS, a Pearson's correlation coefficient of 0.1 or higher, and a nominal statistical significance (p<.05) in association with all three PROs. We identified age, disease duration, employment, and income as meeting the criteria and adjusted these covariates in regression models involving pwMS. For analyses involving control participants, we adjusted for age, employment, and income but not

disease duration as it does not apply to controls. For longitudinal analyses, we further adjusted for the time elapsed between pre-pandemic and pandemic PERSNET assessment as well as study cohort as additional covariates for consistency with our previous analysis.^{8,9}

Statistical Analysis

We performed two types of analyses: (a) cross-sectional analysis of pwMS and controls during the COVID-19 pandemic, (b) longitudinal analysis of pwMS and controls during the COVID-19 pandemic as compared to the pre-pandemic baseline.

For the cross-sectional analysis, we first compared the personal social networks of pwMS and control participants using paired T-tests. Next, we examined the association between structural and compositional network features and PROs in pwMS in covariate-adjusted regression models. Given that PROMIS measure is generalizable across health and disease, we further assessed the association between network features and PROMIS Physical Function in control participants for comparison. In a joint analysis of the pandemic data that include both pwMS and controls, we performed a moderation analysis to assess whether MS diagnosis influenced the association between network features and PROMIS Physical Function.³¹⁻³³

For the longitudinal analysis, we examined the *within-subject* differences in network features in pwMS and control participants during the COVID-19 pandemic as compared to the most recent pre-pandemic baseline using paired T-tests. Next, we assessed the association of change in structural and compositional network features (*i.e.*, pandemic value minus pre-pandemic baseline) in relation to the most recent PROs (during the pandemic) in pwMS using covariate-adjusted regressions and an omnibus test.^{9, 21} For the omnibus test, we combined the p-values derived from the covariate-adjusted regressions for each PRO. Using Fisher's combined

probability test, we calculated the chi-squared statistic and compared the observed values to the expected empirical distribution. To additionally assess these relationships, we generated a quantile-quantile (Q-Q) plot of the observed versus expected p-values of the associations between the longitudinal changes (pandemic values minus pre-pandemic baseline) in each structural and compositional network feature and each PRO (during the pandemic). The 95% confidence intervals of the Q-Q plot were obtained from 10,000 permutations of the p-value distribution. We performed similar longitudinal analysis in control participants using PROMIS Physical Function for comparison. Raw p-values were adjusted by Bonferroni correction for multiple comparisons. All statistical analyses were performed using R version 3.6.0.³⁴

Code Availability

The code for this project is available at <https://github.com/shruthi1094/pnq>. De-identified data are available upon request to the corresponding author and with permission from each participating center.

RESULTS

Participant Characteristics

The cross-sectional analysis included 1130 pwMS aged (mean \pm SD) 50.7 \pm 12.1 and 1250 control participants aged 44.3 \pm 12.1 years (**Table 1**). Participants were predominantly women (81.9% pwMS, 76.8% controls) and Non-Hispanic White (87.1 pwMS, 86.7% controls). PwMS were less likely to be employed (48.1%) than controls (78.1%). The disability burden among pwMS was mild to moderate (mean \pm SD PDDS 1.85 \pm 2.12, MSRS-R 7.55 \pm 5.49, PROMIS Physical Function 46.4 \pm 10.82).

The longitudinal analysis included 230 pwMS and 136 control participants. Likewise, control participants were younger (mean±SD pwMS: 50.4±11.7 years, controls: 43.1±12.6 years), had higher levels of education (81.2% pwMS and 94.8% controls completed college), were employed (43.4% pwMS, 71.1% controls) and had higher household income than pwMS.

Cross-Sectional Analysis of the Pandemic Period

First, we compared the network features of pwMS and control participants during the COVID-19 pandemic (**Table 2**). In this unadjusted analysis, pwMS had higher density, higher constraint, smaller effective size, higher percent kin, lower percent of people known for less than 6 years, lower percent who live over 15 miles away, and lower percent who drink in their social networks when compared to control participants. PwMS and controls reported similarly high percent of their network members with a perceived negative health influence (36.1% pwMS, 36.3% control).

Next, we examined the association between each structural and compositional network feature in relation to PDDS, MSRS-R and PROMIS Physical Function in pwMS during the COVID-19 pandemic, after adjusting for age, disease duration, employment, and income in linear regression models (**Table 3**). PwMS who had a higher percent of network members with a perceived negative health influence had higher MSRS-R scores, indicating greater MS symptom burden and disability (Beta[95% CI]=2.181[1.082, 3.279], p<.001). Interestingly, none of the specific network health behavior features (*e.g.*, smoking, alcohol use, bad diet, and sedentary lifestyle) that might be construed as a negative health influence showed statistically significant association with MSRS-R. No other network features had significant association with any of the PROs after Bonferroni correction.

For comparison, we examined the association between each network feature with PROMIS Physical Function during the COVID-19 pandemic in controls (**eTable 2**). We adjusted for age, employment, and income, but disease duration was not applicable for controls. We found that lower maximum degree (Beta[95% CI]=0.383[0.141, 0.626], p=.002), higher percent who smoke (Beta[95% CI]=-4.846[-7.919, -1.774], p=.002), and higher percent of people with a perceived negative health influence (Beta[95% CI]=-5.707[-7.405, -4.010], p<.001) were associated with worse PROMIS Physical Function scores in controls. Given that the percent of network members with a perceived negative health influence was associated with MSRS-R in pwMS and with PROMIS Physical Function in controls, respectively, this important compositional network feature that summarizes the health behaviors of the personal social network might contribute to the physical impairment in both pwMS and control participants.

Moderation Analysis Assessing the Role of MS Diagnosis

We performed a moderation analysis to examine whether MS diagnosis influences the strength and direction of the association between network features and PROMIS physical function during the COVID-19 pandemic (**eTable 4, Figure 3**). In this joint analysis combining pwMS and controls, MS diagnosis moderated the direction and/or strength of the association between several network features and PROMIS physical function. In pwMS, higher diversity of race, lower percent of people who live over 15 miles away, lower percent of people who drink, and higher percent of people with a perceived negative health influence were significantly associated with worse physical function. In controls, lower diversity of race, higher percent of people who live over 15 miles away, higher percent of people who drink, and higher percent of people with a perceived negative health influence were significantly associated with worse physical function. For diversity of race, percent of people who live over 15 miles away, and percent of people who

drink, pwMS and controls exhibited opposite directions of association with physical function. For percent of people with a perceived negative health influence, while both groups exhibited the same direction of association with physical function, pwMS had smaller magnitude of the association than controls.

Longitudinal Analysis Comparing the Pandemic Period with the Pre-pandemic Baseline

We conducted a longitudinal analysis using a subset of pwMS and control participants who completed the PERSNET both preceding and during the COVID-19 pandemic. During the pandemic, both pwMS and control participants reported lower percent of people contacted weekly than the pre-pandemic baseline (p<.001), reflecting the widespread social isolation during the COVID-19 pandemic. When compared to the pre-pandemic baseline, both pwMS and controls had a reduction in network size (pwMS p=.003, control p<.001), effective size (pwMS p=.007, control p=.013), maximum degree (pwMS p=.01; control p<.001), and percent contacted weekly or less (pwMS p<.001; control p<.001) as well as an increase in constraint (pwMS p=.006, control p=.001) (**Table 4**). This indicates personal social network contraction for both pwMS and controls during the pandemic period. There was an increase in the percentage of kin (increase from 46.06% to 56.36%, p=.003) in the networks of pwMS during the COVID-19 pandemic, which was not seen in control participants.

Finally, we examined whether changes in network features due to the pandemic (*i.e.*, pandemic values minus the most recent pre-pandemic baseline) in pwMS were associated with the PROs during the COVID-19 pandemic (**eTable 3**, **Figure 2**). We found no significant association between changes in network features and pandemic PROs. As a confirmation of these findings, there was no difference between the observed and expected distribution of p-values of

association between changes in network features and pandemic PROs in the permuted omnibus test (PDDS p=.880, MSRS-R p=.287, PROMIS p=.278).

DISCUSSION

Our quantitative assessment of the personal social network environment of pwMS during the COVID-19 pandemic has several key findings. First, a higher percent of network members with a perceived negative health influence was associated with both greater neurological symptom disability in pwMS and worse physical function in controls during the pandemic, suggesting a shared contribution of this important feature (which summarizes the health behaviors of an individual's personal social network) towards physical function in pwMS and controls. Second, personal social networks of pwMS and control participants experienced contraction during the COVID-19 pandemic when compared to the pre-pandemic baseline and the personal social networks of pwMS comprised of higher percent kin than control participants during the pandemic. Finally, changes in personal social network features related to the COVID-19 pandemic (when compared to the pre-pandemic baseline) in pwMS were not associated with greater disability during the pandemic, suggesting potential resilience despite the perturbation in social environment and connections.

Our study design has several novel aspects. First, this is the first known direct comparison of the personal social networks of pwMS and control participants during the height of the COVID-19 pandemic when public health measures enacted to reduce contagion were widespread. Second, this is the first effort to longitudinally quantify changes in personal social networks of pwMS and control participants due to the COVID-19 pandemic. Finally, this is the largest study to cross-

sectionally and longitudinally examine the association of personal social networks in relation to neurological and physical functions in the setting of the COVID-19 pandemic.

During the pandemic, the personal social networks of pwMS and controls both contracted when compared to the pre-pandemic period, as indicated by the increased constraint as well as decreased network size, effective size and maximum degree. The percentage of people contacted weekly or less also decreased for both pwMS and controls, suggesting increased social isolation. Notably, the personal social networks of pwMS were already more tightly knit during the pre-pandemic period than control participants, likely due to the vulnerability of the personal social networks of pwMS as reported in our previous studies.^{8, 9} The increase in percentage of kin in the personal social networks of pwMS during the pandemic was not seen in control participants. This could potentially be attributable to the differential impact of social isolation policies enacted during the pandemic on pwMS.¹⁵⁻¹⁷

The finding of the association between a higher percent of network members with a perceived negative health influence and worse neurological disability in pwMS and worse physical function in controls during the COVID-19 pandemic validated our prior findings from the prepandemic period.⁸ These findings are unlikely to be spurious given the relatively high proportion of participants (both pwMS and controls) whose network members have a perceived negative health influence. This compositional network feature (*i.e.*, percent of network members with a perceived negative health influence) likely better captured the overall negative health influence within an individual's personal social network than other compositional features denoting a specific negative health behavior among the network members. Although we could not definitely

establish the directionality of the association or causality using the cross-sectional data from the pandemic, we hypothesize that perceived negative health influences in one's social network may decrease an individual's likelihood of engaging in healthy behaviors (*e.g.*, moderate alcohol consumption, abstention from smoking, regular exercise, healthy diet, medication adherence) that may reduce overall comorbidities and MS-related disease activity as well as disability accumulation. If validated, identifying persons with vulnerable network characteristics such as high percent of negative influence in the personal social network could help clinicians to provide closer monitoring of medication adherence, more concrete behavioral changes to reduce toxic exposures, and more encouragement to promote healthy behaviors, particularly during a pandemic.

The previously reported association between tightly knit personal social networks and worse physical function was not observed in this study.⁹ We postulate several explanations. First, the contraction of social networks evidenced by a decrease in network size, decrease in effective size, increase in constraint, decrease in maximum degree, and decrease in people contacted weekly or less in pwMS as well as controls during the pandemic as compared to the pre-pandemic baseline are likely attributable to certain public health measures aiming to prevent the spread of COVID-19 given the data collection period of this study. Personal social networks broadly contracted and became more tight-knit among pwMS during the COVID-19 pandemic, whereas there was greater diversity (*e.g.*, higher effective network size, lower constraint) in the personal networks of pwMS before the pandemic. In our prior cross-sectional study, the direction of the association between network features and physical function could not be fully determined.⁹ It is possible that pwMS with better neurological and physical function might have

more diverse personal social networks prior to the COVID-19 pandemic, but the overall contraction of social networks during the pandemic among pwMS might have masked the association between tightly knit networks and worse physical function. Future longitudinal analysis examining the change in network features from the pandemic period to the postpandemic period may provide insight if the network diversity reverts to the pre-pandemic baseline versus if the new baseline persists. Second, since the contraction of personal social networks during the COVID-19 pandemic was a relatively recent and sudden event, there may not have been sufficient time for the onset of observable changes in neurological function. Assessment of neurological function at future time points could inform the long-term impact of social network changes due to the pandemic. Finally, the lack of association between longitudinal changes in social network features (comparing the pandemic period with the prepandemic period) and PROs suggests the possibility of resilience in pwMS despite the adverse impact of the pandemic on the social fabric. Future studies are warranted to explore neurological resilience in the setting of social adversity.

The moderation analysis examined the interacting effect of MS diagnosis on the association between personal social network and PROs in a joint analysis of pwMS and controls. MS diagnosis moderated the association between specific personal social network features and physical function with respect to the direction (*i.e.*, diversity of race, percent of people who live over 15 miles away, percent of people who drink) or strength (*i.e.*, percent of people with a perceived negative health influence) of the associations. One caveat is that the moderation analysis did not allow adjustment for disease duration as this covariate is not applicable for controls in this joint analysis, which might explain some of the difference in results between the

moderation analysis and the cross-sectional analysis for pwMS. Reassuringly, the association between a higher percent of people with a perceived negative health influence and worse physical function in pwMS (and control participants) persisted. These consistent findings suggest that public health interventions broadly reducing the negative health behaviors of personal social network members might improve health outcomes of all members, *i.e.*, beneficial contagion.

This study has several strengths. First, the longitudinal analysis of changes in personal social networks due to the COVID-19 pandemic in comparison to the pre-pandemic baseline had a within-subjects design. Consequently, we postulated that changes in network features suggestive of personal network contraction in the same participants during the COVID-19 pandemic (when compared to their pre-pandemic baseline) is likely attributable to the pandemic, possibly due to the necessary public health measures. Second, we used three independent but interrelated PROs as a pragmatic method to assess real-world neurological disability and physical function during the early pandemic when clinical research participation became severely restricted. These validated PROs, two specific for MS and one generalizable across health and disease, have shown strong correlations with physician-rated measures of neurological function in prior studies.²⁶⁻³⁰ Third, we conducted both cross-sectional and longitudinal analyses in not only pwMS but also control participants, which enabled comparison of the differential impact of the pandemic on the personal social networks. Fourth, the moderation analysis examining the role of MS diagnosis on the association between network features and physical function enabled exploration of the strength and directionality of these complex relationships. Finally, we leveraged a large dataset representative of the Northeastern and Mid-Atlantic regions of the

United States with greater geographic diversity than prior studies, potentially increasing the generalizability of the study findings.

Our study also has limitations. First, the sample size of longitudinal analysis was limited by the relatively modest number of participants with quantified pre-pandemic personal social networks as baseline. As such, the study did not have sufficient power for subgroup analysis stratified by demographic or clinical subtypes. Second, we sampled participants for their personal networks and neurological outcomes at one time point during the COVID-19 pandemic. The COVID-19 cases varied across areas and throughout the pandemic, while study participants resided in urban, suburban, and rural environments that were differentially impacted during the pandemic. Nevertheless, most of the study populations shared broader geographic regions (Northeastern and Mid-Atlantic USA) and completed the study response during the early period of the pandemic when federal and state level mandates were relatively uniform in terms of lockdown, social distancing, and other mitigation guidelines.

In conclusion, this study highlights the impact of the COVID-19 pandemic on personal social networks in pwMS and control participants. Our findings generate important hypotheses for testing future interventions that may modify personal social networks to broadly improve neurological outcomes. Future longitudinal studies examining the long-term impact of the COVID-19 pandemic on the evolution of personal social networks and neurological outcomes in people with chronic neurological disorders such as MS are warranted.

FUNDING

This study was supported by R01NS124882.

REFERENCES

- Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. New Engl J Medicine. 2018;378(2):169-180. doi:10.1056/nejmra1401483
- Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. *Neuron*. 2018;97(4):742-768. doi:10.1016/j.neuron.2018.01.021
- Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. *Nat Rev Neurol*. 2017;13(1):25-36. doi:10.1038/nrneurol.2016.187
- Smith KJ, Gavey S, RIddell NE, Kontari P, Victor C. The association between loneliness, social isolation and inflammation: A systematic review and meta-analysis. *Neurosci Biobehav Rev.* 2020;112:519-541. doi:10.1016/j.neubiorev.2020.02.002
- Dhand A, Luke DA, Lang CE, Lee JM. Social networks and neurological illness. *Nat Rev Neurol.* 2016;12(10):605-612. doi:10.1038/nrneurol.2016.119
- Dhand A, Lang CE, Luke DA, et al. Social Network Mapping and Functional Recovery Within 6 Months of Ischemic Stroke. *Neurorehabil Neural Repair*. 2019;33(11):922-932. doi:10.1177/1545968319872994
- Dhand, A., McCafferty, L., Grashow, R. *et al.* Social network structure and composition in former NFL football players. *Sci Rep* 11, 1630 (2021). <u>https://doi.org/10.1038/s41598-</u> 020-80091-w
- Dhand A, White CC, Johnson C, Xia Z, De Jager PL. A scalable online tool for quantitative social network assessment reveals potentially modifiable social environmental risks. *Nat Commun.* 2018;9(1):3930. Published 2018 Sep 26. doi:10.1038/s41467-018-06408-6

- Levin SN, Riley CS, Dhand A, et al. Association of social network structure and physical function in patients with multiple sclerosis. *Neurology*. 2020;95(11):e1565-e1574. doi:10.1212/WNL.000000000010460
- Karelina K, Norman GJ, Zhang N, Morris JS, Peng H, DeVries AC. Social isolation alters neuroinflammatory response to stroke. *Proc Natl Acad Sci U S A*. 2009;106(14):5895-5900. doi:10.1073/pnas.0810737106
- Dhand A, Podury A, Choudhry N, Narayanan S, Shin M, Mehl MR. Leveraging Social Networks for the Assessment and Management of Neurological Patients. Semin Neurol. 2022;42(2):136-148. doi:10.1055/s-0042-1744532
- Cacioppo JT, Hawkley LC, Crawford LE, et al. Loneliness and health: potential mechanisms. *Psychosom Med.* 2002;64(3):407-417. doi:10.1097/00006842-200205000-00005
- Kever A, Buyukturkoglu K, Levin SN, Riley CS, De Jager P, Leavitt VM. Associations of social network structure with cognition and amygdala volume in multiple sclerosis: An exploratory investigation [published online ahead of print, 2021 May 26]. *Mult Scler*. 2021;13524585211018349. doi:10.1177/13524585211018349
- 14. Smith KP, Christakis NA. Social Networks and Health. *Annu Rev Sociol*.2008;34(1):405-429. doi:10.1146/annurev.soc.34.040507.134601
- Levin SN, Venkatesh S, Nelson KE, et al. Manifestations and impact of the COVID-19 pandemic in neuroinflammatory diseases. Ann Clin Transl Neurol. 2021;8(4):918-928. doi:10.1002/acn3.51314

- Epstein S, Xia Z, Lee AJ, et al. Vaccination Against SARS-CoV-2 in Neuroinflammatory Disease: Early Safety/Tolerability Data. Mult Scler Relat Dis. 2022;57:103433. doi:10.1016/j.msard.2021.103433
- Levit E, Cohen I, Dahl M, et al. Worsening physical functioning in patients with neuroinflammatory disease during the COVID-19 pandemic. Mult Scler Relat Disord. 2022;58:103482. doi:10.1016/j.msard.2021.103482
- Mani A, Santini T, Puppala R, et al. Applying Deep Learning to Accelerated Clinical Brain Magnetic Resonance Imaging for Multiple Sclerosis. *Front Neurol*. 2021;12:685276. doi:10.3389/fneur.2021.685276
- Boorgu DSSK, Venkatesh S, Lakhani CM, et al. The impact of socioeconomic status on subsequent neurological outcomes in multiple sclerosis. *Mult Scler Relat Dis*. 2022;65:103994. doi:10.1016/j.msard.2022.103994
- 20. Xia Z, White CC, Owen EK, et al. Genes and Environment in Multiple Sclerosis project: A platform to investigate multiple sclerosis risk. *Ann Neurol*. 2016;79(2):178-189. doi:10.1002/ana.24560
- 21. Xia Z, Steele SU, Bakshi A, et al. Assessment of Early Evidence of Multiple Sclerosis in a Prospective Study of Asymptomatic High-Risk Family Members. Jama Neurol. 2017;74(3):293. doi:10.1001/jamaneurol.2016.5056
- 22. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. *J Biomed Inform*. 2009;42(2):377-381. doi:10.1016/j.jbi.2008.08.010

- 23. Burt RS. Network items and the general social survey. *Soc Networks*. 1984;6(4):293-339.
 doi:10.1016/0378-8733(84)90007-8
- 24. Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press; 1994. doi:10.1017/CBO9780511815478
- Burt RS. Structural Holes and Good Ideas. *Am J Sociol*. 2004;110(2):349-399. doi:10.1086/421787
- 26. Learmonth YC, Motl RW, Sandroff BM, Pula JH, Cadavid D. Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. Bmc Neurol. 2013;13(1):37. doi:10.1186/1471-2377-13-37
- 27. Wicks P, Vaughan TE, Massagli MP. The multiple sclerosis rating scale, revised (MSRS-R): Development, refinement, and psychometric validation using an online community. Health Qual Life Out. 2012;10(1):70. doi:10.1186/1477-7525-10-70
- Bove R, Secor E, Healy BC, et al. Evaluation of an Online Platform for Multiple Sclerosis Research: Patient Description, Validation of Severity Scale, and Exploration of BMI Effects on Disease Course. Plos One. 2013;8(3):e59707. doi:10.1371/journal.pone.0059707
- Senders A, Hanes D, Bourdette D, Whitham R, Shinto L. Reducing survey burden: feasibility and validity of PROMIS measures in multiple sclerosis. Mult Scler J. 2013;20(8):1102-1111. doi:10.1177/1352458513517279
- 30. Cella D, Riley W, Stone A, et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. J Clin Epidemiol. 2010;63(11):1179-1194. doi:10.1016/j.jclinepi.2010.04.011

- Sobel ME. Asymptotic Confidence Intervals for Indirect Effects in Structural Equation Models. Sociol Methodol. 1982;13:290. doi:10.2307/270723
- Baron RM, Kenny DA. The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. *J Pers Soc Psychol.* 1986;51(6):1173-1182. doi:10.1037/0022-3514.51.6.1173
- Rosseel Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software. 2012;48(2), 1-36. doi: <u>10.18637/jss.v048.i02</u>
- 34. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2019. Available from: <u>https://www.R-project.org/</u>

FIGURES

Figure 1. Overview of study design.

A: schematic illustration of study populations, survey data collection using <u>Research Electronic</u> <u>Data Cap</u>ture (REDCap); B: personal social network features as exposure, as illustrated by a representative network of a hypothetical participant; C: patient-reported outcomes of neurological disability or physical function.

Figure 2. Quantile-quantile plots demonstrating longitudinal changes in personal social network features (due to the COVID-19 pandemic) in relation to patient-reported outcomes during the COVID-19 pandemic in people with multiple sclerosis.

Comparison of observed and expected associations between the *difference* in each of quantitative structural and compositional personal social network features (pandemic value minus the pre-pandemic baseline) in relation to the three interrelated measures of neurological functions (A: Patient-Determined Disease Steps [PDDS]; B: Multiple Sclerosis Rating Scale-Revised [MSRS-R]; C: Patient-Reported Outcomes Measurement Information System [PROMIS] Physical Function) during the pandemic in people with multiple sclerosis after adjusting for age, disease duration, employment, income, study cohort, and time lapse between pre-pandemic and pandemic PERSNET assessment. Expected p values (-log10[p-value]) were plotted on the x-axis and observed p values (-log10[p-value]) on the y-axis. The grey area encompasses the 95% confidence intervals. Points outside the grey area were considered statistically significant without adjustment for multiple comparisons.

Figure 3. Role of multiple sclerosis diagnosis in moderating the association between personal social network features and PROMIS Physical Function in people with multiple sclerosis and control participants.

A: In moderation analysis, we examined the association between each network feature and PROMIS Physical Function after combining the data from people with multiple sclerosis and controls and after adjusting for age, employment and income as covariates and further investigated whether the multiple sclerosis (MS) diagnosis moderated the direction or strength of this association. We found that MS diagnosis moderated the direction of the association between diversity of race (B), percent who live >15 miles away (C), percent who drink (D), and the strength of association between percent with a perceived negative health influence (E) and PROMIS Physical Function. Values on x-axis indicate the 25th, 50th, 75th percentile.

TABLES

Table 1. Participant characteristics of the cross-sectional and longitudinal cohorts.

	Cro	ss-sectional Coh	ort ^a	Lo	ngitudinal Coho	rt ^b
	pwMS	Control	p value ^d	pwMS	Control	p value ^d
N	1130	1250		230	136	
Age, Mean (SD)	50.7 (12.1)	44.4 (12.1)	<.001	50.4 (11.7)	43.1 (12.6)	<.001
Sex, N (%)						
Female	925 (81.9)	960 (76.8)	.009	183 (79.6)	99 (72.8)	.174
Male	203 (18.0)	286 (22.9)		47 (20.4)	37 (27.2)	
Other	2 (0.2)	4 (0.3)				
Race, N (%)			<.001			.179
African or African American	46 (4.1)	12 (1.0)		7 (3.0)	0 (0.0)	
American Indian or Alaskan Native or Native Hawaiian	10 (0.9)	6 (0.5)		1 (0.4)	0 (0.0)	
Asian	8 (0.7)	8 (0.6)		1 (0.4)	1 (0.7)	
White	1043 (92.7)	1208 (96.7)		214 (93.0)	135 (98.5)	
Multi- racial	9 (0.8)	11 (0.9)		4 (1.7)	1 (0.7)	
Other	4 (0.4)	3 (0.2)		0 (0.0)	0 (0.0)	
Not Sure	5 (0.4)	1 (0.1)		3 (1.3)	0 (0.0)	
Ethnicity, N (%)			.258			.586
Hispanic or Latino	38 (3.4)	31 (2.5)		6 (2.6)	2 (1.5)	
Non- Hispanic	1068 (94.9)	1201 (96.3)		220 (95.7)	131 (95.6)	
Not Sure	19 (1.7)	15 (1.2)		4 (1.7)	4 (2.9)	
Education, N (%)						
High school graduate	70 (6.2)	35 (2.8)	<.001	12 (5.3)	2 (1.8)	.004

Some college	154 (13.7)	106 (8.5)		30 (13.3)	4 (3.5)	
Associate degree	111 (9.9)	70 (5.6)		20 (8.8)	5 (4.4)	
Bachelor's degree	363 (32.4)	441 (35.3)		75 (33.3)	53 (46.5)	
Graduate degree	418 (37.3)	595 (47.6)		88 (39.1)	50 (43.9)	
Employment, N (%)						
Employed for wages	544 (48.1)	876 (70.1)	<.001	98 (43.4)	81 (71.1)	<.001
Homemaker	63 (5.6)	77 (6.2)		11 (4.9)	5 (4.4)	
Out of work and looking for work	17 (1.5)	27 (2.2)		8 (3.5)	5 (4.4)	
Out of work but not currently looking for work	29 (2.6)	15 (1.2)		6 (2.7)	0 (0.0)	
Retired	187 (16.5)	98 (7.8)		34 (15.0)	9 (7.9)	
Self- employed	63 (5.6)	97 (7.8)		14 (6.2)	10 (8.8)	
Student	12 (1.1)	18 (1.4)		3 (1.3)	2 (1.8)	
Unable to work	190 (16.8)	39 (3.1)		49 (21.7)	2 (1.8)	
Military	2 (0.2)	0 (0.0)		0 (0.0)	0 (0.0)	
Household Income (%)						
0 to \$19,999	74 (7.6)	37 (3.1)	<.001	19 (12.6)	5 (4.5)	.004
\$20,000 to \$34,999	85 (8.7)	56 (4.7)		15 (9.9)	2 (1.8)	
\$35,000 to \$49,999	97 (10.0)	75 (6.3)		23 (15.2)	9 (8.1)	
\$50,000 to \$64,999	92 (9.5)	106 (8.9)		14 (9.3)	11 (9.9)	
\$65,000 to \$79,999	79 (8.1)	120 (10.1)		7 (4.6)	8 (7.2)	
\$80,000 to \$94,999	76 (7.8)	94 (7.9)		8 (5.3)	8 (7.2)	

\$95,000 to \$109,999	80 (8.2)	127 (10.7)		12 (7.9)	14 (12.6)	
\$110,000 to \$124,999	85 (8.7)	112 (9.4)		20 (13.2)	12 (10.8)	
\$125,000 or higher	303 (31.2)	461 (38.8)		33 (21.9)	42 (37.8)	
Married, N (%)	786 (69.9)	841 (67.4)	.220	146 (64.0)	96 (70.6)	.243
Live Alone, N (%)	156 (14.8)	186 (15.0)	.932	39 (17.1)	21 (15.4)	.789
Occupation, N (%)						
Business owner	35 (6.2)	23 (2.4)	.001	6 (8.1)	5 (5.5)	.351
Executive, manager	100 (17.6)	157 (16.2)		14 (18.9)	8 (8.8)	
Laborer, unskilled worker	7 (1.2)	4 (0.4)		0 (0.0)	0 (0.0)	
Machine operator, inspector, bus/cab driver	1 (0.2)	0 (0.0)		0 (0.0)	0 (0.0)	
Mechanic, electrician, skilled worker	6 (1.1)	14 (1.4)		0 (0.0)	0 (0.0)	
Other	80 (14.1)	129 (13.3)		9 (12.2)	13 (14.3)	
Professional	282 (49.6)	545 (56.1)		38 (51.4)	57 (62.6)	
Sales or clerical worker	54 (9.5)	84 (8.6)		7 (9.5)	7 (7.7)	
Service worker	3 (0.5)	16 (1.6)		0 (0.0)	1 (1.1)	
PDDS, Mean (SD)	1.9 (2.1)	N/A				
MSRS-R, Mean (SD)	7.6 (5.5)	N/A				
PROMIS Physical Function T- score, Mean (SD)	46.4 (10.8)	56.3 (9.0)				

- a. Cross-sectional cohorts include Cohort 1 and 2 (University of Pittsburgh), Cohort 3 and 4 (Columbia University), Cohort 5 (Yale University), Cohort 6 (University of Buffalo Medical Center), Cohort 7 (University of Pennsylvania), and Cohort 8 (GEMS cohort)
- b. Longitudinal cohorts include Cohort 1 (University of Pittsburgh), Cohort 3 (Columbia University) and Cohort 8 (GEMS cohort).
- c. PDDS: Patient-Determined Disease Steps.
- d. MSRS-R: Multiple Sclerosis Rating Scale-Revised.
- e. PROMIS: Patient-Reported Outcomes Measurement Information System Physical Function.
- f. Bolded p-values meet the significance threshold of p < .05.
- g. Abbreviation of N/A not applicable.

Table 2. Comparison of personal social network features in people with multiple sclerosis and control participants during the COVID-19 pandemic.

	pwMS (N = 1130)	Control (N = 1250)	p value ^a
Network Structure			
Network Size, Mean (SD)	6.79 (4.24)	6.78 (3.90)	.946
Density, Mean (SD)	0.76 (0.25)	0.72 (0.24)	<.001
Constraint, Mean (SD)	56.88 (19.07)	54.30 (17.03)	.001
Effective Size, Mean (SD)	2.97 (1.62)	3.38 (1.65)	<.001
Max Degree, Mean (SD)	4.38 (2.07)	4.54 (1.99)	.055
Mean Degree, Mean (SD)	3.48 (1.77)	3.43 (1.59)	.485
Network Composition			
Percent Kin, Mean (SD)	55.89 (29.50)	50.71 (28.84)	<.001
Standard Deviation of Age, Mean (SD)	12.65 (6.80)	11.96 (5.82)	.033
Diversity of Sex, Mean (SD)	67.26 (39.72)	70.80 (30.26)	.016
Diversity of Race, Mean (SD)	6.00 (16.42)	7.32 (17.03)	.061
Percent contacted weekly or less, Mean (SD)	15.89 (20.90)	17.67 (21.15)	.043
Percent known for less than 6 years, Mean (SD)	11.81 (19.61)	17.57 (23.65)	<.001
Percent who live over 15 miles away, Mean (SD)	32.45 (27.82)	38.93 (26.63)	<.001

Percent who drink, Mean (SD)	12.43 (24.03)	16.63 (26.55)	<.001
Percent who smoke, Mean (SD)	8.87 (18.14)	7.17 (15.85)	.017
Percent non exercisers, Mean (SD)	35.28 (31.60)	39.06 (30.43)	.004
Percent bad diet, Mean (SD)	23.04 (27.61)	22.75 (28.08)	.806
Percent with a negative health influence, Mean (SD)	36.16 (30.43)	36.34 (30.16)	.890

a. Bolded p values meet the significance threshold of p<.002 (a = 0.05, corrected for 18 comparisons).

			PDDS a					MSRS-R ^b			PROMIS °				
	N f	Beta ^d	95% CI (lower)	95% CI (upper)	p value •	N f	Beta ^d	95% CI (lower)	95% CI (upper)	p value °	N f	Beta ^d	95% CI (lower)	95% CI (upper)	p value °
Network S	Structure														
Size	737	-0.017	-0.05	0.016	.314	737	-0.032	-0.117	0.053	.462	728	0.165	0.001	0.33	.049
Density	704	-0.051	-0.569	0.467	.848	704	0.115	-1.212	1.443	.865	695	-0.369	-2.933	2.194	.777
Constrain t	704	-0.001	-0.009	0.006	.681	704	-0.004	-0.023	0.014	.627	695	-0.006	-0.041	0.029	.753
Effective Size	704	0.006	-0.079	0.091	.895	704	-0.044	-0.262	0.173	.689	695	0.15	-0.27	0.569	.484
Maximu m Degree	704	0.018	-0.05	0.085	.603	704	0.02	-0.153	0.192	.821	695	0.017	-0.316	0.35	.920
Mean Degree	704	0.012	-0.066	0.089	.767	704	0.078	-0.121	0.277	.441	695	-0.049	-0.433	0.335	.802
Network C	Compositi	on													
Percent Kin	713	0.191	-0.25	0.632	.395	713	0.614	-0.514	1.742	.285	704	-1.356	-3.541	0.83	.224
Standard															
Deviation of Age	534	-0.01	-0.032	0.012	.362	534	-0.013	-0.071	0.045	.656	526	0.025	-0.082	0.132	.645

Table 3. Cross-sectional analysis of personal social network features in relation to patient-reported outcomes in people with multiple sclerosis during the COVID-19 pandemic.

Diversity of Sex	707	0.148	-0.277	0.574	.493	707	0.24	-0.844	1.324	.664	698	-1.143	-3.249	0.962	.287
Diversity of Race	701	0.545	-0.403	1.492	.260	701	-1.058	-3.48	1.365	.392	692	-1.506	-6.195	3.183	.529
Percent															
contacted weekly or less	713	0.394	-0.245	1.034	.226	713	-0.601	-2.238	1.036	.471	704	-1.13	-4.306	2.046	.485
Percent known for less than 6															
years	713	-0.215	-0.909	0.478	.542	713	-0.05	-1.825	1.725	.956	704	1.326	-2.11	4.763	.449
Percent who live over 15 miles	710	0.100	0.667	0.200	10.1	710	0.176	1.022	1 274	774	70.4	2 204	0.000	4 (10	0.51
away	/13	-0.199	-0.667	0.269	.404	713	0.176	-1.023	1.374	.//4	704	2.306	-0.008	4.619	.051
who drink	713	-0.326	-0.92	0.268	.282	713	-0.391	-1.912	1.13	.614	704	2.979	-0.003	5.96	.050
Percent who smoke	713	-0.139	-0.882	0.603	.712	713	1.046	-0.853	2.944	.280	704	-2.155	-5.827	1.518	.250
Percent non															
exerciser s	713	-0.069	-0.486	0.348	.746	713	0.771	-0.295	1.837	.156	704	-0.281	-2.351	1.788	.790
Percent bad diet	713	0.048	-0.437	0.534	.845	713	1.242	0.003	2.481	.049	704	-2.794	-5.189	-0.4	.022

Percent with															
а															
negative															
health															.552
influence	713	-0.281	-0.714	0.153	.204	713	2.181	1.082	3.279	<.001	704	-0.65	-2.795	1.494	
health influence	713	-0.281	-0.714	0.153	.204	713	2.181	1.082	3.279	<.001	704	-0.65	-2.795	1.494	

- a. PDDS: Patient-Determined Disease Steps.
- b. MSRS-R: Multiple Sclerosis Rating Scale-Revised.
- c. PROMIS: Patient-Reported Outcomes Measurement Information System Physical Function.
- d. Adjusted for potential confounders (as identified in eFigure-1) including age, disease duration, employment, and income.
- e. Bolded p values met the significance threshold of p<.00092 (a = 0.05, corrected for 54 comparisons).
- f. The smaller sample size in this analysis than the overall cohort size was due to the requirement for participants who had complete data elements for network feature, neurological outcome, and *all* covariates.

Table 4. Comparison of personal social network features in people with multiple sclerosis and control participants during the COVID-19 pandemic as compared to the *within-subject* pre-pandemic baseline.

	Control: Pre-Pandemic Baseline	Control: During Pandemic	p value ^a	MS: Pre-Pandemic Baseline	MS: During Pandemic	p value ^a
N	136	136		230	230	
Network Structure						
Network Size, Mean (SD)	8.18 (4.05)	6.44 (3.92)	<.001	8.02 (5.70)	6.63 (4.16)	.003
Density, Mean (SD)	0.69 (0.24)	0.72 (0.24)	.239	0.74 (0.25)	0.77 (0.24)	.137
Constraint, Mean (SD)	48.07 (13.36)	53.99 (16.31)	.001	52.24 (15.81)	56.77 (18.91)	.006
Effective Size, Mean (SD)	3.85 (1.56)	3.40 (1.55)	.013	3.30 (1.59)	2.90 (1.50)	.007
Max Degree, Mean (SD)	5.38 (1.94)	4.55 (2.06)	<.001	4.78 (1.86)	4.32 (1.92)	.010
Mean Degree, Mean (SD)	3.95 (1.71)	3.47 (1.72)	.018	3.70 (1.64)	3.47 (1.66)	.142
Network Composition						
Percent Kin, Mean (SD)	47.69 (22.86)	50.27 (26.87)	.378	46.06 (29.34)	54.36 (30.16)	.003
Standard Deviation of Age, Mean (SD)	12.67 (5.20)	11.60 (6.26)	.153	12.69 (6.05)	13.74 (6.69)	.225
Diversity of Sex, Mean (SD)	77.61 (24.00)	70.31 (30.73)	.026	57.14 (39.82)	52.17 (57.90)	.292
Diversity of Race, Mean (SD)	7.97 (18.55)	8.31 (18.43)	.874	5.66 (15.54)	7.13 (20.47)	.392
Percent contacted weekly or less, Mean (SD)	30.34 (26.35)	18.78 (22.23)	<.001	23.48 (24.95)	14.89 (20.95)	<.001

Percent known for less than 6 years, Mean (SD)	21.22 (23.58)	18.31 (21.95)	.270	13.26 (19.83)	10.41 (18.39)	.115
Percent who live over 15 miles away, Mean (SD)	41.37 (28.04)	38.88 (28.42)	.450	31.48 (25.57)	33.76 (29.36)	.379
Percent who drink, Mean (SD)	17.85 (27.04)	19.13 (27.58)	.704	8.85 (18.87)	10.32 (21.66)	.512
Percent who smoke, Mean (SD)	12.70 (24.28)	8.09 (18.57)	.064	12.72 (22.43)	9.13 (17.90)	.061
Percent non exercisers, Mean (SD)	41.93 (27.91)	39.86 (30.42)	.545	39.33 (30.94)	31.88 (33.13)	.014
Percent bad diet, Mean (SD)	31.32 (28.73)	25.74 (27.77)	.108	24.95 (29.57)	24.87 (30.21)	.982
Percent who have a negative health influence, Mean (SD)	36.29 (24.75)	35.59 (25.14)	.819	36.77 (29.71)	38.02 (28.61)	.697

a. Bolded p values meet the significance threshold of p < .05.

SUPPLEMENTAL MATERIAL

eFigure 1. Correlation between potential confounders and patient-reported outcomes.

Using a data-driven approach for covariate adjustment, we calculated the Pearson correlation coefficients (\mathbb{R}^2 , actual value and heatmap intensity shown inside each box) and the p-values (marked as meeting the pre-defined significance threshold) of potential confounding variables in relation to patient-reported outcomes. Covariates were selected for adjustment in downstream analysis if over 70% of participants had the pertinent information (frequency > 70%), the average correlation coefficient across all patient-reported outcomes was over 0.1 ($\mathbb{R}^2 > 0.1$), and the p-values met the nominal significance threshold (p<.05).

0.14**	0.06**	0.16**	Age	0.25
0.01**	0.00	0.00	Sex	0.2
0.00	0.00	0.00	Race/Ethnicity	0.15
0.03	0.07	0.05	Education	0.1
0.29**	0.30*	0.30*	Employment	
0.04	0.03	0.03	Occupation *	p<.05 *p<.001
0.10*	0.15*	0.13*	Income	
0.01*	0.01**	0.01**	Married	
0.02**	0.02**	0.02**	Live Alone	
0.11**	0.08**	0.10**	Disease Duration	
PDDS	MSRSR	PROMIS	2	

	Overall: MS	Overall: Control	MS	Control	MS	Control	MS	Control	MS	Control	MS	Control	MS	Control	MS	Control	MS	Control
			Cohort 1 ^a	Cohort 1 ^a	Cohort 2 ^b	Cohort 2 ^b	Cohort 3°	Cohort 3°	Cohort 4 ^d	Cohort 4 ^d	Cohort 5°	Cohort 5°	Cohort 6 ^f	Cohort 6 ^f	Cohort 7 ^g	Cohort 7 ^g	Cohort 8 ^h	Cohort 8 ^h
N	1130	1250	282	60	60	165	67	2	129	222	114	34	127	12	290	23	61	732
Age, Mean (SD)	50.7	44.4	50.8	53.1	49.3	53.6	46.7	26.5	49.7	41.6	48.5	52.7	55.4	52.5	51.6	55.5	48.1	41.6
Sev N (%)	(12.1)	(12.1)	(12.9)	(13.7)	(11.5)	(17.2)	(11.0)	(38.9)	(10.9)	(9.1)	(13.5)	(17.1)	(11.8)	(20.1)	(12.0)	(15.1)	(7.4)	(8.3)
Sex, IV (70)																		
Female	925	960 (76.8)	229	31	52 (86 7)	115	51	0	104	183	92 (80.7)	19	101	7	242	16	54	589
Male	203	286	53	28	(80.7)	(09.7)	(70.1)	(0.0)	(80.0)	(82.4)	(80.7)	(55.9)	(79.5)	(38.3)	(85.4)	(09.0)	(88.5)	(80.3)
iviale	(18.0)	(22.9)	(18.8)	(46.7)	(11.7)	(29.1)	(23.9)	(100.	(19.4)	(17.6)	(19.3)	(44.1)	(19.7)	(41.7)	(16.6)	(30.4)	(11.5)	(19.4)
	· · ·	· · ·	· · ·	· ,	· · /	· · /	· · /	0)	· · ·	· · ·	· ,	· · ·	· ,	· · ·	· ,	· · /	· · /	· ,
Other	2	4	0	1	1	2	0	0	0	0	0	0	1	0	0	0	0	1
Race N (%)	(0.2)	(0.3)	(0.0)	(1.7)	(1.7)	(1.2)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.8)	(0.0)	(0.0)	(0.0)	(0.0)	(0.1)
Ruee, IV (70)																		
African or African	46	12	8	0	1	1	7	0	4	2	2	1	6	0	17	0	1	8
American	(4.1)	(1.0)	(2.8)	(0.0)	(1.7)	(0.6)	(10.4)	(0.0)	(3.1)	(0.9)	(1.7)	(3.0)	(4.7)	(0.0)	(6.0)	(0.0)	(1.6)	(1.1)
American Indian or	(0.9)	(0,5)	(0,0)	(0,0)	(0,0)	(0.6)	(15)	(0,0)	(0,0)	(14)	(6 0)	(0,0)	0	(0,0)	$\begin{pmatrix} 2 \\ (0,7) \end{pmatrix}$	(0,0)	(0,0)	(0,3)
Native Hawaiian	(0.))	(0.5)	(0.0)	(0.0)	(0.0)	(0.0)	(1.5)	(0.0)	(0.0)	(1.7)	(0.0)	(0.0)	(0.0)	(0.0)	(0.7)	(0.0)	(0.0)	(0.3)
Asian	8	8	0	0	2	2	1	0	1	0	0	2	2	0	1	0	1	4
	(0.7)	(0.6)	(0, 0)	(0.0)	(3.3)	(1.2)	(1.5)	(0.0)	(0.8)	(0.0)	(0.0)	(6.1)	(1.6)	(0.0)	(0.4)	(0.0)	(1.6)	(0.5)
	(0.7)	(0.0)	(0.0)	(***)	(515)			· · /					~ /	(***)	(***)	(***)	· · /	()
White	1043	1208	274	60	55	160	50	2	121	213	104	30	119	12	261	23	59	708
White	1043 (92.7)	1208 (96.7)	274 (97.2)	60 (100. 0)	55 (91.7)	160 (97.0)	50 (74.6)	2 (100. 0)	121 (93.8)	213 (95.9)	104 (89.7)	30 (90.9)	119 (93.7)	12 (100. 0)	261 (92.2)	23 (100. 0)	59 (96.7)	708 (96.7)
White Multi-racial	(0.7) 1043 (92.7) 9	(0.0) 1208 (96.7) 11	(97.2) 0	60 (100. 0) 0	(91.7) 1	160 (97.0)	50 (74.6) 5	2 (100. 0) 0	121 (93.8) 0	213 (95.9) 3	104 (89.7) 3	30 (90.9) 0	119 (93.7) 0	12 (100. 0) 0	261 (92.2) 0	23 (100. 0) 0	59 (96.7) 0	708 (96.7) 7
White Multi-racial	$\begin{array}{c} (0.7) \\ 1043 \\ (92.7) \\ 9 \\ (0.8) \end{array}$	$ \begin{array}{c} (0.0) \\ 1208 \\ (96.7) \\ 11 \\ (0.9) \end{array} $	$\begin{array}{c} (0.0) \\ 274 \\ (97.2) \\ \hline 0 \\ (0.0) \end{array}$	$\begin{array}{c} (0.00) \\ 60 \\ (100. \\ 0) \\ 0 \\ (0.0) \end{array}$		$ \begin{array}{c} 160 \\ (97.0) \\ 1 \\ (0.6) \end{array} $	50 (74.6) 5 (7.5)	$ \begin{array}{c} 2 \\ (100. \\ 0) \\ 0 \\ (0.0) \end{array} $	121 (93.8) 0 (0.0)	213 (95.9) 3 (1.4)	104 (89.7) 3 (2.6)	30 (90.9) 0 (0.0)	119 (93.7) 0 (0.0)	$ \begin{array}{c} (100) \\ 12 \\ (100. \\ 0) \\ 0 \\ (0.0) \end{array} $	$\begin{array}{c} (0.1) \\ 261 \\ (92.2) \\ 0 \\ (0.0) \end{array}$	$\begin{array}{c} (3.0) \\ 23 \\ (100. \\ 0) \\ 0 \\ (0.0) \end{array}$	59 (96.7) 0 (0.0)	708 (96.7) 7 (1.0)
White Multi-racial Other	$\begin{array}{c} (0.1) \\ 1043 \\ (92.7) \\ \hline 9 \\ (0.8) \\ 4 \\ (0.4) \\ \end{array}$	$\begin{array}{c} (0.0) \\ 1208 \\ (96.7) \\ \hline 11 \\ (0.9) \\ 3 \\ (0.2) \end{array}$	$\begin{array}{c} (0.0) \\ 274 \\ (97.2) \\ \hline 0 \\ (0.0) \\ 0 \\ (0.0) \end{array}$	$\begin{array}{c} (0.0) \\ 60 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \end{array}$	$ \begin{array}{c} (5.5)\\ 55\\ (91.7)\\ 1\\ (1.7)\\ 1\\ (1.7)\\ \end{array} $	$ \begin{array}{c} (0,0) \\ 160 \\ (97.0) \\ 1 \\ (0.6) \\ 0 \\ (0,0) \end{array} $	50 (74.6) 5 (7.5) 0	$ \begin{array}{c} 2 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \end{array} $	$ \begin{array}{c} 121 \\ (93.8) \\ \hline 0 \\ (0.0) \\ 2 \\ (1.6) \\ \end{array} $	$213 \\ (95.9)$ $3 \\ (1.4) \\ 0 \\ (0.0)$	$ \begin{array}{c} 104 \\ (89.7) \\ \hline 3 \\ (2.6) \\ 0 \\ (0.0) \\ \hline \end{array} $	$ \begin{array}{r} 30 \\ (90.9) \\ \hline 0 \\ (0.0) \\ 0 \\ (0.0) \end{array} $	$ \begin{array}{c} 119\\(93.7)\\0\\(0.0)\\0\\(0.0)\end{array} $	$ \begin{array}{c} (100) \\ 12 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \end{array} $	$\begin{array}{c} (0.1) \\ 261 \\ (92.2) \\ 0 \\ (0.0) \\ 2 \\ (0.7) \end{array}$	$\begin{array}{c} (3.0) \\ 23 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \end{array}$	59 (96.7) 0 (0.0) 0	$\begin{array}{c} 708\\ (96.7)\\ \hline 7\\ (1.0)\\ 1\\ (9.1)\\ \end{array}$
White Multi-racial Other	$\begin{array}{c} (0.7) \\ 1043 \\ (92.7) \\ \hline 9 \\ (0.8) \\ 4 \\ (0.4) \\ \hline 5 \\ \end{array}$	$\begin{array}{c} (0.3) \\ 1208 \\ (96.7) \\ \hline \\ 11 \\ (0.9) \\ 3 \\ (0.2) \\ \hline \\ 1 \end{array}$	$\begin{array}{c} (0.0) \\ 274 \\ (97.2) \\ \hline 0 \\ (0.0) \\ 0 \\ (0.0) \\ \end{array}$	$\begin{array}{c} (0.0) \\ 60 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \end{array}$	$\begin{array}{c} (3.3) \\ 55 \\ (91.7) \\ \hline \\ (1.7) \\ 1 \\ (1.7) \\ 0 \end{array}$	$ \begin{array}{c} 160\\(97.0)\\ \hline 1\\(0.6)\\ 0\\(0.0)\\ \hline 0 \end{array} $	50 (74.6) 5 (7.5) 0 (0.0) 2	$\begin{array}{c} 2 \\ (100. \\ 0) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ 0 \\ \hline \end{array}$	$ \begin{array}{c} 121 \\ (93.8) \\ \hline 0 \\ (0.0) \\ 2 \\ (1.6) \\ 1 \end{array} $	$ \begin{array}{c} 213 \\ (95.9) \\ \hline 3 \\ (1.4) \\ 0 \\ (0.0) \\ \hline 1 \end{array} $	104 (89.7) 3 (2.6) 0 (0.0)	30 (90.9) 0 (0.0) 0 (0.0)	119 (93.7) 0 (0.0) 0 (0.0)	$\begin{array}{c} (10) \\ 12 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \end{array}$	$\begin{array}{c} (0.1) \\ 261 \\ (92.2) \\ \hline \\ 0 \\ (0.0) \\ 2 \\ (0.7) \\ 0 \end{array}$	$\begin{array}{c} (10) \\ 23 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \end{array}$	59 (96.7) 0 (0.0) 0 (0.0)	$\begin{array}{c} (0,1) \\ 708 \\ (96.7) \\ \hline \\ 7 \\ (1.0) \\ 1 \\ (0.1) \\ \end{array}$
White Multi-racial Other Not Sure	$\begin{array}{c} (0.7) \\ 1043 \\ (92.7) \\ \hline 9 \\ (0.8) \\ \hline 4 \\ (0.4) \\ \hline 5 \\ (0.4) \end{array}$	$\begin{array}{c} (0.3) \\ 1208 \\ (96.7) \\ \hline \\ 11 \\ (0.9) \\ \hline \\ 3 \\ (0.2) \\ \hline \\ 1 \\ (0.1) \\ \end{array}$	$\begin{array}{c} (0.0) \\ 274 \\ (97.2) \\ \hline \\ 0 \\ (0.0) \\ \hline \\ 0 \\ (0.0) \\ \hline \\ 0 \\ (0.0) \\ \end{array}$	$\begin{array}{c} (0.0) \\ 60 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \end{array}$	$\begin{array}{c} (3.3) \\ 55 \\ (91.7) \\ \hline 1 \\ (1.7) \\ \hline 1 \\ (1.7) \\ 0 \\ (0.0) \end{array}$	$ \begin{array}{c} 160 \\ (97.0) \\ \hline 1 \\ (0.6) \\ 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \end{array} $	50 (74.6) $5 (7.5)$ $0 (0.0)$ $3 (4.5)$	$\begin{array}{c} 2 \\ (100. \\ 0) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \hline \end{array}$	$ \begin{array}{c} 121 \\ (93.8) \\ \hline 0 \\ (0.0) \\ \hline 2 \\ (1.6) \\ 1 \\ (0.8) \end{array} $	$\begin{array}{c} 213\\ (95.9)\\\hline 3\\ (1.4)\\\hline 0\\ (0.0)\\\hline 1\\ (0.5)\\\hline \end{array}$	$ \begin{array}{c} 104 \\ (89.7) \\ \hline 3 \\ (2.6) \\ 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \end{array} $	$ \begin{array}{c} 30 \\ (90.9) \\ \hline 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \end{array} $	$ \begin{array}{c} 119\\(93.7)\\\\ 0\\(0.0)\\\\ 0\\(0.0)\\\\ 0\\(0.0)\\\\ \end{array} $	$\begin{array}{c} (10) \\ 12 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \end{array}$	$\begin{array}{c} (0,1)\\ 261\\ (92.2)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 2\\ (0.7)\\ \hline \\ 0\\ (0.0)\\ \end{array}$	$\begin{array}{c} (10) \\ 23 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \end{array}$	59 (96.7) 0 (0.0) 0 (0.0) 0 (0.0)	$\begin{array}{c} (70) \\ 708 \\ (96.7) \\ \hline \\ 7 \\ (1.0) \\ 1 \\ (0.1) \\ 2 \\ (0.3) \end{array}$
White Multi-racial Other Not Sure Ethnicity, N (%)	$\begin{array}{c} (0.7) \\ 1043 \\ (92.7) \\ \\ 9 \\ (0.8) \\ 4 \\ (0.4) \\ 5 \\ (0.4) \\ \end{array}$	$\begin{array}{c} (0.3) \\ 1208 \\ (96.7) \\ \hline \\ 11 \\ (0.9) \\ \hline \\ 3 \\ (0.2) \\ \hline \\ 1 \\ (0.1) \\ \end{array}$	$\begin{array}{c} (0.3)\\ 274\\ (97.2)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \end{array}$	$\begin{array}{c} (00) \\ 60 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \end{array}$	$\begin{array}{c} (913)\\ 55\\ (91.7)\\ \hline \\ 1\\ (1.7)\\ \hline \\ 0\\ (0.0)\\ \end{array}$	$ \begin{array}{c} 160\\ (97.0)\\ \hline 1\\ (0.6)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline \end{array} $	50 (74.6) $5 (7.5)$ $0 (0.0)$ $3 (4.5)$	$\begin{array}{c} 2 \\ (100. \\ 0) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \end{array}$	$ \begin{array}{c} 121 \\ (93.8) \\ \hline 0 \\ (0.0) \\ 2 \\ (1.6) \\ 1 \\ (0.8) \\ \end{array} $	$\begin{array}{c} 213\\ (95.9)\\\hline 3\\ (1.4)\\ 0\\ (0.0)\\\hline 1\\ (0.5)\\\hline \end{array}$	104 (89.7) 3 (2.6) 0 (0.0) 0 (0.0)	$\begin{array}{c} 30 \\ (90.9) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \end{array}$	119 (93.7) 0 (0.0) 0 (0.0) 0 (0.0)	$\begin{array}{c} (10)\\ 12\\ (100.\\ 0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ \end{array}$	$\begin{array}{c} (0.1) \\ 261 \\ (92.2) \\ \hline \\ 0 \\ (0.0) \\ \hline \\ 2 \\ (0.7) \\ \hline \\ 0 \\ (0.0) \\ \hline \end{array}$	$\begin{array}{c} (2.0) \\ 23 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \end{array}$	59 (96.7) 0 (0.0) 0 (0.0) 0 (0.0)	$\begin{array}{c} 708\\ (96.7)\\ \hline 7\\ (1.0)\\ \hline 1\\ (0.1)\\ \hline 2\\ (0.3)\\ \end{array}$
White Multi-racial Other Not Sure Ethnicity, N (%) Hispanic or Latino	$\begin{array}{c} (0.7) \\ 1043 \\ (92.7) \\ \hline 9 \\ (0.8) \\ 4 \\ (0.4) \\ \hline 5 \\ (0.4) \\ \hline \\ 38 \end{array}$	(0.3) 1208 (96.7) 11 (0.9) 3 (0.2) 1 (0.1) 31	$\begin{array}{c} (0.3) \\ 274 \\ (97.2) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \hline \end{array}$	$\begin{array}{c} (0.0) \\ 60 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \end{array}$	$\begin{array}{c} (5.5)\\ 55\\ (91.7)\\ \hline 1\\ (1.7)\\ \hline 1\\ (1.7)\\ \hline 0\\ (0.0)\\ \hline \\ 5\end{array}$	$ \begin{array}{c} 160\\ (97.0)\\ \hline 1\\ (0.6)\\ \hline 0\\ (0.0)\\ \hline 0\\ \hline 2\\ \end{array} $	50 (74.6) (74.	$ \begin{array}{c} 2\\ (100.\\ 0\\ 0\\ (0.0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} 121 \\ (93.8) \\ \hline 0 \\ (0.0) \\ 2 \\ (1.6) \\ 1 \\ (0.8) \\ \hline 7 \end{array} $	$ \begin{array}{r} 213\\(95.9)\\\hline 3\\(1.4)\\0\\(0.0)\\\hline 1\\(0.5)\\\hline 6\end{array} $	104 (89.7) 3 (2.6) 0 (0.0) 0 (0.0) 8	$ \begin{array}{r} 30 \\ (90.9) \\ \hline 0 \\ (0.0) \\ 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \hline 1 \end{array} $	119 (93.7) 0 (0.0) 0 (0.0) 0 (0.0) 2	$\begin{array}{c} (10) \\ 12 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \end{array}$	$\begin{array}{c} (2.7) \\ 261 \\ (92.2) \\ \hline 0 \\ (0.0) \\ 2 \\ (0.7) \\ \hline 0 \\ (0.0) \\ \hline \end{array}$	$\begin{array}{c} (2.0) \\ 23 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \end{array}$	59 (96.7) 0 (0.0) 0 (0.0) 0 (0.0) 0	$\begin{array}{c} 708\\ (96.7)\\ \hline 7\\ (1.0)\\ \hline 1\\ (0.1)\\ \hline 2\\ (0.3)\\ \hline 22\\ \end{array}$
White Multi-racial Other Not Sure Ethnicity, N (%) Hispanic or Latino	(0.7) 1043 (92.7) 9 (0.8) 4 (0.4) 5 (0.4) 38 (3.4)	$\begin{array}{c} (0.3) \\ 1208 \\ (96.7) \\ \hline \\ 11 \\ (0.9) \\ \hline \\ 3 \\ (0.2) \\ \hline \\ 1 \\ (0.1) \\ \hline \\ 31 \\ (2.5) \\ \end{array}$	$\begin{array}{c} (0.7) \\ 274 \\ (97.2) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \hline 0 \\ (0.0) \\ \hline \end{array}$	$\begin{array}{c} (10)\\ 60\\ (100.\\ 0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ \end{array}$	$\begin{array}{c} (3.5)\\ 55\\ (91.7)\\ \hline 1\\ (1.7)\\ \hline 1\\ (1.7)\\ \hline 0\\ (0.0)\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 160\\ (97.0)\\ \hline 1\\ (0.6)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline \\ 2\\ (1.2)\\ \end{array}$	$\begin{array}{c} 50\\ 50\\ (74.6)\\ \hline \\ 5\\ (7.5)\\ 0\\ (0.0)\\ \hline \\ 3\\ (4.5)\\ \hline \\ 6\\ (9.0)\\ \end{array}$	$\begin{array}{c} 2\\ (100.\\ 0)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline \end{array}$	121 (93.8) 0 (0.0) 2 (1.6) 1 (0.8) 7 (5.4)	$\begin{array}{c} 213\\ (95.9)\\ \hline 3\\ (1.4)\\ 0\\ (0.0)\\ \hline 1\\ (0.5)\\ \hline \\ 6\\ (2.7)\\ \end{array}$	104 (89.7) 3 (2.6) 0 (0.0) 0 (0.0) (0.0) 8 (6.9)	30 (90.9) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.1)	$\begin{array}{c} 119\\ (93.7)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 2\\ (1.6)\\ \end{array}$	$\begin{array}{c} (10) \\ 12 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \end{array}$	$\begin{array}{c} (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ \hline \\ 10 \\ (3,5) \end{array}$	$\begin{array}{c} (10) \\ 23 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \end{array}$	59 (96.7) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)	$\begin{array}{c} 708\\ (96.7)\\ \hline 7\\ (1.0)\\ 1\\ (0.1)\\ 2\\ (0.3)\\ \hline \\ 22\\ (3.0)\\ \end{array}$
White Multi-racial Other Not Sure Ethnicity, N (%) Hispanic or Latino Non- Hispanic	(0.7) 1043 (92.7) 9 (0.8) 4 (0.4) 5 (0.4) 38 (3.4) 1068	$\begin{array}{c} (0.3) \\ 1208 \\ (96.7) \\ \hline \\ 11 \\ (0.9) \\ \hline \\ 3 \\ (0.2) \\ \hline \\ 1 \\ (0.1) \\ \hline \\ 31 \\ (2.5) \\ \hline \\ 1201 \\ \end{array}$	$\begin{array}{c} (0,0)\\ 274\\ (97.2)\\ \hline 0\\ (0,0)\\ \hline 0\\ (0,0)\\ \hline 0\\ (0,0)\\ \hline 0\\ (0,0)\\ \hline 282\\ \end{array}$	$\begin{array}{c} (100, \\ 60 \\ (100, \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \end{array}$	$\begin{array}{c} (3.5)\\ (5.5)\\ (91.7)\\ \hline 1\\ (1.7)\\ \hline 1\\ (1.7)\\ \hline 0\\ (0.0)\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 160\\ (97.0)\\ \hline 1\\ (0.6)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline \\ 2\\ (1.2)\\ \hline 163\\ \end{array}$	$\begin{array}{c} 50\\ 50\\ (74.6)\\ \hline 5\\ (7.5)\\ 0\\ (0.0)\\ \hline 3\\ (4.5)\\ \hline \\ 6\\ (9.0)\\ \hline 55\\ \end{array}$	$\begin{array}{c} 2\\ (100.\\ 0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ \end{array}$	121 (93.8) 0 (0.0) 2 (1.6) 1 (0.8) 7 (5.4) 122	213 (95.9) 3 (1.4) 0 (0.0) 1 (0.5) 6 (2.7) 213	104 (89.7) 3 (2.6) 0 (0.0) 0 (0.0) 8 (6.9) 103	30 (90.9) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.1) 30	$\begin{array}{c} 119\\ (93.7)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 2\\ (1.6)\\ \hline \\ 122 \end{array}$	$\begin{array}{c} (10) \\ 12 \\ (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 12 \end{array}$	$\begin{array}{c} (0,0) \\$	$\begin{array}{c} (100, \\ 0 \\ 0 \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 23 \end{array}$	59 (96.7) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)	$\begin{array}{c} 708\\ (96.7)\\ \hline 7\\ (1.0)\\ 1\\ (0.1)\\ 2\\ (0.3)\\ \hline \\ 22\\ (3.0)\\ \hline 700\\ \end{array}$
White Multi-racial Other Not Sure Ethnicity, N (%) Hispanic or Latino Non- Hispanic	$\begin{array}{c} (0.7)\\ 1043\\ (92.7)\\ \hline 9\\ (0.8)\\ \hline 4\\ (0.4)\\ \hline 5\\ (0.4)\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} (0.3)\\ 1208\\ (96.7)\\ \hline 11\\ (0.9)\\ \hline 3\\ (0.2)\\ \hline 1\\ (0.1)\\ \hline \\ 31\\ (2.5)\\ \hline 1201\\ (96.3)\\ \end{array}$	$\begin{array}{c} (0,0)\\ 274\\ (97.2)\\ \hline 0\\ (0,0)\\ \hline 0\\ (0,0)\\ \hline \\ 0\\ (0,0)\\ \hline \\ 282\\ (100.0\\)\\ \end{array}$	$\begin{array}{c} (100, \\ 60 \\ (100, \\ 0 \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \hline \\ 0 \\ (0.0) \\ \hline \\ 60 \\ (100, \\ 0 \\) \end{array}$	$\begin{array}{c} (0,0)\\ \hline 55\\ (91.7)\\ \hline 1\\ (1.7)\\ \hline 1\\ (1.7)\\ \hline 0\\ (0.0)\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 160\\ (97.0)\\ \hline 1\\ (0.6)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline 2\\ (1.2)\\ \hline 163\\ (98.8)\\ \end{array}$	$\begin{array}{c} 50\\ 50\\ (74.6)\\ \hline \\ 5\\ (7.5)\\ 0\\ (0.0)\\ \hline \\ 3\\ (4.5)\\ \hline \\ 6\\ (9.0)\\ \hline \\ 55\\ (82.1)\\ \end{array}$	$\begin{array}{c} 2\\ 2\\ (100.\\ 0\\ 0\\ (0.0)\\ \hline \end{array}$	$ \begin{array}{c} 121 \\ (93.8) \\ \hline 0 \\ (0.0) \\ 2 \\ (1.6) \\ 1 \\ (0.8) \\ \hline 7 \\ (5.4) \\ \hline 122 \\ (94.6) \\ \end{array} $	$\begin{array}{c} 213\\ (95.9)\\ \hline 3\\ (1.4)\\ 0\\ (0.0)\\ 1\\ (0.5)\\ \hline \\ 6\\ (2.7)\\ 213\\ (95.9)\\ \end{array}$	104 (89.7) 3 (2.6) 0 (0.0) 0 (0.0) 0 (0.0) 8 (6.9) 103 (88.8)	30 (90.9) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.1) 30 (93.8)	$\begin{array}{c} 119\\ (93.7)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 2\\ (1.6)\\ \hline \\ 122\\ (96.1)\\ \end{array}$	$\begin{array}{c} (10)\\ 12\\ (100.\\ 0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 12\\ (100.\\ 0)\\ \end{array}$	$\begin{array}{c} (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ \hline \\ 0 \\ (0,0) \\ \hline \\ 10 \\ (3,5) \\ 269 \\ (95,1) \\ \end{array}$	$\begin{array}{c} (100. \\ 0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \hline \\ 23 \\ (100. \\ 0) \\ \end{array}$	$\begin{array}{c} 59\\ (96.7)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 61\\ (100.\\ 0)\\ \end{array}$	$\begin{array}{c} 708\\ (96.7)\\ \hline 7\\ (1.0)\\ \hline 1\\ (0.1)\\ \hline 2\\ (0.3)\\ \hline \\ 22\\ (3.0)\\ \hline \\ 700\\ (95.8)\\ \end{array}$
White Multi-racial Other Not Sure Ethnicity, N (%) Hispanic or Latino Non- Hispanic	$\begin{array}{c} (0.7)\\ 1043\\ (92.7)\\ 9\\ (0.8)\\ 4\\ (0.4)\\ 5\\ (0.4)\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} (0.3)\\ 1208\\ (96.7)\\ \hline 11\\ (0.9)\\ \hline 3\\ (0.2)\\ \hline 1\\ (0.1)\\ \hline \\ \\ 31\\ (2.5)\\ \hline 1201\\ (96.3)\\ \hline \\ 15 \end{array}$	$\begin{array}{c} (0,0)\\ 274\\ (97.2)\\ \hline 0\\ (0,0)\\ \hline 0\\ (0,0)\\ \hline 0\\ (0,0)\\ \hline \\ 0\\ (100,0)\\ \hline \\ 282\\ (100,0)\\ \hline \\ 0\\ \hline \end{array}$	$\begin{array}{c} (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ (0,0) \\ (100, \\ 0) \\ (0,0) \\ (0$	$\begin{array}{c} (0,0)\\ \hline 55\\ (91.7)\\ \hline 1\\ (1.7)\\ \hline 1\\ (1.7)\\ \hline 0\\ (0.0)\\ \hline \\ \\ 5\\ (8.3)\\ \hline 54\\ (90.0)\\ \hline 1\\ \end{array}$	$\begin{array}{c} 160\\ (97.0)\\ \hline \\ 1\\ (0.6)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 2\\ (1.2)\\ \hline \\ 163\\ (98.8)\\ \hline \\ 0\\ \end{array}$	$\begin{array}{c} 50\\ 50\\ (74.6)\\ \hline \\ 5\\ (7.5)\\ 0\\ (0.0)\\ \hline \\ 3\\ (4.5)\\ \hline \\ 6\\ (9.0)\\ \hline \\ 55\\ (82.1)\\ \hline \\ 6\end{array}$	$\begin{array}{c} 2\\ 2\\ (100.\\ 0\\ 0\\ (0.0)\\ \hline 2\\ \end{array}$	$\begin{array}{c} 121\\ (93.8)\\ \hline 0\\ (0.0)\\ 2\\ (1.6)\\ \hline 1\\ (0.8)\\ \hline \\ 7\\ (5.4)\\ \hline \\ 122\\ (94.6)\\ \hline \\ 0\\ \end{array}$	$\begin{array}{c} 213\\ (95.9)\\ \hline 3\\ (1.4)\\ 0\\ (0.0)\\ \hline 1\\ (0.5)\\ \hline \\ 6\\ (2.7)\\ \hline 213\\ (95.9)\\ \hline 3 \end{array}$	104 (89.7) 3 (2.6) 0 (0.0) 0 (0.0) 0 (0.0) 8 (6.9) 103 (88.8) 5	30 (90.9) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.1) 30 (93.8) 1	119 (93.7) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (1.6) 122 (96.1) 3	$\begin{array}{c} (10)\\ 12\\ (100.\\ 0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 12\\ (100.\\ 0)\\ 0\\ \end{array}$	$\begin{array}{c} (0,0) \\$	$\begin{array}{c} (100, \\ 0 \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \hline \\ 23 \\ (100, \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 59\\ (96.7)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (100.\\ 0)\\ \hline \\ 0\\ \end{array}$	$\begin{array}{c} 708\\ (96.7)\\ \hline 7\\ (1.0)\\ \hline 1\\ (0.1)\\ \hline 2\\ (0.3)\\ \hline \\ 22\\ (3.0)\\ \hline \\ 700\\ (95.8)\\ \hline 9\end{array}$
White Multi-racial Other Not Sure Ethnicity, N (%) Hispanic or Latino Non- Hispanic Not Sure	(0.7) 1043 (92.7) 9 (0.8) 4 (0.4) 5 (0.4) (3.4) 1068 (94.9) 19 (1.7)	$\begin{array}{c} (0.3)\\ 1208\\ (96.7)\\ \hline 11\\ (0.9)\\ \hline 3\\ (0.2)\\ \hline 1\\ (0.1)\\ \hline \\ 31\\ (2.5)\\ \hline 1201\\ (96.3)\\ \hline 15\\ (1.2)\\ \end{array}$	$\begin{array}{c} (0,0)\\ 274\\ (97.2)\\ \hline 0\\ (0,0)\\ \hline 0\\ (0,0)\\ \hline 0\\ (0,0)\\ \hline \\ 282\\ (100.0\\)\\ \hline 0\\ (0,0)\\ \hline \end{array}$	$\begin{array}{c} (100, \\ 60 \\ (100, \\ 0 \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \end{array}$	$\begin{array}{c} (0,0)\\ \hline 55\\ (91.7)\\ \hline 1\\ (1.7)\\ \hline 1\\ (1.7)\\ \hline 0\\ (0.0)\\ \hline \\ \\ 5\\ (8.3)\\ \hline \\ 54\\ (90.0)\\ \hline \\ 1\\ (1.7)\\ \end{array}$	$\begin{array}{c} 160\\ (97.0)\\ \hline \\ 1\\ (0.6)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 2\\ (1.2)\\ \hline \\ 163\\ (98.8)\\ \hline \\ 0\\ (0.0)\\ \hline \end{array}$	$\begin{array}{c} 50\\ 50\\ (74.6)\\ \hline \\ 5\\ (7.5)\\ 0\\ (0.0)\\ \hline \\ 3\\ (4.5)\\ \hline \\ 6\\ (9.0)\\ \hline \\ 55\\ (82.1)\\ \hline \\ 6\\ (9.0)\\ \hline \end{array}$	$\begin{array}{c} 2\\ 2\\ (100.\\ 0\\ 0\\ \hline 0\\ (0.0)\\ \hline 2\\ (100.\\ 0\\ 0\\ \end{array}$	$\begin{array}{c} 121\\ (93.8)\\ \hline 0\\ (0.0)\\ 2\\ (1.6)\\ \hline 1\\ (0.8)\\ \hline \\ \\ 7\\ (5.4)\\ \hline \\ 122\\ (94.6)\\ \hline \\ 0\\ (0.0)\\ \end{array}$	$\begin{array}{c} 213\\ (95.9)\\ \hline 3\\ (1.4)\\ 0\\ (0.0)\\ \hline 1\\ (0.5)\\ \hline \\ 6\\ (2.7)\\ \hline \\ 213\\ (95.9)\\ \hline \\ 3\\ (1.4)\\ \end{array}$	$ \begin{array}{c} 104\\ (89.7)\\ \hline 3\\ (2.6)\\ 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline 8\\ (6.9)\\ \hline 103\\ (88.8)\\ \hline 5\\ (4.3)\\ \hline \end{array} $	$\begin{array}{c} 30\\ (90.9)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline 0\\ (0.0)\\ \hline \\ 1\\ (3.1)\\ \hline 30\\ (93.8)\\ \hline \\ 1\\ (3.1)\\ \end{array}$	$\begin{array}{c} 119\\ (93.7)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 2\\ (1.6)\\ \hline \\ 122\\ (96.1)\\ \hline \\ 3\\ (2.4)\\ \end{array}$	$\begin{array}{c} (10)\\ 12\\ (100.\\ 0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ 0\\ (0.0)\\ \hline \\ 12\\ (100.\\ 0)\\ 0\\ (0.0)\\ \end{array}$	$\begin{array}{c} (0,0) \\$	$\begin{array}{c} (100, \\ 0 \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ 0 \\ (0.0) \\ \hline \\ 23 \\ (100, \\ 0) \\ 0 \\ (0.0) \\ \end{array}$	$\begin{array}{c} 59\\ (96.7)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 0\\ (0.0)\\ \hline \\ 61\\ (100.\\ 0)\\ \hline \\ 0\\ (0.0)\\ \hline \end{array}$	$\begin{array}{c} 708\\ (96.7)\\ \hline 7\\ (1.0)\\ \hline 1\\ (0.1)\\ \hline 2\\ (0.3)\\ \hline \\ 22\\ (3.0)\\ \hline \\ 700\\ (95.8)\\ \hline \\ 9\\ (1.2)\\ \end{array}$

eTable 1. Participant characteristics of cross-sectional cohorts by recruitment site.

High school graduate	70 (6.2)	35 (2.8)	28 (10.0)	12 (20.0)	4 (6.8)	7 (4.2)	1 (1.6)	0 (0.0)	6 (4.7)	1 (0.5)	7 (6.2)	0 (0.0)	7 (5.5)	0 (0.0)	16 (5.5)	4 (17.4)	1 (1.6)	11 (1.5)
Some college	154 (13.7)	106 (8.5)	47 (16.8)	9 (15.0)	4 (6.8)	16 (9.7)	4 (6.3)	0 (0.0)	18 (14.0)	17 (7.7)	24 (21.2)	3 (8.8)	21 (16.5)	1 (8.3)	31 (10.7)	8 (34.8)	5 (8.2)	52 (7.1)
Associate degree	111 (9.9)	70 (5.6)	43 (15.4)	6 (10.0)	6 (10.2)	10 (6.1)	3 (4.8)	0 (0.0)	14 (10.9)	14 (6.3)	8 (7.1)	4 (11.8)	20 (15.7)	0 (0.0)	13 (4.5)	2 (8.7)	4 (6.6)	34 (4.7)
Bachelor's degree	363 (32.4)	441 (35.3)	81 (28.9)	16 (26.7)	18 (30.5)	61 (37.0)	28 (44.4)	1 (50.0)	36 (27.9)	76 (34.2)	26 (23.0)	8 (23.5)	33 (26.0)	6 (50.0)	114 (39.3)	3 (13.0)	27 (44.3)	270 (36.9)
Graduate degree	418 (37.3)	595 (47.6)	81 (28.9)	17 (28.3)	27 (45.8)	70 (42.4)	27 (42.9)	1 (50.0)	54 (41.9)	114 (51.4)	48 (42.5)	19 (55.9)	44 (34.6)	5 (41.7)	114 (39.3)	6 (26.1)	23 (37.7)	363 (49.7)
Employment, N (%)																		
Employed for wages	544 (48.1)	876 (70.1)	121 (42.9)	30 (50.0)	33 (55.0)	74 (44.8)	36 (53.7)	1 (50.0)	66 (51.2)	169 (76.1)	60 (52.6)	18 (52.9)	47 (37.0)	6 (50.0)	140 (48.3)	4 (17.4)	41 (67.2)	574 (78.4)
Homemaker	63 (5.6)	77 (6.2)	15 (5.3)	0 (0.0)	1 (1.7)	3 (1.8)	4 (6.0)	0 (0.0)	5 (3.9)	16 (7.2)	8 (7.0)	0 (0.0)	7 (5.5)	1 (8.3)	21 (7.2)	0 (0.0)	2 (3.3)	57 (7.8)
Military	2 (0.2)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.8)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.6)	0 (0.0)
Out of work and looking for work	17 (1.5)	27 (2.2)	4 (1.4)	0 (0.0)	1 (1.7)	4 (2.4)	2 (3.0)	0 (0.0)	2 (1.6)	8 (3.6)	2 (1.8)	1 (2.9)	4 (3.1)	0 (0.0)	1 (0.3)	0 (0.0)	1 (1.6)	14 (1.9)
Out of work but not currently looking for work	29 (2.6)	15 (1.2)	7 (2.5)	0 (0.0)	2 (3.3)	4 (2.4)	1 (1.5)	1 (50.0)	5 (3.9)	2 (0.9)	4 (3.5)	0 (0.0)	6 (4.7)	0 (0.0)	4 (1.4)	0 (0.0)	0 (0.0)	8 (1.1)
Retired	187 (16.5)	98 (7.8)	46 (16.3)	16 (26.7)	6 (10.0)	55 (33.3)	8 (11.9)	0 (0.0)	20 (15.5)	2 (0.9)	18 (15.8)	8 (23.5)	30 (23.6)	3 (25.0)	56 (19.3)	7 (30,4)	3 (4.9)	7 (1.0)
Self-employed	63 (5.6)	97 (7.8)	11 (3.9)	5 (8.3)	2 (3.3)	10 (6.1)	3 (4.5)	0 (0.0)	7 (5.4)	16 (7.2)	7 (6.1)	4 (11.8)	5 (3.9)	0 (0.0)	25 (8.6)	1 (4.3)	3 (4.9)	61 (8.3)
Student	12 (1.1)	18 (1.4)	5 (1.8)	0 (0.0)	(1.7)	8 (4.8)	2 (3.0)	0 (0.0)	1 (0.8)	4 (1.8)	1 (0.9)	0 (0.0)	0 (0.0)	0 (0.0)	2 (0.7)	0 (0.0)	0 (0.0)	6 (0.8)
Unable to work	190 (16.8)	39 (3.1)	64 (22.7)	9 (15.0)	14 (23.3)	5 (3.0)	9 (13.4)	0 (0.0)	18 (14.0)	5 (2.3)	13 (11.4)	3 (8.8)	27 (21.3)	2 (16.7)	37 (12.8)	11 (47.8)	8 (13.1)	4 (0.5)
Household Income (%)																		
0 to \$19,999	74 (7.6)	37 (3.1)	32 (11.7)	8 (13.6)	6 (10.7)	11 (6.9)	*	*	6 (4.9)	5 (2.4)	6 (5.7)	3 (8.8)	7 (7.1)	0 (0.0)	12 (4.7)	3 (20.0)	5 (8.6)	7 (1.0)
\$20,000 to \$34,999	85 (8.7)	56 (4.7)	26 (9.5)	3 (5.1)	6 (10.7)	17 (10.6)	*	*	10 (8.2)	8 (3.9)	12 (11.3)	1 (2.9)	15 (15.2)	0 (0.0)	13 (5.1)	2 (13.3)	3 (5.2)	25 (3.5)
\$35,000 to \$49,999	97 (10.0)	75 (6.3)	43 (15.7)	6 (10.2)	8 (14.3)	11 (6.9)	*	*	8 (6.6)	10 (4.8)	8 (7.5)	2 (5.9)	9 (9.1)	0 (0.0)	16 (6.2)	1 (6.7)	5 (8.6)	45 (6.4)
\$50,000 to \$64,999	92 (9.5)	106 (8.9)	28 (10.2)	6 (10.2)	5 (8.9)	24 (15.0)	*	*	9 (7.4)	20 (9.7)	12 (11.3)	2 (5.9)	15 (15.2)	1 (12.5)	21 (8.2)	0 (0.0)	2 (3.4)	53 (7.5)

\$65,000 to \$79,999	79 (8.1)	120 (10.1)	26 (9.5)	8 (13.6)	4 (7.1)	16 (10.0)	*	*	14 (11.5)	21 (10.1)	10 (9.4)	3 (8.8)	8 (8.1)	0 (0.0)	12 (4.7)	0 (0.0)	5 (8.6)	72 (10.2)
\$80,000 to \$94,999	76 (7.8)	94 (7.9)	15 (5.5)	3 (5.1)	2 (3.6)	19 (11.9)	*	*	11 (9.0)	14 (6.8)	6 (5.7)	6 (17.6)	11 (11.1)	1 (12.5)	26 (10.1)	2 (13.3)	5 (8.6)	49 (6.9)
\$95,000 to \$109,999	80 (8.2)	127 (10.7)	29 (10.6)	6 (10.2)	2 (3.6)	13 (8.1)	*	*	14 (11.5)	22 (10.6)	4 (3.8)	3 (8.8)	11 (11.1)	2 (25.0)	15 (5.8)	0 (0.0)	5 (8.6)	81 (11.5)
\$110,000 to \$124,999	85 (8.7)	112 (9.4)	26 (9.5)	6 (10.2)	4 (7.1)	15 (9.4)	*	*	7 (5.7)	21 (10.1)	12 (11.3)	3 (8.8)	3 (3.0)	1 (12.5)	26 (10.1)	1 (6.7)	7 (12.1)	65 (9.2)
\$125,000 or higher	303 (31.2)	461 (38.8)	49 (17.9)	13 (22.0)	19 (33.9)	34 (21.2)	*	*	43 (35.2)	86 (41.5)	35 (33.0)	10 (29.4)	20 (20.2)	3 (37.5)	116 (45.1)	6 (40.0)	21 (36.2)	309 (43.8)
Married, N (%)	786 (69.9)	841 (67.4)	185 (66.1)	44 (73.3)	37 (62.7)	86 (52.1)	45 (67.2)	1 (50.0)	95 (73.6)	151 (68.0)	84 (73.7)	14 (42.4)	82 (64.6)	11 (91.7)	214 (73.8)	14 (60.9)	44 (74.6)	520 (71.2)
Live Alone, N (%)	156 (14.8)	186 (15.0)	52 (18.5)	11 (19.0)	13 (22.0)	43 (26.1)	*	*	16 (12.6)	27 (12.3)	14 (12.3)	8 (24.2)	20 (15.9)	1 (8.3)	32 (11.0)	6 (26.1)	9 (15.3)	90 (12.3)
Occupation, N (%)																		
Business owner	35 (6.2)	23 (2.4)	9 (6.8)	0 (0.0)	2 (5.7)	3 (3.6)	*	*	5 (6.8)	5 (2.7)	2 (3.0)	1 (4.5)	3 (5.8)	0 (0.0)	11 (6.7)	0 (0.0)	3 (6.8)	14 (2.2)
Executive, manager	100 (17.6)	157 (16.2)	19 (14.4)	5 (14.3)	2 (5.7)	5 (6.0)	*	*	12 (16.4)	31 (16.8)	13 (19.4)	8 (36.4)	5 (9.6)	1 (16.7)	38 (23.0)	2 (40.0)	11 (25.0)	105 (16.5)
Laborer, unskilled worker	7 (1.2)	4 (0.4)	4 (3.0)	1 (2.9)	0 (0.0)	0 (0.0)	*	*	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	2 (3.8)	0 (0.0)	0 (0.0)	0 (0.0)	1 (2.3)	3 (0.5)
Machine operator, inspector, bus/cab driver	1 (0.2)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	*	*	0 (0.0)	0 (0.0)	1 (1.5)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Mechanic, electrician, skilled worker	6 (1.1)	14 (1.4)	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.2)	*	*	0 (0.0)	3 (1.6)	1 (1.5)	0 (0.0)	1 (1.9)	0 (0.0)	4 (2.4)	0 (0.0)	0 (0.0)	10 (1.6)
Other	80 (14.1)	129 (13.3)	19 (14.4)	3 (8.6)	5 (14.3)	17 (20.2)	*	*	11 (15.1)	27 (14.6)	12 (17.9)	4 (18.2)	6 (11.5)	0 (0.0)	21 (12.7)	0 (0.0)	6 (13.6)	78 (12.3)
Professional	282 (49.6)	545 (56.1)	66 (50.0)	19 (54.3)	22 (62.9)	46 (54.8)	*	*	38 (52.1)	106 (57.3)	33 (49.3)	8 (36.4)	28 (53.8)	4 (66.7)	73 (44.2)	2 (40.0)	22 (50.0)	360 (56.7)
Sales or clerical worker	54 (9.5)	84 (8.6)	14 (10.6)	5 (14.3)	4 (11.4)	10 (11.9)	*	*	5 (6.8)	10 (5.4)	5 (7.5)	1 (4.5)	7 (13.5)	1 (16.7)	18 (10.9)	1 (20.0)	1 (2.3)	56 (8.8)
Service worker	3 (0.5)	16 (1.6)	1 (0.8)	2 (5.7)	0 (0.0)	2 (2.4)	*	*	2 (2.7)	3 (1.6)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	9 (1.4)
Network Size, Mean (SD)	6.8 (4.2)	6.8 (3.9)	6.1 (3.6)	5.8 (3.7)	6.9 (4.I 4)	7.0 (4.5)	8.2 (4.6)	4.5 (0.7)	7.4 (4.3)	7.2 (4.0)	7.1 (3.9)	5.6 (3.5)	5.4 (3.4)	7.2 (3.2)	7.4 (4.8)	7.3 (5.1)	6.6 (4.3)	6.7 (3.7)

PDDS, Mean (SD)	1.9 (2.1)	N/A	2.2 (2.2)	N/A	2.1 (1.9)	N/A	1.6 (2.0)	N/A	1.8 (2.3)	N/A	1.4 (1.9)	N/A	2.2 (2.4)	N/A	1.6 (2.0)	N/A	1.3 (1.9)	N/A
MSRS-R, Mean (SD)	7.6 (5.5)	N/A	8.0 (5.5)	N/A	8.8 (5.5)	N/A	*	N/A	7.4 (5.9)	N/A	6.7 (5.6)	N/A	8.7 (5.6)	N/A	7.0 (5.0)	N/A	6.5 (5.8)	N/A
PROMIS Physical Function T-score, Mean (SD)	46.4 (10.8)	56.3 (9.0)	45.3 (10.6)	51.2 (10.4)	45.8 (11.5)	53.5 (8.9)	48.9 (10.3)	42.7 (4.5)	46.1 (11.9)	59.2 (8.0)	47.3 (10.3)	45.5 (10.9)	43.7 (10.6)	45.5 (7.8)	47.7 (10.8)	42.3 (11.2)	48.3 (9.2)	57.5 (7.9)

- a. Cross-sectional cohorts include Cohort 1 and 2 (University of Pittsburgh), Cohort 3 and 4 (Columbia University), Cohort 5 (Yale University), Cohort 6 (University of Buffalo Medical Center), Cohort 7 (University of Pennsylvania), and Cohort 8 (GEMS cohort)
- b. PDDS: Patient-Determined Disease Steps.
- c. MSRS-R: Multiple Sclerosis Rating Scale-Revised.
- d. PROMIS: Patient-Reported Outcomes Measurement Information System Physical Function.
- e. Abbreviation: * Data unavailable, N/A not applicable.

eTable 2. Cross-sectional analysis of personal social network features in relation to PROMIS Physical Function during the COVID-19 pandemic in control participants.

	Ν	Beta ^a	95% CI (lower)	95% CI (upper)	p value ^b
Network Structure					
Size	1047	0.172	0.048	0.295	.007
Density	1005	-0.693	-2.689	1.304	.496
Constraint	1005	-0.034	-0.063	-0.005	.020
Effective Size	1005	0.313	0.018	0.608	.038
Maximum Degree	1005	0.383	0.141	0.626	.002
Mean Degree	1005	0.326	0.025	0.628	.034
Network Composition					
Percent Kin	1022	-1.065	-2.800	0.669	.228
Standard Deviation of Age	760	-0.025	-0.123	0.073	.619
Diversity of Sex	1022	0.596	-1.021	2.212	.470
Diversity of Race	1020	2.844	-0.013	5.702	.051
Percent contacted weekly or less	1022	-1.522	-3.840	0.796	.198
Percent known for less than 6 years	1022	0.713	-1.581	3.007	.542
Percent who live over 15 miles away	1022	-0.741	-2.541	1.059	.419

Percent who drink	1022	-1.138	-2.917	0.642	.210
Percent who smoke	1022	-4.846	-7.919	-1.774	.002
Percent non exercisers	1022	-1.574	-3.212	0.064	.060
Percent bad diet	1022	-2.556	-4.267	-0.845	.003
Percent who have a negative health influence	1022	-5.707	-7.405	-4.010	<.001

a. Adjusted for potential confounders including age, employment, and income. Disease duration was not adjusted for since it does not apply to control participants.

b. Bolded p values meet the significance threshold of p<.002 (a = 0.05, corrected for 18 comparisons).

eTable 3. Longitudinal examination of the association between changes in personal social network features (pandemic values minus pre-pandemic baseline) in relation to patient-reported outcomes in people with multiple sclerosis during the pandemic.

			PDDS ^a]	MSRS-R	b		PROMIS °					
	N	Beta ^d	95% CI (lower)	95% CI (upper)	p value	N	Beta ^d	95% CI (lower)	95% CI (upper)	p value	N	Beta ^d	95% CI (lower)	95% CI (upper)	p value	
Network Structure																
Size	185	-0.004	-0.063	0.055	.892	185	-0.071	-0.211	0.070	.324	178	0.040	-0.253	0.334	.786	
Density	166	-0.571	-1.951	0.809	.415	166	-1.715	-5.074	1.645	.315	162	5.581	-0.851	12.014	.088	
Constraint	166	-0.009	-0.026	0.008	.300	166	-0.012	-0.053	0.029	.574	162	0.084	0.004	0.165	.041	
Effective Size	166	0.027	-0.172	0.225	.791	166	0.020	-0.464	0.504	.935	162	-0.610	-1.554	0.333	.203	
Maximum Degree	166	0.011	-0.122	0.143	.874	166	0.005	-0.317	0.327	.975	162	-0.248	-0.88	0.385	.440	
Mean Degree	166	0.012	-0.156	0.179	.891	166	-0.055	-0.464	0.354	.791	162	-0.234	-1.048	0.58	.571	
Network Composition																
Percent Kin	171	-0.952	-2.225	0.320	.141	171	-0.849	-3.956	2.257	.590	166	7.697	1.737	13.657	.012	
Standard Deviation of Age	139	-0.069	-0.159	0.022	.129	139	-0.137	-0.399	0.125	.290	134	0.016	-0.496	0.528	.945	
Diversity of Sex	170	0.181	-0.728	1.089	.695	170	-1.540	-3.700	0.621	.161	165	-1.049	-5.361	3.262	.631	
Diversity of Race	170	-1.456	-3.754	0.842	.213	170	-3.522	-9.164	2.119	.219	165	3.909	-7.267	15.085	.490	
Percent contacted weekly or less	171	0.183	-1.103	1.469	.779	171	-0.442	-3.562	2.679	.780	166	-2.732	-8.807	3.343	.375	

Percent known for less than 6 years	171	1.080	-0.569	2.729	.198	171	1.071	-2.949	5.091	.599	166	-5.856	-13.668	1.956	.141
Percent who live over 15 miles away	171	-0.396	-1.319	0.527	.398	171	-0.901	-3.141	1.339	.428	166	2.366	-2.188	6.921	.306
Percent who drink	143	-0.56	-1.938	0.818	.423	143	-1.89	-4.973	1.192	.227	143	2.833	-3.713	9.379	.393
Percent who smoke	171	0.475	-0.904	1.854	.497	171	-3.319	-6.626	-0.012	.049	166	0.514	-6.179	7.207	.880
Percent non exercisers	171	0.439	-0.394	1.271	.299	171	1.025	-0.995	3.045	.318	166	2.13	-1.831	6.09	.290
Percent bad diet	143	0.202	-1.072	1.476	.754	143	-0.434	-3.294	2.427	.764	143	2.418	-3.626	8.461	.430
Percent who have a negative health influence	143	0.113	-0.852	1.077	.817	143	0.253	-1.912	2.418	.817	143	-1.144	-5.725	3.437	.622

a. PDDS: Patient-Determined Disease Steps.

b. MSRS-R: Multiple Sclerosis Rating Scale-Revised.

c. PROMIS: Patient-Reported Outcomes Measurement Information System Physical Function.

d. Adjusted for potential confounders including age, disease duration, employment, income, study cohort, and time lapse between pre-pandemic and pandemic assessment. None of the p-values meet the significance threshold of p<.00092 ($\alpha = 0.05$, corrected for 54 comparisons).

eTable 4. Moderation analysis assessing the influence of multiple sclerosis diagnosis on the direction and strength of the association between personal social network features and PROMIS Physical Function during the COVID-19 pandemic.

		Association	between Netw Physical	work Feature a Function	and PROMIS	Moderating Effect of MS Diagnosis on Association between Network Feature and PROMIS Physical Function					
	Ν	Beta	95% CI (lower)	95% CI (upper)	p value ^a	Beta	95% CI (lower)	95% CI (upper)	p value ^a		
Network Structure				_			_				
Size	1985	0.194	-0.112	0.5	.214	0.035	-0.157	0.226	.723		
Density	1896	-1.047	-6.032	3.938	.680	0.389	-2.77	3.547	.809		
Constraint	1896	-0.067	-0.138	0.004	.064	0.022	-0.022	0.067	.325		
Effective Size	1896	0.423	-0.325	1.17	.267	-0.018	-0.502	0.466	.943		
Maximum Degree	1896	0.784	0.179	1.389	.011	-0.27	-0.654	0.115	.169		
Mean Degree	1896	0.709	-0.036	1.454	.062	-0.282	-0.745	0.182	.233		
Network Composition											
Percent Kin	1927	-0.234	-4.554	4.085	.915	-0.924	-3.656	1.808	.507		
Standard Deviation of Age	1321	-0.019	-0.258	0.22	.876	0.002	-0.147	0.151	.976		
Diversity of Sex	1921	0.915	-3.117	4.947	.656	-0.351	-2.925	2.22	.789		
Diversity of Race	1906	8.788	1.409	16.167	.019	-5.878	-10.889	-0.868	.022		

Percent contacted weekly or less	1927	-0.547	-6.354	5.259	.853	0.329	-3.407	4.064	.863
Percent known for less than 6 years	1927	-3.821	-9.437	1.796	.182	2.744	-0.989	6.477	.150
Percent who live over 15 miles away	1927	-5.434	-9.91	-0.957	.017	4.662	1.811	7.512	.001
Percent who drink	1927	-5.679	-10.262	-1.096	.015	4.697	1.653	7.741	.002
Percent who smoke	1927	-7.724	-15.198	-0.25	.043	1.136	-3.451	5.723	.627
Percent non exercisers	1927	-3.508	-7.576	0.56	.091	1.116	-1.449	3.682	.394
Percent bad diet	1927	-1.633	-5.924	2.658	.456	-0.972	-3.766	1.821	.495
Percent who have a negative health influence	1927	-11.028	-15.237	-6.819	<.001	4.427	1.786	7.069	.001

a. Bolded p-values met the significance threshold of p < .05.