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Abstract

The dynamics of epidemiological phenomena associated to infectious diseases

have long been modelled with different approaches. However, recent pandemic events

exposed many areas of opportunity to improve over the existing models. We develop

a model based on the idea that transitions between epidemiological stages are alike

sampling processes. Such processes may involve more than one subset of the pop-

ulation (e.g. infection), or they may be mostly dependent on time intervals defined

by infectious or clinical criteria. The resulting modelling scheme is robust, easy to

implement, and can readily lend itself for extensions aimed at answering questions

that emerge from close examination of data trends, such as those emerging from the

COVID-19 pandemic, and other infectious diseases.

1 Introduction

The urgency to understand the population dynamics during the COVID-19 pandemic pro-

pelled new questions in many scientific fields. Some nontrivial aspects of the pandemic

have been unravelled and described by analysing clinical or experimental data. In parallel,

many modelling efforts have attempted to provide quantitative predictions of the evolu-

tion of the pandemic, and some yielded reasonable qualitative explanations. However, the

COVID-19 pandemic also unveiled some of the shortcomings of the existing modelling

tools, and shed light on the fact that the construction hypotheses for many existing models

are simply too limiting to study even the most basic aspects of an epidemic.
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We propose a new, simple model for the dynamics of infectious diseases with the idea

of being able to answer basic questions and also, provide a basic paradigm from which we

can draw more detailed explanations for some other unresolved epidemiological phenom-

ena (for instance, see Montoya et al. (2013)). The model combines ideas from sampling

processes with classical approaches from dynamical systems. Of note, restricting some

of the construction hypotheses of our model gives the long-established SIR-type models

(Kermack and McKendrick, 1927), and explains, en passage, some important limitations

and mathematical impossibilities of the SIR approach.

1.1 Epidemiological dynamics and modelling

The epidemiological dynamics of infectious diseases result from a combination of non-

linear and random phenomena occurring in different levels of biological organisation. A

variety of theoretical approaches, of which the most notable is the family of SIR-type

models (Brauer et al., 2019; Kermack and McKendrick, 1927) has proven useful to study

general aspects of epidemics. However, the existing deterministic and stochastic classes of

epidemiological models based on equations, at large, fail to offer reasonable links between

the mathematical expressions in the models and the underlying biochemical or biophys-

ical mechanisms they are supposed to capture macroscopically. For instance, there are

stochastic models capable of describing different aspects of the dynamics in epidemics.

The work of Greenwood (1931) analyses the pertinence of different probabilistic models

to explain mechanisms of disease spreading within households. The number of cases of

the disease registered in a period of time at each household is used as input for the models,

hence having the possibility of measuring the fit of each model to real data. More recently,

Greenwood and Gordillo (2009) review compartmental stochastic models, focused on the

distribution of the final size of the epidemics, the stochastic periodicity of the number of

infectious individuals, and the (random) time that an individual remains infectious after

having been infected. The model by Tuckwell and Williams (2007) uses Markovian infec-

tion dynamics that occur as binomial processes within a constant population over discrete

time. Some surveys about similar stochastic models can be found in the work of Allen

(2017) and Britton (2010).

In contrast, deterministic models from the SIR family are, by construction, unable to

capture the basic aspects of an epidemic in small populations. SIR-like models also fail to

reproduce case-fatality ratios agreeing with data unless the model has multiple stages of

infection and deaths occur only at the last epidemiological state. That is, quick deaths can
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only happen after an infection reaches its worse stages.

Significant improvements can be made in the study of epidemiological dynamics by

replacing one or more of the phenomenological construction postulates of the SIR fam-

ily (e.g. homogeneous mixing). This can be done by making assumptions and deriving

expressions explicitly based on physical, biological, or biochemical principles underlying

the infection or disease, however macroscopic. For instance, the infection rate is typically

assumed to be proportional to the prevalence of infection (density of infected). Such an

assumption may sound reasonable at first and it may even be possible to fit a rational multi-

ple of prevalence to case data after mild corrections. However, the proportionality constant

implicit in that assumption depends on factors that include the source of inoculation (e.g.

a water or animal reservoir), the collective behavioural patterns of people susceptible to

infection and those infected, and the characteristics of the individuals in those populations

(e.g. obesity, age, gender).

Another issue that is often ignored is the difference between an infectious process, typ-

ically detected by laboratory tests, and the evolution of the disease possibly caused by that

infection, which may only be detected if symptoms develop. This is also a problem from

an epidemiological standpoint because these two phenomena are usually lumped together

in construction hypotheses for models (see Allen (2008), thus limiting the scope and the

resulting dynamics (Shayak and Sharma, 2021). Also, the clinical manifestations possibly

caused by an infection are not necessarily detected or sought for. relevant time window in

this regard is the incubation period, which is asymptomatic but possibly infectious. Then

number of asymptomatic cases may be the main underlying cause of large epidemic out-

breaks (Gerba, 2009). Examples of communicable diseases of current importance due to

their enormous burden on economic, social, and health systems, that can be asymptomat-

ically transmitted, and therefore difficult to keep under control include malaria (Bousema

et al., 2014), dengue (Grange et al., 2014), influenza (Cohen et al., 2021), COVID-19

(Gandhi et al., 2020), aids (Hollingsworth et al., 2008), among many well-documented

examples.

The discussion above underscores the necessity of constructing models that explicitly

make distinctions between infectious and illness states, or to explicitly distinguish be-

tween the exposure of susceptibles and the exposure of infected. It should also be possible

to develop models constructed from a macroscopic perspective to explain seemingly para-

doxical situations. For instance, infections may cause severe illness or even death in older

people and young athletes, but not in children, as has been observed during the COVID-19
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pandemic. Of particular interest, there is a lack of computationally simple, mathemati-

cally robust models based on pathophysiological considerations that distinguish the clin-

ical outcome from infections taking into account different susceptibility profiles (Butler

and Barrientos, 2020; Fakhroo et al., 2020; Fricke-Galindo and Falfán-Valencia, 2021), or

explaining different levels of severity in the clinical outcomes of reinfections as a function

of the time from the last infection (Katzelnick et al., 2016; Montoya et al., 2013).

As a starting step, in this paper we present a modelling framework based on a simple

dynamical principle: individuals in a given epidemiological stage may switch to a different

stage through sampling, and all individuals. For instance, at each point in time, people who

become infected are sampled from the susceptible population, and they may progress into

illness, if they get sampled again. We start by giving basic macroscopic descriptions for

transmission of infectious diseases, and make punctual distinctions between the sampling

processes involved in the switching through specific epidemiological stages. We then pro-

ceed to present a simple model for epidemiological dynamics, hereby called sED. Once

the construction of the basic model is explained, we demonstrate a few of its mathemati-

cal properties and illustrate some of its advantages over classical epidemiological models,

including the possibility of modelling infection spread in small populations with integer

state variables. We also show that the sED model recovers different types of determinis-

tic SIR models under particular sets of assumptions, and illustrate the application of the

sED model with specific examples. We then show how to extend the proposed modelling

framework and we finish the article by presenting some applications and a discussion of

the results and some future perspectives.

2 Modelling framework for stochastic epidemiological dy-

namics

2.1 Working definitions and conceptual distinctions

Susceptible individuals are, by definition, those that can be infected. Exposed individuals

are those in contact with the pathogen. Exposure may change over time depending on

different factors like physical distancing policy, personal mobility, the time of the day,

etcetera. Naturally, only susceptible individuals that are exposed can become infected, and

an individual is infected if the pathogen finds a susceptible tissue and starts replicating.

After some time in which the pathogen replicates, infected individuals become able to
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transmit the pathogen and start contributing to the chain of transmission. The time relative

to the (initial) inoculation is a random variable (Fenner et al., 1987). The incubation

time can be regarded as the time interval between the start of replication and the start

of pathological processes associated with pathogen invasion (Li, 2010, p.25). However,

since symptoms are usually the way in which pathology is detected, the incubation time is

usually referred to in medical epidemiology as the time lapse between the suspected time

of infectious contact and the start of symptoms (Dicker C. et al., 2006; He et al., 2020).

This is typically a problem since infected people may not be symptomatic (they do not

show obvious symptoms), as their infection progresses. In the case that disease ensues,

the severity may progress from mild to worse until recovery or death.

The time individuals spend being infected is a random variable that often is modelled

as a gamma-distributed random variable (Anderson and Watson, 1980; Feng et al., 2007;

Lloyd, 2001; Vazquez, 2021). For practical purposes, the infection time can be thought of

as a sum of an initial replication period of the pathogen causing the infection, and a second

period during which an individual may have detectable symptoms. The individual may

be infectious shortly after the first pathogen invasion, during the incubation period, and

before symptoms appear (e.g. COVID-19). This can be modelled by dividing the infec-

tious period into several stages. After the infection period, individuals may develop other

phases of the disease that are not necessarily infectious. For instance, in both symptomatic

and asymptomatic COVID-19, the initial viral phase might be followed by an inflamma-

tory phase (Garcı́a, 2020; Manjili et al., 2020) where the probability of infectious virus

shedding decreases dramatically (van Kampen et al., 2021). A longitudinal study of peo-

ple infected with SARS-CoV-2 (Boucau et al., 2022) suggests the possibility of shedding

virus for more than 5 days (possibly up to 15 days) after symptom onset. In the best-case

scenario, the immune system develops a protection profile against the pathogen and the

individual recovers soon after that. In a worse-case scenario, the response of the immune

system may be too strong, inflicting damage on different tissues, exacerbating the pathol-

ogy further, causing severe illness and potential death. Alternatively, it is also possible

that individuals are born immune or become immune. This may happen for reasons that

include having beneficial mutations in their genome (Allers and Schneider, 2015), having

acquired cross-immunity upon exposure to other pathogens (Doolan et al., 2009), or after

vaccination (Clem, 2011).

In consideration of the observations made above, and others mentioned further in the

perspectives subsection of the discussion, we developed a hierarchy of models for stochas-
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tic epidemiological dynamics referred to as sED models from here on, that can be extended

depending on the level of detail sought and the questions of interest.

2.2 Modelling rationale

We regard any epidemiological classification of individuals from a population as a dynam-

ical partition into subsets that change in time. The subsets that make up the partition can be

represented as nodes in a directed graph with nodes and edges can be respectively weighed

according to the size of the population they represent, or alternatively, the probability that

an individual changes to the epidemiological stage at the end of the edge (Fig. 1).

The epidemiological dynamics at the population-level can then be based on two simple

but powerful concepts.

• First, each infection can be thought of as a one-way, path starting at the node rep-

resenting the susceptible subpopulation, and ending at one of the terminal nodes in

the graph representing the recovered state or death due to infection.

• Second, the epidemiological state s(t) of any individual may change during the

time interval [t, t + h] with a certain probability phs (t), and remain the same with

probability 1 − phs (t). Such changes are assumed to occur independently between

individuals.

2.2.1 Epidemiological sampling and state switching

The epidemiological state s of an individual at time t+h can be thought of as the result of

a routing process in which individuals are subjects in Bernoulli trials occurring between

times t and t + h, with probability of success (switch) phs (t). The number of people

that change their epidemiological state between times t and t + h is thus the number

of successful trials in the Bernoulli sample drawn at time t. It is reasonable to assume

independence between switching events for different individuals. Within a homogeneous

population (e.g. similar co-morbidities), every individual can be assumed to have the

same probability of switching between epidemiological states, in which case the number

of people who switch can be regarded as a Binomial random variable in which the number

of trials is the number of individuals initially considered. If there is more than one possible

new epidemiological state to switch to, phs (t) can regarded as a sum of the probabilities of

switching to the new different states, and the individuals that switch to the different states

can be thought of as a Multinomial sample with a number of trials equal to the number
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Figure 1: Different dynamical scenarios contemplated by the sED modelling scheme outlined in
A1 and B1. The light shades in A2 and B2 represent the confidence bands generated with 2,000
simulations and the solid dots are taken as the average of those simulations. The dynamics in
the two models are defined as having the same average time for recovery and death. However,
they display different time courses for infection and final outcome. See Tables 1 and 2 for further
information.

of people in state s at time t. The epidemiological dynamics of a population formed by

different, but relatively homogeneous subpopulations can then be modelled by keeping

track the individual changes in epidemiological state, and updating the number of people
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in the different stages after each time step.

Reasonable approximations for populations formed by heterogeneous groups can then

be derived by assuming homogeneity among individuals within a group and tracking the

evolution of the different groups. For instance, in some cases it would be reasonable

to assume that the (population) average probabilities for switching describe the population

dynamics at large, and therefore, sampling for those individuals switching epidemiological

states can be done in each subpopulation by performing assuming independent Bernoulli

trials, assuming that success occurs with a probability equal to the average probability of

switching between epidemiological states for that subpopulation.

The first model we present will be based on this basic assumption which implies two

sampling processes on one homogeneous population: one from the susceptible population

that depends on contacts between susceptible and infected, and another from the infected

that only depends on time from the start of infection (Fig. 1, left column).

2.2.2 Time-dependent switch in epidemiological state

Let τs be a random variable representing the waiting time for a switch to a new epidemio-

logical state s. For instance, τR represents the expected time for recovery for an individual

at some infectious state. The probability of switching within h time units can then be

written as phs (t) = Ps(h)Qs(t, h) where Ps(h) represents the probability that the switch

occurs within h time units, and Qs(t, h) represents the probability that the conditions that

are necessary for the switch occur at time t. Assuming that the time τs for a switch from

the epidemiological state s is an exponential random variable with mean waiting time µs,

Ps(h) = P (τs < h) = 1− exp (−h/µs) . (1)

We now proceed to show the derivation for the basic version of the stochastic model

for epidemiological dynamics, which is capable of capturing different aspects of epidemi-

ological dynamics, showing some of their properties and advantages over classical models.

We do so taking into account the characteristics and data reported for COVID-19.

2.2.3 The start of the chain of transmission: switching from susceptible to infected

Suppose that every member of a population is either susceptible to infection, non-susceptible,

or infected by a certain pathogen (e.g. SARS-CoV-2), at any point in time. Let non-

negative integers T (t), S(t), and I(t) represent the sizes of the whole population, those
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susceptible to infection, and those infected at time t (in days). T (t) − S(t) is the size of

the non-susceptible population at time t, i.e. those that do not participate in the chain of

infections.

Assume that infections are independent among individuals, with an average probability

of infection ph(t, I) that depends on factors that include the time of exposure h and the

availability inoculum, which can be thought of as a monotonically increasing function of

I . In addition, suppose that each of the susceptibles can be infected within h time units

with probability ph(t, I), or remain susceptible with probability 1− ph(t, I). The number

Xh
I (t) of newly infected people (absolute incidence) can then be thought of as a Binomial

random variable sampled from S(t) individuals. One possibility is to define

ph(t, I) = PI(h)Qh(t, I) = PI(h)β
I(t)

T (t)
(2)

where β is the probability that a susceptible person is infected after having an infectious

contact with the infectious pathogen, I(t)/T (t) represents the proportion of infected in-

dividuals within the population at time t, and PI(h) represents the probability that the

infection occurs within a time window of length h, while being exposed to the infectious

pathogen. The number of newly infected individuals between times t and t+h can then be

thought of as a random variable Xh
I (t) with Binomial

(
S(t), ph(t, I)

)
distribution, and the

expected number of newly infected individuals would then be ph(t, I)S(t). The number

of susceptible people at a time t+ h can then be calculated as,

S(t+ h) = S(t)−Xh
I (t), (3)

which means that the expected change between S(t) and S(t+h) is a decreasing function

of t, for all h > 0. As a working definition, we will consider the start of an epidemic

when the expected number of infections, S(t) · ph(t, I), becomes increasing as a function

of time.

We now describe how to take into account the possibility of death due to disease.

2.3 Infections and possibly fatal outcomes

Assume that an initial number of infections I(0) = I0 are caused by a primal source of

pathogens, and that those infections are transmissible to the rest of the population. Assume

also that infected individuals shed the same (average) inoculum per unit time. For now,
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all susceptible and infected individuals are assumed to participate in the chain of infection

without restrictions. In a later section, we will explore the effects of extending the model

to explicitly include exposure factors for susceptible and infected, separately.

Immunity and death. For this first model, assume that some of the infected individuals

die after becoming infected, and the rest recover and become immune from then on, as

assumed in the classical SIR formulation. Notice that the assumptions above do not take

into consideration any clinical aspects associated to the infection, with only two possible

stage switches to become deceased or eventually recover. Let Y h
R (t) and Y h

D(t) respectively

represent the numbers of people that that recover or die between t and t + h. Those that

remain infected after that time interval are then

I(t+ h) = I(t)− Y h
D(t)− Y h

R (t). (4)

The probabilities that a person is removed from the infected group (i.e. recovers or

dies), or that the person remains infected within a small time interval of length h, are as-

sumed to be independent of the state of the epidemics at time t; thought of as to depend

only on the physiological state of the individual facing the infection. Independence be-

tween infections enables the possibility of regarding Y h
R (t) and Y h

D(t) as outcomes from a

Multinomial sample from I(t), with respective probabilities phR and phD, for t ∈ [t, t + h].

In other words, the triplet

(
Y h
R (t), Y

h
D(t), I(t)− Y h

R (t)− Y h
D(t)

)
∼ Mult

(
I(t), phR, p

h
D, 1− phR − phD

)
,

and the dynamics of the infected, recovered, and dead at time t + h can be written as a

stochastic dynamical system of the form

I(t+ h) = I(t) +Xh
I (t)− (Y h

R (t) + Y h
D(t)),

R(t+ h) = R(t) + Y h
R (t),

D(t+ h) = D(t) + Y h
D(t). (5)

where R(t) and D(t) are non-negative integers respectively representing the number of

recovered or deceased individuals at time t.
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2.3.1 Probabilities for recovery and death

Let τR and τD be positive-valued random variables respectively representing the waiting

time for an infected person before recovery or death. Bearing in mind that the distri-

butions of τR and τD may vary substantially depending on the pathogen (Baron, 1964),

assume that infected individuals can either clear a pathogen within an average time µR,

or alternatively, the individual may die from disease caused by the infection after an av-

erage time µD. The probabilities that a person is removed from the infected group or that

remains infected within a small time interval of length h can be estimated by assuming

Geometrically distributed times for recovery and death, so that

phs ≈ hµ−1
s , s ∈ {R,D} . (6)

with 1− (phR + phD) representing the probability of remaining infected within h time units.

Large enough values of I(t) yield a Poisson approximation of the form

phs ≈ 1− e−h/µs , s ∈ {R,D} . (7)

Take for instance the epidemiological dynamics of COVID-19 (Fig. 2). Data from

the first symptomatic cases of COVID-19 during 2020 in China suggested that deaths in

hospitalised individuals occurred between 2 and 3 weeks after start of symptoms (Zhou

et al., 2020). In contrast, the hospitalization time for survivors was reported to be between

3 and 4 weeks (Zhou et al., 2020). Also, the average incubation time was reported to

be between 4 and 6 days (Quesada et al., 2020), and during this interval of time time

those infected could shed inoculum while remaining asymptomatic. Taking the above

observations into account, we assume values for µR and µD to be 21 and 28 days, and 28

and 35 days, respectively to construct the basic sED model with dynamics illustrated in

Fig. 2.

The joint dynamics of the decreasing size of the susceptible population and the proba-

bility of infection result in a sequence of probability mass functions for the newly infected

that have many remarkable features (Fig. 3). First, the peak probability has a “U” shape as

a function of time, taking the highest values at the beginning and end of the epidemic, and

the lowest at the peak of infections. The number of newly infected that corresponds to that

peak probability has the opposite behaviour, starting and ending at very low values, and

reaching a maximum at the peak of the epidemic. This is in line with the idea that unless

the value of β is very large, the probability that a large number of new infections occur is
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Figure 2: Dynamics and geometry of the sED model. Panel A shows the epidemiological curves
obtained with the sED model. Panel B shows the I − S phase plane. Finally, panel C shows the
numbers of newly infected individuals and the numbers of people that recover or die over time.
The parameters used in this simulation were µR = 27, and µD = 24. Other parameters can be
found in Table 1.

low, at any point in time, regardless of the population size.

Before presenting applications and further extensions of this basic model, we demon-

strate some mathematical properties derived directly from equations (3)-(6).

2.3.2 The routing probability and the mean infection time

We first answer a fundamental question: What is the probability that a given infected

person recovers?

The multinomial trial with probabilities phR, phD, and 1−(phR+phD) for any time t is inde-

pendently repeated for time windows of size h, for as long as the population has infected
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Figure 3: Example of the evolution of the probability mass function pt(x) of new infections x in
the basic sED model as a function of time t. Time progresses through the panels, where panel A
represents the beginning of the epidemic, panel B represents day 10, panel C represents day 20, and
so on until panel F representing day 50. The parameters used in the simulation were T0 = 10, 000,
β = 0.3, µR = 27, µD = 24 and h = 1.

individuals. The event in which an individual stops being infected can then be thought

of as a sequence of independent trials, each lasting h time units, in which the individual

remains infected and in the last trial the person either recovers or dies. The routing proba-

bility to the recovered state, that is, the probability that an individual eventually recovers,

is then given by

rR =
∞∑
j=1

(
1− phR − phD

)j−1

phR =
phR

phR + phD
=

µD

µR + µD

. (8)

The probability that an infected individual eventually dies is rD = 1− rR. Explicitly,

rD =
µR

µR + µD

. (9)

Note that these two probabilities do not depend on the time step h.
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The dynamics of the multinomial trials for each infected person can also be thought of

as Bernoulli trials with probability of success pR + pD, and the elapsed time τI can then

be thought of as a random variable with a mean τ̄I given by the inverse of the probability

(rate) of leaving the infectious state,

τ̄I =
1

h
(
µ−1
R + µ−1

D

) . (10)

This means that the model can be formulated in terms of the routing probabilities and

the mean time spent in the infection stage, (rR, rD, τ̄I), which could possibly be obtained

from hospitalisation data, instead of the mean infection times spent by a person before

recovery or death, (µR, µD). Using equations (8)-(10) we have

phR =
h

µR

=
rR
τ̄I

. (11)

The inverse of the mean time spent in the infected phase is thus proportional to the

probability that within h time units an individual stops being infected, regardless of the

outcome.
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Figure 4: Dynamics of the sED model for decreasing step sizes (h) (A-C), and the approximation
of the model using the Poisson process (D). For this simulation µR = 27 and µD = 24, and the
other parameters can be found in Table 1.
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2.4 Continuous time Markov chain approximation

Now consider an approximation for the simple sED model, in the case when the step

size h (the discrete units of time for the simple sED model) decreases to zero for integer

population sizes. The approximation gives insight about the theoretical properties in the

limit for small step sizes, and the limit process is relatively easy to simulate since it is a

continuous time Markov chain process (Fig. 4).

Recall that a non-homogeneous Poisson process {N(t) : t ≥ 0} with intensity λ(t)

and starting at the origin, can be assumed to have independent increments such that,

P(N(t+ h)−N(h) = 1) = hλ(t) + o(h),

P(N(t+ h)−N(h) ≥ 2) = o(h), (12)

for any t ≥ 0 (see for instance Basu, 2003, p. 142). Consider the sED state vector

{(S(t), I(t), R(t), D(t)) : t ≥ 0} with dynamics given by equations (3)-(5), starting from

some initial condition (S(0), I(0), R(0), D(0)). Assume that

X̂h
I (0) = Ŷ h

R (0) = X̂h
D(0) = 0

with the super index h emphasising dependence on the size of the time step. After k steps,

the cumulative sampling processes can be written as

X̂h
I (kh) =

k∑
i=1

Xh
I (ih), Ŷ h

D(kh) =
k∑

i=0

Y h
D(ih), Ŷ h

R (kh) =
k∑

i=0

Y h
R (ih).

These processes are defined for a discrete set of times {0, h, 2h, ...}, but they can be ex-

tended for any positive time as left-continuous step functions on continuous time, taking a

discrete set of values. For example, X̂h
I (t) := X̂h

I (kh) for any kh ≤ t < (k + 1)h, with

k ∈ N. As a consequence, the limit processes

NI(t) := lim
h→0

X̂h
I (t), NR(t) := lim

h→0
Ŷ h
R (t), ND(t) := lim

h→0
Ŷ h
D(t),

are non-homogeneous Poisson processes. We show that in the following lines.

By construction NI , NR and ND start at the origin, and the random variables
{
Xh

I (kh)
}
k∈N

are independent, which means that the process X̂h
I has independent increments on disjoint

intervals of the form [n1h, n2h] where n1 < n2 are non negative integers. Therefore, the
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limit processes NI , and by a similar argument, NR and ND, have independent increments.

Further, for t ∈ [kh, (k + 1)h), S(t) = S(kh), I(t) = I(kh), and

P(X̂h
I (t+ h)− X̂h

I (t) = 1) = P(Xh
I (kh) = 1).

Since Xh
I (kh) has a Binomial distribution with parameters S(kh) and hβI(kh)/T , respec-

tively, it follows that

P(X̂h
I (t+ h)− X̂h

I (t) = 1) = S(kh)

(
hβ

I(kh)

T (kh)

)1(
1− hβ

I(kh)

T (kh)

)S(kh)−1

≈ S(t)hβ
I(t)

T (t)
+ o(h),

for h > 0. Also the probability

P(X̂h
I (t+ h)− X̂h

I (t) ≥ 2) =

S(kh)∑
i=2

(
S(kh)

i

)(
hβ

I(kh)

T (kh)

)i(
1− hβ

I(kh)

T (kh)

)S(kh)−i

,

has order o(h), for h > 0. In the limit as h goes to zero, the process NI satisfies equa-

tion (12) and X̂I is thus a non-homogeneous Poisson process with intensity S(t)βI(t)/T (t).

Since, (Y h
R (kh), Y

h
D(kh), I(kh)− Y h

R (kh)− Y h
D(kh)) is Multinomially distributed for kh,

we have that Y h
R (kh) is Binomially distributed with parameters I(kh) and phR. Likewise,

Y h
D(kh) is Binomially distributed with parameters I(kh) and phD. The processes NR and

ND satisfy (12), which can be proven by following the same reasoning as for NI .

Taking into account the arguments just presented, as the step size h decreases to zero,

the sED system {(S(t), I(t), R(t), D(t)) : t ≥ 0} based on Binomial samples converges

in distribution with order o(h) to the system {(Ŝ(t), Î(t), R̂(t), D̂(t)) : t ≥ 0} based on

Poisson sampling, starting from the same initial conditions, with dynamics given by

Ŝ(t) = S(0)−NI(t),

Î(t) = I(0) +NI(t)− (NR(t) +ND(t)),

R̂(t) = R(0) +NR(t),

D̂(t) = D(0) +ND(t),

where NI , NR, ND are non-homogeneous Poisson processes with corresponding intensity

rates γS(t) = Ŝ(t)βI(t)/T (t), γR(t) = Î(t)µ−1
R , and γD(t) = Î(t)µ−1

D . Note that the
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model dynamics depend on the size of the population T (t) for each time t. In the idealised

situation where the total size of the population is constant, T (t) ≡ T (no deaths), the model

is greatly simplified because the limit process (Ŝ(t), Î(t), R̂(t)) boils down to a continuous

time Markov chain with state space contained in the set {0, 1, ..., T}3 and infinitesimal

generator matrix with transition rates given by

q((s, i, r), (s− 1, i+ 1, r)) = sβ
i

T
1{1,2,...,T}(s),

q((s, i, r), (s, i− 1, r + 1) = µ−1
R i 1{1,2,...,T}(i),

for s, i, r ∈ {0, 1, ..., T}.

The basic models presented up to this point have some advantages, including the pos-

sibility of modelling epidemics in very small populations. However, these basic models

have some limitations that can be overcome by extending the basic model. For instance,

we will include different stages for the severity of infection to analyse the impact they have

in the case-fatality ratios, a quantity often ignored in modelling studies. Importantly, the

extensions are constructed following the same rationale used for the basic models.

Table 1: Notation and values used for simulations with the basic sED model.

Symbol Values Units Description
T0 1000 persons Initial population size
S0 10 persons Initial size of susceptible population
I0 990 persons Initial size of infected population
R0 0 persons Initial size of recovered population
D0 0 persons Initial size of population dead due to disease
Xh [0, S] persons Size of newly infected sample (depends on time step)
Y h
R [0, I] persons Size of newly recovered sample (depends on time

step)
Y h
D [0, I] persons Size of n sample (depends on time step)

µR [22, 32] days Expected time between initial infection and death due
to disease Li et al. (2020); Zhou et al. (2020)

µD [19, 29] days Expected time between initial infection and death due
to disease Li et al. (2020); Zhou et al. (2020)

β 0.3 —- Probability of infection given an contact with an in-
fected person Phucharoen et al. (2020)

ε 1 1 Proportion of exposed susceptibles
κ 1 1 Proportion of exposed infected
h 1 days Time step
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3 Applications

3.1 The classical SIR model from the basic sED model

The classical SIR model describes the dynamics of an epidemic in a large population of

constant size, in terms of three non-overlapping subpopulations representing susceptible,

infected, and those that cannot participate in the chain of infections (either formerly in-

fected or immune from the start). One key assumption of the classical SIR model is that

individuals that cease being infected do not become susceptible again. In its continuous

time and continuous state version, the SIR model can be written as a system of differential

equations constructed under the assumption that the population is heterogeneously mixed

and of fixed size (no deceases due to infection), with transmission occurring possibly after

a contacts between susceptible and infected individuals.
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Figure 5: Density of infections for different population sizes of SIR vs sED dynamics obtained
by replacing the sampling processes by their mean at each time step (A-E). The bars on panel F
indicate the size of the difference between the total infected over time between the two models as
a function of the population size. For these realisations, µR = (27 + 24)/2 for the sED model
without deaths, and β = 0.3 and γ = 2/(27 + 24) for the SIR model.

An analogue of the classical SIR model can be obtained as a particular case of the

basic sED model (equations (3)-(5)) by assuming that: (i) there are no deaths due to in-

fections, which makes the population size T a constant; (ii) the samples Xh
I (t) and Y h

R (t)
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are replaced by their expected values, which yields a deterministic system of difference

equations; (iii) the population size is very large; (iv) the (integer) sizes of the epidemi-

ological classes are replaced by subpopulation densities, thus enabling the possibility of

thinking about state variables as continuous; and (v) the time step can be arbitrarily small

to replace the difference equations with differential equations where the densities are con-

tinuous variables changing with respect (continuous) time.

Briefly and explicitly, the expected number of new infected between times t and t+ h

is h β S(t) I(t)/T (t), which means that, on average, the absolute incidence (new cases)

between t and t+ h can be written as

S(t+ h)− S(t) = −hβS(t)I(t)/T (t). (13)

Similarly, the number of people expected to stop being infected between t and t + h is

phRI(t) = µ−1
R , and the average change in a window of h time units is thus

I(t+ h)− I(t) = h

[
β
S(t)

T
− 1

µR

]
I(t). (14)

Then, if the (initial) population size T is large enough, we can let x(t) = S(t)/T , y(t) =

I(t)/T , and z(t) = 1− (x(t) + y(t)), and then write differential equations from equa-

tions (13)-(14) describing the dynamics of (x, y, z) by taking the limit as h tends to 0. If

we let ∂t denote the instantaneous rate of change with respect to time, then the dynamics

for x and y can be described by differential equations of the form

∂tx = −βxy, (15)

∂ty = (βx− γ) y, (16)

with ∂tz = − (∂tx+ ∂ty) = γy representing the time-dependent change in the density

of the population that is immune to the disease (i.e. does not participate in the chain of

transmission), and γ = 1/µR.

3.1.1 Is it possible to write a simple and well posed extension for the continuous SIR
to account for deaths?

Can we change equation (16) to include the possibility of death due to disease? One way

to do that would be to split γ as a sum of two rates, one representing recovery, the other

death, respectively. As a consequence, z(t) would be now a sum of population densities
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Figure 6: Systematic comparison between the dynamics of the SIR and SIRD models. The
comparison was made asumning that γ = γd + γr with γd = kγ, and γr = (1 − k)γ and
k ∈ {0.25, 0.51, 0.75} (A, B, and C respectively), with γ = 2/(27 + 24).

d(t)+r(t) where d(t) = D(t)/T (t) represents the proportion of people dying at time t, and

r(t) = R(t)/T (t) represents the proportion of people that do not participate in the chain

of transmission at time t (either because they recovered or because they were immune to

infection from the start). A typical setup for this would be to extend the system (15)-(16)

to include

∂tr(t) =
y(t)

µR

, ∂td(t) =
y(t)

µD

, (17)

which could, in principle, be solved numerically to obtain approximations for the dynam-

ics of the state vector (x, y, r, d), for each time t (Fig. 6). However, the total population

size at time t is T (t) = S(t)+ I(t)+R(t), so that 1 = x(t)+ y(t)+ r(t) for all t ≥ 0, and

∂tr = −∂t(x+ y) = γy.

But γy = ∂tz = ∂tr + ∂td, which means that ∂td ≈ 0 for all t ≥ 0. As a consequence,

adding dynamics for deaths due to infection would add an inconsistency in the way the

model is posed.

3.2 Limiting the exposure of the susceptible vs. limiting the exposure
of the infected

Assume that a certain proportion ε of the susceptible are exposed to inoculation, and also,

that only a proportion κ of those infected actively sheds inoculum.

Suppose that at any time t (days), non-negative integers T (t) and S(t) represent the

size of the whole population and those susceptible to infection at time t. Let ε(t) and κ(t)
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respectively represent the proportion of the susceptible population that are exposed to the

pathogen at any time t, and the proportion of infected people that shed inoculum. The

values of ε(t) and κ(t) depend on factors that include the mobility of the population and

other behavioural patterns.
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Figure 7: (A) Infection processes varying the exposure for susceptible and infected (ε and κ). (B)
The S − I phase plane for different values of p. Realisations were calculated using µR = 27, and
µD = 24.

The number Xh
I (t) of newly infected people (absolute incidence) can then be thought

of as a Binomial random variable sampled from ⌊ε(t)S(t)⌋ individuals. Assuming homo-

geneous mixing between the exposed susceptibles and the exposed infected, define

ph(t, I) = PI(h)Qh(t, I) = PI(h)β
κ(t)I(t)

T (t)
(18)

where β, κ(t) and I(t)/T (t), respectively represent the probability that a susceptible per-

son is infected after having an infectious contact (contact with the pathogen), the propor-

tion of infected individuals shedding inoculum, and the proportion of infected individuals

within the population at time t. PI(h) represents the probability that the infection occurs

within a time window of length h, while being exposed to the pathogen causing the disease

of interest. As a consequence, the number of newly infected individuals between times t

and t+ h can be thought of as a random variable Xh
I (t) ∼ Bin

(
⌊ε(t)S(t)⌋, ph(t, I)

)
, and

the expected number of newly infected individuals would then be ph(t, I)⌊ε(t)S(t)⌋.

Recall that a Binomial random variable with parameters n and p converges to a Poisson

random variable with parameter np as n tends to infinity. In this way if ⌊ε(t)S(t)⌋ ≥ 10

a Poisson random variable with parameter ⌊ε(t)S(t)⌋ · PI(h)β
κ(t)I(t)
T (t)

, has a probability

distribution very close to the one of Xh
I (t) (Poor, 1991). Observe that ε(t) and κ(t) appear

as a product in the parameter of the Poisson approximation. Therefore, some degree of
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symmetry can be expected for large enough populations in the behaviour of I(t)], and other

quantities depending on I(t) as a function of the exposures for susceptible and infected for

large enough populations (Figure 8).
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Figure 8: Quantities of interest that directly depend on I(t), as a result of varying the exposure for
susceptible and infected (ε and κ) in the basic sED model. The solid line in red corresponds to the
case κ = 2/3, and the dashed line in blue corresponds to the case ε = 2/3. (A) Total deaths, (B)
maximum expected value of the newly infected individuals, and (C) maximum increment of the
newly infected individuals between t and t+ h.

In principle, it is possible to estimate the value of ph(t, I)ε(t), if data of new infections

is available. For infectious diseases like COVID-19, or Ebola, if time is in minutes, or

larger, and h is only a few seconds (h << 1), then pI(h) ≈ 1, and the probability of

infection given a contact with an infected individual is approximately β κ(t)I(t)/T (t), as

it has been proposed for models like the classical SIR.

3.3 Case fatality ratios and the necessity of considering infections
with different severity stages

The probability that an individual recovers eventually (equation (8)) depends on two quan-

tities mainly statistical in nature, µR and µD, respectively representing the mean time spent

by an individual in the infectious state and the mean time spent infected before death.

However, equation (8) does not capture the complexity of the relation between epidemi-

ological waiting times like µR and µD, and the probability of having a good or a bad

outcome. For example, the incubation time (the time between the initial inoculation and

the emergence of symptoms) for some individuals may be very small, as they quickly de-

velop an increasingly severe disease, significantly increasing the probability of death in

comparison to other cases in which the disease is not as severe (Salinas-Escudero et al.,

2020). Also, for some diseases the probability of recovery may decrease as individu-

als spend more days in a hospital (Faes et al., 2020; Salinas-Escudero et al., 2020). For
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instance, during the first months of the COVID-19 pandemic, there were several studies re-

porting shorter hospitalization times with fatal outcomes in comparison to recovery times

(Alimohamadi et al., 2021; Porcheddu et al., 2020).

Figure 9: Case fatality ratios can be adjusted by assuming multiple infection-related epidemio-
logical stages. Epidemiological dynamics of for multiple infection-related stages (A, C, E, respec-
tively) versus a single infectious stage (B, D, F, respectively). Realisations in both cases were
simulated assuming the same total expected infection time with µR = 27 and µD = 24 for the
basic sED and µ0

R = 5, µ1
R = 6, µ2

R = 12, µ3
R = 4, and µ0

D = 5, µ1
D = 5, µ2

D = 5, µ3
D = 9 for the

multistage sED. As before, the initial population size for these simulations is 1000.

Naturally, assuming µR > µD for the basic sED model (and the SIR model) yields

case-fatality ratios D/(D + R) > 1/2 (Figure 9 A, C, E), which does not necessarily

happen for most infectious diseases. In particular, for COVID-19 µR < µD and the CFR

has been considerably smaller than 0.1 for all variants and all age groups (Bendavid et al.,

2021; Cao et al., 2020; Luo et al., 2021). Thus, the most simple form of the sED model

cannot yield small case-fatality ratios and simultaneously capture the macroscopic trends

in the time course of I(t). By extension, the same happens with the SIR model. To address

this issue, we propose an adaptation of the basic model that takes a more realistic descrip-

tion of the disease history of individuals into account, thereby allowing the possibility of
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reproducing both the macroscopic infection dynamics and the more detailed evolution of

the recovered and deceased subpopulations.

3.3.1 Infections with multiple states

Before developing the extension model, it is important to remark that the time period in

which an individual is capable of transmitting the infection does not necessarily coincide

with the manifestation of clinical symptoms. For instance, shedding of viable inoculum

occurs during the incubation period for many infectious diseases. Alternatively, it is also

possible that an infected person stops transmitting viable virions or other infection-causing

pathogens before recovering (Li, 2010). These events depend strongly on the disease

(Baron, 1964). Of interest, it could also be the case that individuals in advanced stages of

infection do not participate in the chain of transmission because of being spatially isolated;

e.g. due to hospitalisation, self isolation, or because of losing the ability to move.

To get a better epidemiological description of the initial infection and possibly the

subsequent clinical stages, we model the increase in the severity of infection assuming

that the time course of infection is divided in different stages that progress toward more

severe illness, until possibly reaching the death state in the absence of recovery. In other

words, at each infectious stage the individual either recovers, or advances to a more severe

state. At the last infectious stage, the only possibilities are either recovery or death.

Assume that the sizes of the infected or ill populations are represented by k state vari-

ables {I0, . . . , Ik−1}, with indices increasing according to the severity of the disease. The

states do not necessarily represent clinical states. The size of the infected population is

therefore I = I0 + ...+ Ik−1. It is assumed here that a person may recover from any in-

fection stage, and cannot become part of the subpopulation in an infection state without

having been through all the infection states of less severity. By extension, an infected in-

dividual cannot die without having been through all the infection states. For instance, for

COVID-19 it is reasonable to assume that there are at least four possible infectious states

labelled as 0, 1, 2, and 3, with population sizes I0, I1, I2, I3, respectively representing an

incubation period, followed by symptomatic stages I1, I2, and I3 of mild, middle, and

severe stages, after which they could die (Figure 9 B).

Let hβiκi(t) be the probability of having an effective transmission within a time win-

dow of size h, given a contact between a susceptible person and an individual in the stage

Ii. Then, by using the law of total probability counting over the partition on the differ-

ent possible infectious subpopulations, the probability that a susceptible person becomes
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infected in a time window of size h is given by

ph(I0, ..., Ik−1, t) = h

k−1∑
i=0

βiκi(t)
Ii(t)

T (t)
. (19)

which generalises (18).

For the subsequent stages, in analogy with the Subsection 2.3.2, we can derive geomet-

rically distributed times for advancing or recovering to the next stage for each individual.

The probabilities that a person in the ith infectious stage advances to the next stage or

recovers, within a small time interval of length h are estimated by

p
(i)
R ≈ h

µ
(i)
R

, p
(i)
I ≈ h

µ
(i)
I

, (20)

for i ∈ {0, ..., k − 1}, where µ(i)
R is the mean time that a patient spends in the ith infectious

stage before recovering and µ
(i)
I is the mean elapsed time that a patient spends in the ith

infectious stage before moving forward to the next infectious stage. Accordingly, an indi-

vidual remains infected in the ith stage with probability 1−(p
(i)
I +p

(i)
R ). For computational

and notational purposes, we can think the death stage as a stage labeled k with size Ik, and

use this extra index in equation (20). Therefore, a Multinomial approach can be derived

in each stage, to compute the number of individual that advances or recover in each state

to give a complete description of the dynamics for this extension. A system that extends

equations (3)-(5) taking into account the different infectious stages can thus be written as

S(t+ h) = S(t)−Xh
0 (t) (21)

Ij(t+ h) = Ij(t) +Xh
j−1(t)− (Xh

j (t) + Y h
j (t)), (22)

Rj(t+ h) = Rj(t) + Y h
j (t), (23)

for j ∈ {0, ..., k}, with total counts for recovered and dead given by

R(t+ h) =
k−1∑
j=0

Rh
j (t+ h), (24)

D(t+ h) = D(t) +Xh
k (t), (25)

where S(t), I(t) = I0(t) + ... + Ik−1(t), R(t), and D(t) respectively represent the num-

bers of susceptible, infected, recovered, and dead individuals at time t. The sampling
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underlying the evolution is given by

Xh
0 (t) ∼ Bin

(
⌊ε(t)S(t)⌋, ph(t)

)
,

(Xh
j (t), Y

h
j (t), Ij(t)−Xh

j (t)− Y h
j (t)) ∼ Mult

(
Ij(t), p

(j)
I , p

(j)
R , 1− p

(j)
I − p

(j)
R

)
,

for j ∈ {0, 1, ..., k}, assuming that all samples are independent. The X ′s represent the

quantity of people advancing through infectious stages, the last one being death, and the

Y ′s represent the number of people recovering from the disease, at some given time.

The dynamics from this extension of the basic sED can be such that the total expected

time before recovery is larger than the total expected time before death due to disease

(Fig. 9), but such that the case fatality ratio is much smaller than 1/2 depending on the

parameters of the model.

3.3.2 Probability distribution of the final stage reached by an individual

In this section we illustrate some mathematical properties of the multistage extension of

the sED model just presented. We focus on the maximal stage of infection or disease that a

given individual may reach before recovering. The reason is that the last stage and the final

clinical outcome is of interest for clinical and epidemiological purposes (Roger, 2011).

Consider the sED model with multiple infection stages S, I0, ..., Ik−1, R,D (equa-

tions (21)-(25)). Assume that one individual has been initially infected at some time t.

By construction, the time spent infected and the maximal stage reached before recovering

or dying will not depend on the (random) individual evolution.

First, using the same rationale as in the basic sED model, if an individual is in the ith

stage of infection, the probability that the individual goes to the recovery state without

passing to the next stage (without getting worse) is given by the routing probability of

recovery µ
(i)
I

(
µ
(i)
R + µ

(i)
I

)−1

(see Subsection 2.3.2).

By considering the equations for each stage, assuming independence between the sam-

pling processes at different stages, and considering only the expected times for each stage

of infection, the probability that the infected individual reaches the stage Il (l ≤ k) as

maximal stage of infection or disease before recovering is given by(
l−1∏
i=1

µ
(i)
R

µ
(i)
R + µ

(i)
I

)(
µ
(l)
I

µ
(l)
R + µ

(l)
I

)
. (26)
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Using the same reasoning, the probability that a person dies is

k∏
i=1

µ
(i)
R

µ
(i)
R + µ

(i)
I

. (27)

Table 2: Notation and values used in the multistage extension of the sED model (Li et al., 2020;
Zhou et al., 2020).

Symbol Value Units Description
µ0
R [4.1,7.0] days Expected recovery time for asymptomatic people.

µ1
R [4.3,7.5] days Expected recovery time after first symptomatic stage.

µ2
R [9.0,15.0] days Expected recovery time spent after the second (mild)

symptomatic stage.
µ3
R [2.0,9.0] days Expected recovery time spent in the third (severe)

symptomatic stage.
µ0
I [4.1,7.0] days Expected incubation time.

µ1
I [4.3,7.5] days Expected time spent between the first and second

symptomatic stages.
µ2
I [5.0,11.0] days Expected time spent in the second and third symp-

tomatic stages.
µD = µ3

I [4.0,12.0] days Expected time spent in the third (severe) symptomatic
stage before death.

4 Discussion

We have presented a derivation of a model for the epidemiological dynamics of infectious

diseases based on simple assumption: at any given time, individuals in any epidemiolog-

ical stage are the subjects of a random sampling process in which they either remain in

their epidemiological stage, or move to a different stage. Then we have distinguished two

different types of sampling. In the first sampling type, individuals are chosen depending

on an interaction with another subpopulation, as is the case during the infection process.

In the second sampling type, sampling depends on waiting times. As a result, we have

obtained a simple, easy to implement model derived from common sense rules, that takes

into account different sources of randomness in the evolution of infectious diseases. The

model works for small and large populations as well, and also, allows extensions to study

the effects of specific factors that may become important determinants of the epidemics

(e.g. exposure of infected vs. exposure of susceptible, single vs. multiple disease stages).

En passage, we explain how to derive a continuous time, continuously valued SIR model
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from the sED model, and in what circumstances do the classical SIR models work, and

expose some of the problems that arise in extensions of the SIR models intended take into

account deaths due to disease. We also show a few mathematical properties related to the

expected times spent by an individual in different epidemiological stages. Of particular

interest, we show how case fatality ratios in models with only one infectious stage would

be larger than or equal to 1/2 unless the expected time for recovery is shorter than the

expected time for death due to disease. We also show that realistic values for the CFR can

be only be obtained in models with more than one infectious (or clinical) stage that al-

lows percolation of the population through different infectious stages and recovery before

reaching the last stage and dying.

4.1 Why do we need a different model than the SIR model?

One issue of interest is the theoretical and practical impossibilities of using the SIR model

for small populations (equations (15)-(16)). However, there are many epidemics in which

the populations of interest are small (e.g. small villages in Liberia during Ebola out-

breaks). For large enough populations the dynamics of the deterministic SIR model can

be compared to simulations of the dynamics obtained with the sED model after dividing

the sED state variables by the population size (Fig. 5). In doing so, we show that simply

adding another variable to the regular SIR deterministic dynamics to account for deceases

leads to a contradiction, thereby showing that such a model would be conceptually ill-

posed. Further, we illustrate the similarity between the dynamics of the continuous state,

deterministic model obtained from the sED model, and the sED model. To do so, we show

that the distance between the normalized 3-dimensional vector (S(t), I(t), R(t))/T (t) and

its deterministic counterpart (x(t), y(t), z(t)) decreases robustly as the population size T

increases (Fig. 5).

There are many possible extensions that could be implemented from the sED model.

For instance, the assumption of having a homogeneous population can be easily dropped

by allowing different probabilities of infection for more than one subpopulation. One easy

way to do this is to use object oriented programming to create a generic class with sED

dynamics for a single homogeneous population. Then it is possible to simulate the joint

dynamics of more than one homogeneous population by setting a meta-class that allows

the interactions of several instances of the class for a single population (Supplementary

Material 1). The need for better understanding of the epidemiology and immunology

underlying different co-morbidities for COVID-19 and other infectious diseases has been
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repeatedly suggested by surveillance data, genetic profiling data (Velavan et al., 2021),

CT-value readings in RT-PCR tests (Waudby-West et al., 2021), and serological testing

(Toulis, 2020). The modelling scheme presented here could also be extended to take into

account populations with different susceptibilities. For instance, it became clear very early

during the COVID-19 pandemic that overweight or obese people were at a larger risk of

having a severe or lethal outcomes upon infection (Busetto et al., 2020; Hamer et al.,

2020; Popkin et al., 2020). Another possible extension could aim to model epidemics with

different mechanisms of infection.

The modelling scheme presented here allows the construction of extensions of the

basic sED model to address these and other issues using data, which opens the possibility

of adding a layer of knowledge and understanding that would potentially have a positive

impact on decision making policies, and help health care providers.

4.2 The effects of exposure of susceptible and infected on the epi-
demic dynamics

Infection processes occurring between pairs of individuals depend at least in three aspects:

the potential effectiveness of the infected individuals in transmitting the infection, the vul-

nerability to infection of the susceptible individuals, and the physical exposure between

them, typically occurring through physical contact. These aspects are very difficult to mea-

sure precisely, but they can be thought of as independent, and different indirect statistical

measures can be used to produce estimations for them. Examples of these include viral

load as an indicator of infectivity potential (Jones et al., 2021; Marc et al., 2021); exis-

tence of comorbidities to measure vulnerability (MK et al., 2021); presence of antibodies

in an individual as indicators of infection severity and history of infections (Legros et al.,

2021); mobility in cities as a proxy of physical exposure (Lu and Gan, 2022), especially

in consideration of lock downs and social distance and public health measures (Wu et al.,

2021). The sED model allows us to explicitly separate exposition of the susceptible pop-

ulation and the exposure of people with the potential to infect others. This allows us to

observe explicitly the different dynamics resulting from having drastic reductions in each

factor, opening the possibility of establishing or discarding the efficacy of public health

measures directed to the reduction of such factors. To model one specific scenario that

can be thought of in the context of the COVID-19 pandemic, we chose values for the ex-

posures of infected people, κ ≈ 2/3, to produce a conservative simulation of a scenario

in which the proportion of asymptomatic infected people was similar to that observed for
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COVID-19 (red curves, Figure 8, He et al. (2021)). From those simulations, it can be

appreciated that the strategy to mitigate the epidemics by reducing the exposure of people

in general could fail if the values of ε are not small enough. That is, the strategy does not

work unless the reduction in exposure for susceptible individuals decreases dramatically.

For instance, for κ = 2/3, at most 1/3 of the susceptible individuals or less should be

exposed in order to have a drastic reduction of in prevalence, incidence, and the resulting

deaths. The strategy in this case was estimated so that death cases did not enter the parts

of the curve with larger slopes (Figure 8). Note that the strategy for health care providers

and health system decision makers could be focused on the rate of change of the incidence

instead using the same analysis.

Sadly, our model also confirms empirical observations that can be obtained from data

of cases produced by the different SARS-CoV-2 variants around the world, showing that

reduction of cases by limiting exposure could be nearly impossible for epidemics in which

the asymptomatic infected and contagious population is largely exposed, and uncontrolled

by direct epidemiological tracing measures (e.g. surveillance in public transportation sta-

tions and hubs). Our model complements previously well known results and demonstrates

in a very simple way why consideration of transmission mitigation strategies based on

lock-downs and limited mobility (Arino and Van den Driessche, 2003, 2006) should not be

taken lightly, at least in the absence of effective surveillance (Bendavid et al., 2021; Sood

et al., 2020) aimed at reducing the exposure of infected people to the general population.

The results we show also make a case for the consideration of other mitigation strategies

based on non-massive isolation and focused protection (Bhattacharya et al., 2021; Kull-

forff et al., 2021) that would also avoid economical and sociological harm imposed by

lock-downs (Foster, 2020).

4.3 Infection vs infectivity

The sED model can describe some aspects concerning the infectivity and lethality of a

disease that cannot be directly explained by the force of infection and the basic reproduc-

tion number. For a fact, but also for epidemiological purposes, the infection time may not

necessarily be equal to the time interval in which a person is infectious. For instance, an in-

fected person during the incubation period, or already in the process of clearing the virus,

may have a sufficiently low viral load such that the person is effectively not infectious

(Folgueira et al., 2021). Similarly, the infection time may include a period of symptoms

that may be severe enough to reduce the exposure of the infected person (e.g. hospital-
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isation or self isolation), potentially decreasing the availability of inoculum shedding for

other people to get infected. The sED model can be easily adjusted to study the case in

which infectivity periods last less than the (clinical)infection time (and viceversa). Further,

it is also possible to include decreased levels of exposure by the infected; we study those

cases in a companion paper dedicated to study COVID-19.

Of note, hypothesis in the sED model that infection depends on the exposure of those

infected in environments where susceptibles may be inoculated applies also to infections

that depend on non-human vectors like dengue. This is justified by recent data from dengue

outbreaks and endemicity in densely populated urban areas (Falcón-Lezama et al., 2017;

Villabona-Arenas et al., 2016). Consider the case in which there is one female mosquito

per building in an apartment complex. The radius of interaction of the mosquito can easily

be 25 meters, without taking into account vertical interactions. This means that one case of

dengue in one building could result in many more cases, without the need of an abundant

population of mosquitoes. The sED model uses simple parameters that can, nevertheless,

capture such complex infection processes. Those parameters can be calibrated using the

statistical information available. Then the model can be used to analyse qualitatively dif-

ferent scenarios depending on those parameters. In particular, the multistage sED model

allows to divide the process of infection using different layers related to different possible

mechanisms of infection and transmission of the diseased studied.

4.3.1 Multiple stages for infection and illness progression

As pointed out earlier, an adequate scheme to model the evolution of many diseases, should

be one in which classification of infection states is constructed according to the physiologi-

cal changes of the individual, whether or not they depend on clinical assessment. The clin-

ical stages associated with infections and disease due to such infections can then also be

considered. Note, however, that only taking clinical considerations into account may result

in very inaccurate assessments with possibly undesired consequences. For instance, infec-

tions with SARS-CoV-2 cause a large percentage of asymptomatic cases (non-clinically

detected), that in turn, has resulted in large increases in the incidence of cases that in some

cities have overwhelmed the local health systems (Zhao et al., 2020). This is at large

our motivation for thinking about the pathophysiological states of an individual during an

infection as the base for our modelling scheme.

Constructing a model by taking the physiology related to the infection as a basis to

classify different subpopulations may result in an inability to estimate parameters in an
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statistically meaningful way. However, the sED model is simple enough and easy to ex-

pand so that anyone could use it to explore qualitatively different outcomes of an epidemic,

and identify underlying mechanisms guided by fitting real data (e.g. prevalence and inci-

dence curves). That was the case leading to the extension of the basic sED model into the

multistage model (Section 3.3), with which we show how CFRs with very low values can

be obtained by simply introducing multiple, subsequent infection stages with the condi-

tion that individuals who die from the infection must go through all disease stages before

dying. By means of exploration, the multistage sED model thus provided some insight

about why it would not be possible to obtain low CFRs with shorter recovery intervals in

comparison to hospitalisation times, as documented during the first months of the COVID-

19 pandemic. En passage, that analysis also shows that it would not be possible to model

COVID-19 with classical SIR dynamics unless the model is modified by stratifying the

disease stages before death.

4.4 Future perspectives and concluding remarks

One important factor to consider for possible extensions of the model is the variation in

the behaviour of an individual’s immune system in the presence of microbes, and after an

infection (Glück et al., 2005). The overall physiological state of the individual (Bryant and

Curtis, 2013), and other genetic or epigenetic factors (Zhang and Cao, 2019) are important

during the initial contact and the subsequent phases of infection.

For instance, recent evidence from the COVID-19 pandemic shows that clinical out-

comes can be defined by factors such as the body fat ratio, which has been correlated to the

capacity of an individual to produce inflammatory responses (Brojakowska et al., 2021).

As a consequence, the individual profile that possibly includes details related to his/her im-

mune status is essential to define possible courses of disease evolution. The hierarchy of

models presented here can be used to model disease spread in small and large populations

that may include individuals with different levels of susceptibility (work in progress).

It is worth mentioning that the concept of immunity, by name, is relatively ill posed, as

large enough inoculations will almost surely result in symptomatic or even severe disease

for people that already had contact with the infectious pathogen. In other words, reinfec-

tion is always a possibility for large enough inoculations, and possibly not so large ones,

as shown by the massive number of COVID-19 reinfections. The severity of disease for

reinfections can, in principle, be assumed to be mild or nonexistent. However, the re-

cent COVID-19 pandemic provided with several counter-examples to that. In this regard,
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we are particularly interested in developing extensions addressing the study of epidemi-

ological dynamics with reinfection, possibly involving different levels of severity in the

reinfection outcomes (Montoya et al., 2013).

In this article we presented a new mathematical model to describe epidemiological

dynamics. Its purpose is to describe some crucial aspects observed in the evolution of

pandemics often not taken into account in the existing modelling literature, while simul-

taneously being intuitive, based on common sense arguments, and robust enough to be

easily adapted to different particular features of diseases.
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VL Roger. Outcomes research and epidemiology: the synergy between public health and

clinical practice. Circ Cardiovasc Qual Outcomes., 4(3):257–9, 2011.

G. Salinas-Escudero, M.F. Carrillo-Vega, V. Granados-Garcı́a, and et al. A survival anal-

ysis of COVID-19 in the Mexican population. BMC Public Health, 20:1616, 2020.

B. Shayak and M. Sharma. A new approach to the dynamic modeling of an infectious

disease. Math. Model. Nat. Phenom., 16:33, 2021. ISSN 1359-5938.

39

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.08.16.22278844doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.16.22278844
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neeraj Sood, Paul Simon, Peggy Ebner, Daniel Eichner, Jeffrey Reynolds, Eran Bendavid,

and Jay Bhattacharya. Seroprevalence of sars-cov-2–specific antibodies among adults

in los angeles county, california, on april 10-11, 2020. Jama, 323(23):2425–2427, 2020.

P. Toulis. Estimation of Covid-19 prevalence from serology tests: A partial identification

approach. J Econom., 220(1):193–213, 2020.

Henry C Tuckwell and Ruth J Williams. Some properties of a simple stochastic epidemic

model of SIR type. Mathematical biosciences, 208(1):76–97, 2007.

J.J.A. van Kampen, D.A.M.C. van de Vijver, and P.L.A. et. al. Fraaij. Covid-19: Does the

infectious inoculum dose-response relationship contribute to understanding heterogene-

ity in disease severity and transmission dynamics? Nature Communications, 12:267,

2021.

Alexei Vazquez. Exact solution of infection dynamics with gamma distribution of gener-

ation intervals. Phys. Rev. E, 103:042306, Apr 2021.

Thirumalaisamy P Velavan, Srinivas Reddy Pallerla, Jule Rüter, Yolanda Augustin, Peter G
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