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1 Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de
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Abstract

The dynamics of epidemiological phenomena associated to infectious diseases

have long been modelled with different approaches. However, recent pandemic events

exposed many areas of opportunity to improve the existing models. We develop a

model based on the idea that infection and also, transitions between different stages

during an infection and possibly the disease that it may cause, are alike sampling

processes. The resulting modelling scheme proves to be easy to implement but very

robust, and easy to extend to answer questions that emerge from close examination of

data trends in the COVID-19 pandemic, and other infectious diseases.

1 Introduction

The epidemiological dynamics of infectious diseases are random, nonlinear, and result from

a combination of phenomena occurring in different levels of biological organisation. A

variety of theoretical approaches, of which the most notable is the family of SIR-type models

(Kermack and McKendrick, 1927) has proven useful to study general aspects of epidemics.

However, the existing deterministic and stochastic classes of epidemiological models based

on equations, at large, fail to offer reasonable links between the mathematical expressions

that make up the models and the underlying biochemical or biophysical mechanisms they

are supposed to capture from a macroscopic perspective.

For instance, there are stochastic models capable of describing different aspects of

the dynamics in epidemics. The work of (Greenwood, 1931) analyses the pertinence
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of different probabilistic models as explanatory mechanisms of a disease spreading at

some given households. The number of cases of the disease registered in a period of

time at each household are used as input for the models, hence having the possibility of

measure the fit of each model to real data. More recently, (Greenwood and Gordillo, 2009)

review compartmental stochastic models, focused on the distribution of the final size of

the epidemics, the stochastic periodicity of the number of infectious individuals and the

random period that an individual remains infectious after been infected, questions which

arise naturally in the random setting. The model by (Tuckwell and Williams, 2007) assumes

discrete time with Markovian infection dynamics that occur as binomial processes within

a constant population. Some surveys about similar stochastic models can be found in the

work of (Allen, 2017) and (Britton, 2010).

Significant improvements to study epidemiological dynamics can be made by replacing

one or more of the phenomenological construction postulates of the SIR family (e.g.

homogeneous mixing), by making assumptions and deriving expressions explicitly based

on physical, biological, or biochemical principles, however macroscopic. For instance, the

infection rate is typically assumed to be proportional to the prevalence of infection (density

of infected). Such assumption may sound reasonable at first and it may even be possible to

fit a multiple of prevalence to case data after mild corrections for testing and other factors.

However, the proportionality constant implicit in the assumption depends on factors that

include the source of inoculation (e.g. a water reservoir), the collective behavioural patterns

of people susceptible to infection and those infected, and the particular characteristics of

the individuals in those populations (e.g. obesity, age, gender).

Of note, a more explicit description of the dependence of the infection probability

on the availability of inoculum would be useful to assess different questions related to

mitigation strategies. The inoculum available at any point in time is particularly difficult to

assess, as it depends on factors like the number of infected people and their shedding levels,

the pathogen’s infectiousness and transmission mechanisms (e.g. aerosol, droplets, direct

contact).

Another issue of importance that is often ignored is the difference between an infection

process, typically detected by laboratory tests, and the natural and progressive evolution of

the disease possibly caused by that infection, which may be detected as symptoms develop.

However, the clinical manifestations possibly caused by an infection are not necessarily

detected, as it is the case with diseases with asymptomatic phases. This is a problem from an

epidemiological stand point because modelling of these two phenomena is usually lumped
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together by construction (see (Allen, 2008) for example), limiting the scope of models and

the resulting dynamics (Shayak and Sharma, 2021). By extension, decision-making by

health authorities and government officials is hindered by the lack of connection between

models and the reality driven by biological (Holmdahl and Buckee, 2020) and sociological

factors (Eker, 2020; Roozenbeek et al., 2020), to name a few.

Infections can be regarded as pathogen invasions at the cellular and possibly tissue levels

(e.g. start of viral replication in susceptible cells). Hence, infections by any disease-causing

pathogen do not necessarily result in confirmed cases, but may be the main underlying

cause of large epidemic outbreaks (Gerba, 2009). Examples of communicable diseases of

current importance due to their large burden on economical, social, and health systems,

that are asymptomatically transmitted, and therefore difficult to keep under control include

malaria (Bousema et al., 2014), dengue (Grange et al., 2014), influenza (Cohen et al., 2021),

COVID-19 (Gandhi et al., 2020), aids (Hollingsworth et al., 2008), among many well

documented examples.

Models that explicitly make distinctions between infectious and illness states, or be-

tween parameters like the exposure of susceptibles versus inoculum shedding by infected.

For instance, it should be possible to use models constructed from a macroscopic perspec-

tive to explain seemingly paradoxical situations in which infections may cause severe illness

or even death in older people and young athletes, but not in children, as it has been observed

during the COVID-19 pandemic. Of particular interest, there is a lack of computationally

simple, mathematically robust models based on by pathophysiological considerations that

distinguish the clinical outcome from infections taking into account different susceptibility

profiles (Butler and Barrientos, 2020; Fakhroo et al., 2020; Fricke-Galindo and Falfán-

Valencia, 2021), or explaining different severity in the clinical outcomes of reinfections

depending on the time of the last infection (Katzelnick et al., 2016; Montoya et al., 2013).

As a starting step, in this paper we present a modelling framework based on probabilistic

considerations and a simple concept: individuals in a given epidemiological stage are

sampled according to physical or biological principles, possibly switching between stages

that are common to all individuals, at least in principle. For instance, all people become

infected before becoming ill because of the infection, if they do so at all. Similarly, before

recovery, pathologies typically develop to a point in which the immune system takes over

and clears the pathogen; and so on. We start by giving basic descriptions for macroscopic,

necessary factors involved in the transmission of infectious diseases, and make punctual

distinctions between them. We then proceed to present a simple model for epidemiological
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dynamics, hereby called sED, using a paradigm motivated by the SIR class of models. Once

the construction of the basic model is explained, we demonstrate a few of its mathematical

properties and illustrate some of its advantages over classical epidemiological models,

including the possibility of modelling infection spread in small populations with integer

state variables. We also show that the sED recovers different types of deterministic SIR

models under particular sets of assumptions, and illustrate the application of the sED model

with specific examples. We finish the article showing how the modelling framework we

propose can be extended.

2 Modelling framework for stochastic epidemiological dy-

namics

2.1 Working definitions and important conceptual distinctions

Susceptible individuals are, by definition, those that can be infected. Exposed individuals are

those in contact with the pathogen by means of direct or indirect interaction. Exposure may

change over time depending on different factors like physical distancing policy, personal

mobility, the time of the day, etcetera. Naturally, only susceptible individuals that are

exposed can become infected, and an individual is considered infected if the pathogen finds

a susceptible tissue and starts replicating. After some time in which the pathogen replicates,

infected individuals become able to transmit the pathogen and start contributing to the

chain of transmission. The time relative to the initial inoculation at which this happens is

a random variable (Fenner et al., 1987). The incubation time can be regarded as the time

interval between the start of replication and the start of pathological processes associated to

pathogen invasion (Li, 2010, p.25). However, since symptoms are usually the way in which

a pathology is detected, the incubation time is usually referred in medical epidemiology as

the time lapse between the suspected time of infectious contact and the start of symptoms

(Dicker et al., 2006; He et al., 2020). This is typically a problem since infected people may

not be symptomatic (they do not show obvious symptoms), as their infection progresses. In

the case that disease ensues, the severity may progress from mild to worse until recovery or

death.

The time individuals spend being infected is a random variable that often is modelled

as a gamma-distributed random variable (Anderson and Watson, 1980; Feng et al., 2007;

Lloyd, 2001; Vazquez, 2021). For practical purposes, the infection time can be thought of
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as a sum of an initial replication period of the pathogen causing the infection, and a second

period during which an individual may have detectable symptoms. The individual may

be infectious shortly after the first pathogen invasion, during the incubation period, and

before symptoms appear (e.g. COVID-19). This can be done more generally by dividing

the infectious period in several different stages. After the infection period, individuals may

develop other phases of disease that are not necessarily infectious. For instance, in both

symptomatic and asymptomatic COVID-19, the initial viral phase might be followed by an

inflammatory phase (Garcı́a, 2020; Manjili et al., 2020) where the probability of infectious

virus shedding decreases dramatically (van Kampen et al., 2021). A longitud study of

people infected with SARS-CoV-2 (Boucau et al., 2022) suggest the possibility of shedding

culturable virus for more than 5 days -possibly till 15 days- after symptom onset or an

initial PCR positive test. In the best case scenario, the immune system develops a protection

profile against the pathogen and the individual recovers. In a worse case scenario, the

immune system may over-react, or other opportunistic diseases may also appear, causing

severe illness and potentially death.

Individuals can also be born immune or become immune for reasons that include having

beneficial mutations in their genome (Allers and Schneider, 2015), because of acquired

immunity upon exposure to other pathogens (Doolan et al., 2009), or after vaccination

(Clem, 2011).

The immune system of an individual can be determinant of her physiological responses

to particular disease. Subsequently, the physiological state of the individual during the

initial phase can also affect the evolution of the infection and the disease that may follow

it, possibly influencing different subsequent phases of the infection or disease. Hence, the

individual’s immune system profile is essential to evaluate her possible particular disease

evolution, regardless of whether key characteristics of the immune profile are available,

measurable, or understood at all.

In consideration of the observations made above, we developed a hierarchy of models

that can be reduced or extended depending on the level of detail sought and the questions

of interest. Importantly, this hierarchy of models can be used to model disease spread in

small and large populations that may be composed of individuals with different levels of

susceptibility (see companion paper). One case of special interest to us that these models

address the study of epidemiological dynamics including reinfection and the possibility

of becoming more or less susceptible to reinfection and severe disease with subsequent

infections.
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2.2 Modelling rationale.

We regard any epidemiological classification of individuals from a population as a dynami-

cal partition into subsets that change in time. In turn, the subsets that make up the partition

can be represented as nodes in a directed graph. For visualization purposes, nodes and

edges can be respectively weighed according to the size of the population they represent,

and the probability that the epidemiological stage that an individual changes to the one

pointed to by that edge (Fig. 1).

Figure 1: Different dynamical scenarios contemplated by the sED modelling scheme. The light
shades represent the confidence intervals generated with 2,000 simulations and the solid dots are
taken as the average of those simulations. The two models show different epidemiological dynamics
with the same average recovery and death time, but different time courses for infection and disease
before recovery or death. See Tables 1 and 2 for further information.
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The epidemiological dynamics at the population-level can then be based on two simple

but powerful concepts.

• First, each infection can be thought of as a one-way, path starting at the node

representing the susceptible sub-population, and ending at one of the terminal nodes

in the graph, which represent, by construction, the state for death due to infection, or

the recovered state.

• Second, the epidemiological state s(t) of any individual may change during the

time interval [t, t + h] with a certain probability phs (t), and remain the same with

probability 1− phs (t); such changes should occur independently, where s is a label

indicating the type of switch (e.g. from susceptible to infected).

2.2.1 Epidemiological sampling and state switching

The epidemiological state s of any individual at time t+ h can be thought of as the result of

routing individuals via Bernoulli trials occurring between times t and t+h, with probability

phs (t). The number of people that change their epidemiological state between times t

and t + h is thus the number of successful trials in the Bernoulli sample drawn at time

t. If circumstances allow assuming independence between switching events for different

individuals, then the number of people who switch can be regarded as a Binomial random

variable in which the number of trials is the number of individuals initially considered. If

there is more than one possible new epidemiological state to switch to, phs (t) can regarded

as a sum of the probabilities of switching to the new different states, and the individuals that

switch to the different states can be thought of as a Multinomial sample with a number of

trials equal to the number of people in state s at time t. The epidemiological dynamics of a

population can then be modelled by keeping track the individual changes in epidemiological

state, and updating the number of people in the different stages after each time step.

Reasonable approximations for populations can be derived by assuming homogeneity

among individuals (e.g. similar co-morbidities). For instance, in some cases it would

be reasonable to assume that the average probability of switch describes the population

dynamics, and therefore, sampling for those individuals switching epidemiological states

can be done by assuming that success occurs with a probability equal to the average

probability of switching between epidemiological states.
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2.2.2 Time-dependent switch in epidemiological state

Let τs be a random variable representing the waiting time for a switch in state s after

infection has begun. The probability of switching within h time units can then be written as

phs (t) = Ps(h)Qs(t, h) where Ps(h) represents the probability that the switch occurs within

h time units, andQs(t, h) represents the probability that additional, necessary conditions for

the switch occur at time t. Assuming that the time τs for a switch from the epidemiological

state s is an exponential random variable with mean waiting time µs,

Ps(h) = P (τs < h) = 1− exp (−h/µs) . (1)

Numerical simulations can then be accelerated by noticing that the probability Ps(h) ≈
h/µs for small enough h (Fig. 2, red curves) but the approximation diverges quickly for

µs < 1 (Fig. 2, blue curves).

0 1 2 3

0

0.25

0.5

0.75

1

h

P (τ < h), µs = 7
h/µ, µs = 7

P (τ < h), µs = 1/10
h/µ, µs = 1/10

h

Figure 2: Geometric approximation of exponential waiting times with mean switching time µs ∈{
1
5 , 7
}

.

We now start deriving a hierarchy of models capable of capturing different aspects of

epidemiological dynamics, showing some of their properties and advantages over classical

models. We do so taking into account the characteristics and data reported for COVID-19.

2.2.3 The start of the chain of transmission: switching from susceptible to infected

Suppose that every member of a population is either susceptible to infection, non-susceptible,

or infected by a certain pathogen (e.g. SARS-CoV-2), at any point in time. Let non-negative

integers T (t), S(t), and I(t) represent the sizes of the whole population, those susceptible
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to infection, and those infected at time t (in days). Prior to any infection, T (t)− S(t) is the

size of the non-susceptible, i.e. those that do not participate in the chain of infections.

Assume independence between individual infections are independent, with an average

probability of infection ph(t, I) that depends on factors that include the time of exposure

h and the availability inoculum, which can be thought of as a monotonically increasing

function of I . In addition, suppose that each of the exposed susceptibles at time t can be

infected within h time units of exposure with probability ph(t, I), or remain susceptible with

probability 1− ph(t, I). The number Xh
I (t) of newly infected people (absolute incidence)

can then be thought of as a Binomial random variable sampled from S(t) individuals. One

possibility is to define

ph(t, I) = PI(h)Qh(t, I) = PI(h)β
I(t)

T (t)
(2)

where β is the probability that a susceptible person is infected after having an infectious

contact (contact with the pathogen), I(t)/T (t) represents the proportion of infected individ-

uals within the population at time t, and PI(h) represents the probability that the infection

occurs within a time window of length h, while being exposed to the pathogen causing the

disease of interest. The number of newly infected individuals between times t and t+h can

be thought of as a random variable Xh
I (t) with Binomial

(
S(t), ph(t, I)

)
distribution, and

the expected number of newly infected individuals would then be ph(t, I)S(t). We will say

that a new epidemic starts when the expected number of infections becomes an increasing

function of time.

The number of susceptible people at a time t+ h can then be calculated as,

S(t+ h) = S(t)−Xh
I (t), (3)

which means that the expected change between S(t) and S(t+ h) is a decreasing function

of t, for all h > 0.

We now proceed to write a first model that takes into account the possibility of death

due to disease,

2.3 Infections and possibly fatal outcomes

Assume that an initial number of infections I(0) = I0 are caused by a primal source of

pathogens, and that those infections are transmissible to the rest of the population. Assume

10
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also that at any point in time, infected individuals shed an average inoculum per unit time.

For now, all susceptible and infected individuals are assumed to participate in the chain of

infection without restrictions. In a later section, we will explore the effects of extending the

model to explicitly include exposure factors for susceptible and infected, separately.

Immunity, and death. For this first model, assume that some of the infected individuals

die after becoming infected, and the rest recover and become immune. Notice that the

assumptions above do not take into consideration any clinical aspects associated to the

infection, except the possibility of eventual death as a consequence of infection. Let Y h
R (t)

and Y h
D(t) respectively represent the numbers of people that that recover or die between t

and t+ h. Those that remain infected after that time interval are then

I(t+ h) = I(t)− Y h
D(t)− Y h

R (t). (4)

Note that the probabilities that a person is removed from the infected group (i.e. recovers

or dies), or that the person remains infected within a small time interval of length h, do not

depend on the state of the epidemics at time t but only on the physiological state of the

individual facing the infection. Therefore, assuming independence between infections for

different individuals, Y h
R (t) and Y h

D(t) can be thought of as outcomes from a Multinomial

sample from I(t), with probabilities phR and phD, for t ∈ [t, t+ h]. As a consequence, the

triplet

(
Y h
R (t), Y h

D(t), I(t)− Y h
R (t)− Y h

D(t)
)
∼ Mult

(
I(t), phR, p

h
D, 1− phR − phD

)
,

and the dynamics of the infected, recovered, and dead at time t+ h can be written as

I(t+ h) = I(t) +Xh
I (t)− (Y h

R (t) + Y h
D(t)),

R(t+ h) = R(t) + Y h
R (t),

D(t+ h) = D(t) + Y h
D(t). (5)

where R(t) and D(t) are non-negative integers respectively representing the number of

recovered or deceased individuals at time t.

The model with evolution given by equations (3)-(5) yields a stochastic dynamical

system, referred to as a Stochastic Epidemiological Dynamics model, or sED model from

here on.
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2.3.1 Probabilities for recovery and death

Let τR and τD be positive-valued random variables respectively representing the waiting

time for an infected person before recovery or death. Bearing in mind that the distributions

of τR and τD may vary substantially depending on the pathogen (Baron, 1964), assume that

infected individuals can either clear a pathogen within an average time µR, or alternatively,

the individual may die from disease caused after an average time µD. The probabilities

that a person is removed from the infected group or that remains infected within a small

time interval of length h can be estimated by assuming Geometrically distributed times for

recovery and death and writing

phs ≈ hµ−1s , s ∈ {R,D} . (6)

As a consequence, 1− (phR + phD) is the probability of remaining infected within h time

units. Large enough values of I(t) yield a Poisson approximation of the form

phs ≈ 1− e−h/µs , s ∈ {R,D} . (7)

Take for instance the epidemiological dynamics of COVID-19 (Fig. 3). Data from

the first symptomatic cases of COVID-19 during 2020 in China suggested that deaths in

hospitalised individuals occurred between 2 and 3 weeks after start of symptoms (Zhou

et al., 2020). In contrast, the hospitalization time for survivors was reported to be between

3 and 4 weeks (Zhou et al., 2020). Also, the average incubation time was reported to

be between 4 and 6 days (Quesada et al., 2020), and during this interval of time time

those infected could shed inoculum while remaining asymptomatic. Taking the above

observations into account, we assume values for µR and µD to be 21 and 28 days, and 28

and 35 days, respectively.

The joint dynamics of the decreasing size of the susceptible population and the probability

of infection result in a sequence of probability mass functions for the newly infected that

have many remarkable features (Fig. 4). First, the peak probability has a “U” shape as a

function of time, taking the highest values at the beginning and end of the epidemic, and

the lowest at the peak of infections. The number of newly infected that corresponds to that

peak probability has the opposite behaviour, starting and ending at very low values, and

reaching a maximum at the peak of the epidemic. This is in line with the idea that unless

the value of β is very large, the probability that a large number of new infections occur is

low, at any point in time, regardless of the population size.
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Figure 3: Dynamics and geometry of the sED model. The parameters used in this simulation were
µR = 27, and µD = 24. Other parameters can be found in Table 1.

Before presenting applications and further extensions of this basic model, we demon-

strate some mathematical properties derived directly from equations (3)-(6).

2.3.2 The routing probability and the mean infection time

We first answer a fundamental question: What is the probability that a given infected person

recovers?

The multinomial trial with probabilities phR, phD, and 1 − (phR + phD) for any time t is

independently repeated for time windows of size h. The event in which an individual

stops being infected can be thought of as a sequence of independent trials, each lasting h

time units, in which the individual remains infected and in the last trial the person either

recovers or dies. The routing probability to the recovered state, that is, the probability that
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Figure 4: Example of the evolution of the probability mass function pt(x) of new infections x in the
basic sED model as a function of time t. The parameters used in the simulation were T0 = 10, 000,
β = 0.3, µR = 27, µD = 24 and h = 1.

an individual eventually recovers, is then given by

rR =
∞∑
j=1

(
1− phR − phD

)j−1
phR =

phR
phR + phD

=
µD

µR + µD
. (8)

Similarly, the probability that an infected individual eventually dies is

rD =
µR

µR + µD
. (9)

Note that these two probabilities do not depend on the time step h and are complementary.

The dynamics of the multinomial trials for each infected person can also be thought of

as Bernoulli trials with probability of success pR + pD, and the elapsed time τI can then be

thought of as a random variable with a mean τ̄I given by the inverse of the probability of

leaving the infectious state,

τ̄I =
1

h
(
µ−1R + µ−1D

) (10)

Importantly, the model can use the routing probabilities and the mean time spent in the
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infection stage, (rR, rD, τ̄I), as input parameters, instead of the mean times that a person

passes in the infection phase for each given possible outcomes (µR, µD). Using equations

(8)-(10) we have that

phR =
h

µR
=
rR
τ̄I
. (11)

The inverse of the mean time spent in the infected phase is thus proportional to the

probability that within h time units an individual stops being infected, regardless of the

outcome.

2.4 Continuous time Markov chain approximation

Now consider an approximation for the simple sED model, in the case when the step size h

(the discrete units of time for the simple sED model) decreases to zero for integer population

sizes. The approximation gives insight about the theoretical properties in the limit for small

step sizes, and the limit process is relatively easy to simulate since it is a continuous time

Markov chain process (Fig. 5).

Figure 5: Realisations of the sED model dynamics for a decreasing step sizes (h) and the approxi-
mation of the model using the Poisson process. For this simulation µR = 27 and µD = 24, and the
other parameters can be found in Table 1.
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Recall that a non-homogeneous Poisson process {N(t) : t ≥ 0} with intensity λ(t) and

starting at the origin, can be assumed to have independent increments such that,

P(N(t+ h)−N(h) = 1) = hλ(t) + o(h),

P(N(t+ h)−N(h) ≥ 2) = o(h), (12)

for any t ≥ 0 (see for instance Basu, 2003, p. 142). Consider the sED state vector

{(S(t), I(t), R(t), D(t)) : t ≥ 0} with dynamics given by equations (3)-(5), starting from

some initial condition (S(0), I(0), R(0), D(0)). Define the cumulative sampling processes

after k steps as

X̂h
I (kh) =

k∑
i=1

Xh
I (ih), Ŷ h

D(kh) =
k∑
i=0

Y h
D(ih), Ŷ h

R (kh) =
k∑
i=0

Y h
R (ih),

and assume that X̂h
I (0) = Ŷ h

R (0) = X̂h
D(0) = 0 with the super index h emphasising

dependence on the size of the time step. These processes are defined for a discrete set of

times {0, h, 2h, ...}, but they can be extended for any positive time as left-continuous step

functions on continuous time, taking a discrete set of values. For example, by defining

X̂h
I (t) := X̂h

I (kh) for any kh ≤ t < (k + 1)h, with k ∈ N. As a consequence, the limit

processes

NI(t) := lim
h→0

X̂h
I (t), NR(t) := lim

h→0
Ŷ h
R (t), ND(t) := lim

h→0
Ŷ h
D(t),

are non-homogeneous Poisson processes. We show that in the following lines.

By constructionNI , NR andND start at the origin, and the random variables
{
Xh
I (kh)

}
k∈N

are independent, which means that the process X̂h
I has independent increments on disjoint

intervals of the form [n1h, n2h] where n1 < n2 are non negative integers. Therefore, the

limit processes NI , and by a similar argument, NR and ND, have independent increments.

Further, for t ∈ [kh, (k + 1)h), S(t) = S(kh), I(t) = I(kh), and

P(X̂h
I (t+ h)− X̂h

I (t) = 1) = P(Xh
I (kh) = 1).

Since Xh
I (kh) has a Binomial distribution with parameters S(kh) and hβI(kh)/T , respec-
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tively, it follows that

P(X̂h
I (t+ h)− X̂h

I (t) = 1) = S(kh)

(
hβ

I(kh)

T (kh)

)1(
1− hβ I(kh)

T (kh)

)S(kh)−1
≈ S(t)hβ

I(t)

T (t)
+ o(h),

for h > 0. Also the probability

P(X̂h
I (t+ h)− X̂h

I (t) ≥ 2) =

S(kh)∑
i=2

(
S(kh)

i

)(
hβ

I(kh)

T (kh)

)i(
1− hβ I(kh)

T (kh)

)S(kh)−i
,

has order o(h), for h > 0. Taking the limit as h goes to zero, it is verified that the process

NI satisfies equation (12) and we conclude that X̂I is a non-homogeneous Poisson process

with intensity S(t)βI(t)/T (t). Since, (Y h
R (kh), Y h

D(kh), I(kh) − Y h
R (kh) − Y h

D(kh)) is

Multinomial distributed for kh, we have that Y h
R (kh) is Binomial distributed (with pa-

rameters I(kh) and phR) and Y h
D(kh) is Binomial distributed (with parameters I(kh) and

phD). The processes NR and ND satisfy (12), which can be proven by following the same

reasoning as for NI .

Taking into account the arguments just presented, as the step size h decreases to zero,

the sED system {(S(t), I(t), R(t), D(t)) : t ≥ 0} based on Binomial samples converges

in distribution with order o(h) to the system {(Ŝ(t), Î(t), R̂(t), D̂(t)) : t ≥ 0} based on

Poisson sampling, starting from the same initial conditions and dynamics

Ŝ(t) = S(0)−NI(t),

Î(t) = I(0) +NI(t)− (NR(t) +ND(t)),

R̂(t) = R(0) +NR(t),

D̂(t) = D(0) +ND(t),

where NI , NR, ND are non-homogeneous Poisson processes with corresponding intensity

rates given by γS = Ŝ(t)βI(t)/T (t), γR = Î(t)µ−1R , and γD = Î(t)µ−1D .

As a direct consequence of last result, if the total size of the population T (t) is constant,

the limit process (Ŝ(t), Î(t), R̂(t), D̂(t)) is a continuous time Markov chain with state
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space {0, 1, ..., T}4 and its infinitesimal generator matrix is given by its transitions rates:

q((s, i, r, d), (s− 1, i+ 1, r, d)) = sβ
i

T
1{1,2,...,T}(s),

q((s, i, r, d), (s, i− 1, r + 1, d) = µ−1R i 1{1,2,...,T}(i),

q((s, i, r, d), (s, i− 1, r, d+ 1) = µ−1D i 1{1,2,...,T}(i),

for s, i, r, d ∈ {0, 1, ..., T}.
The most basic models in the hierarchy have limitations. In the next section we expose

some of the limitations and show how to overcome them by extending the basic model.

Importantly, we do so by following the same rationale used for the basic construction. More

specifically, we will modify the basic sED assumptions to capture finer dynamics. For

instance, we will include different stages for the severity of infection to analyse the impact

they have in the case-fatality ratios, a quantity often ignored in modelling studies.

Table 1: Notation and values used for simulations with the basic sED model.

Symbol Values Units Description
T0 1000 persons Initial population size
S0 10 persons Initial size of susceptible population
I0 990 persons Initial size of infected population
R0 0 persons Initial size of recovered population
D0 0 persons Initial size of population dead due to disease
Xh [0, S] persons Size of newly infected sample (depends on time step)
Y h
R [0, I] persons Size of newly recovered sample (depends on time step)
Y h
D [0, I] persons Size of n sample (depends on time step)
µR [22–32] days Expected time between initial infection and death due

to disease Li et al. (2020); Zhou et al. (2020)
µD [19–29] days Expected time between initial infection and death due

to disease Li et al. (2020); Zhou et al. (2020)
β 0.3 —- Probability of infection given an contact with an in-

fected person Phucharoen et al. (2020)
ε 1 1 Proportion of exposed susceptibles
κ 1 1 Proportion of exposed infected
h 1 days Time step
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3 Applications

3.1 The classical SIR model from the basic sED model

The classical SIR model describes the dynamics of an epidemic in a large population of

constant size, in terms of three non-overlapping subpopulations representing susceptible,

infected, and those that cannot participate in the chain of infections (either formerly

infected or immune from the start). One key assumption of the classical SIR model is that

individuals that cease being infected do not become susceptible again. In its continuous

time and continuous state version, the SIR model can be written as a system of differential

equations constructed under the assumption that the population is heterogeneously mixed

and of fixed size (no deceases due to infection), with transmission occurring after contacts

between susceptible and infected individuals.

Figure 6: Density of infections for different population sizes of SIR vs sED dynamics obtained
by replacing the sampling processes by their mean at each time step. The bars indicate the size of
the difference between the total infected over time between the two models as a function of the
population size. For these realisations, µR = (27 + 24)/2 for the sED model without deaths, and
β = 0.3 and γ = 2/(27 + 24) for the SIR model.

An analogue of the classical SIR model can be obtained as a particular case of the basic

sED model (equations (3)-(5)) by assuming that (0) there are no deaths due to infections,

which makes the population size T a constant; (1) the samplesXh
I (t) and Y h

R (t) are replaced

by their expected values, which yields a deterministic system of difference equations; (2)

the population size is very large; (3) the (integer) sizes of the epidemiological classes
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are replaced by subpopulation densities, thus enabling the possibility of thinking about

state variables as continuous; and (4) the time step can be arbitrarily small to replace the

difference equations with differential equations where the densities are continuous variables

changing with respect (continuous) time.

Briefly and explicitly, the expected number of new infected between times t and t+ h

is h β S(t) I(t)/T (t), which means that, on average, the absolute incidence (new cases)

between t and t+ h can be written as

S(t+ h)− S(t) = −hβS(t)I(t)/T (t). (13)

Similarly, the number of people expected to stop being infected between t and t + h is

phRI(t), and the average change in a window of h time units is

I(t+ h)− I(t) = h

[
β
S(t)

T
− 1

µR

]
I(t). (14)

Then, if the (initial) population size T is large enough, we can let x(t) = S(t)/T ,

y(t) = I(t)/T , and z(t) = 1− (x(t) + y(t)), and then write differential equations from

equations (13)-(14) describing the dynamics of (x, y, z) by taking the limit as h tends to 0.

If we let ∂t denote the instantaneous rate of change with respect to time, then the dynamics

for x and y can be described by differential equations of the form

∂tx = −βxy, (15)

∂ty = (βx− γ) y, (16)

with ∂tz = − (∂tx+ ∂ty) = γy representing the time-dependent change in the density

of the population that is immune to the disease (i.e. does not participate in the chain of

infections), and γ = 1/µR.

3.1.1 Is it possible to write a simple and well posed extension for the continuous SIR
to account for deaths?

Can we change equation (16) to include the possibility of death due to disease? One way

to do that would be to split γ as a sum of two rates, one representing recovery, the other

death, respectively. As a consequence, z(t) would be now a sum of population densities

d(t) + r(t) where d(t) = D(t)/T (t) represents the proportion of people dying at time t,

and r(t) = R(t)/T (t) represents the proportion of people that do not participate in the

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.16.22278844doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.16.22278844
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Systematic comparison between the dynamics of the SIR and SIRD models. The
comparison was made asumning that γ = γd + γr with γd = kγ, and γr = (1 − k)γ and
k ∈ {0.25, 0.51, 0.75}, with γ = 2/(27 + 24).

chain of infection at time t (either because they recovered or because they were immune to

infection from the start). A typical setup for this would be to extend the system (15)-(16) to

include

∂tr(t) =
y(t)

µR
, ∂td(t) =

y(t)

µD
, (17)

which could, in principle, be solved numerically to obtain approximations for the dynamics

of the state vector (x, y, r, d), for each time t (Fig. 7). However, the total population size

at time t should then be T (t) = S(t) + I(t) +R(t), so that 1 = x(t) + y(t) + r(t) for all

t ≥ 0, and

∂tr = −∂t(x+ y) = γy.

But γy = ∂tz = ∂tr + ∂td, which means that ∂td ≈ 0 for all t ≥ 0.

3.2 Limiting the exposure of the susceptible vs. limiting the exposure
of the infected

Assume that a certain proportion ε of the susceptible are exposed to inoculation, and also,

that only a proportion κ of those infected actively sheds inoculum.

Suppose that at any time t (days), non-negative integers T (t) and S(t) represent the

size of the whole population and those susceptible to infection at time t. Let ε(t) and κ(t)

respectively represent the proportion of the susceptible population that are exposed to the

pathogen at any time t, and the proportion of infected people that shed inoculum. The

values of ε(t) and κ(t) depends on factors that include the mobility of the population and

other behavioural patterns.
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Figure 8: Infection processes varying the exposure for susceptible and infected (ε and κ). S −Xh

phase plane for different values of p. Realisations were calculated using µR = 27, and µD = 24.

As before, assume that infections are independent between individuals, with an average

probability of infection ph(t, I) that depends on factors that include the time of exposure

h and the availability inoculum, which can be thought of as a monotonically increasing

function of I . In addition, suppose that each of the exposed susceptibles at time t can be

infected within h time units of exposure with probability ph(t, I), or remain susceptible with

probability 1− ph(t, I). The number Xh
I (t) of newly infected people (absolute incidence)

can then be thought of as a Binomial random variable sampled from bε(t)S(t)c individuals.

Assuming homogeneous mixing between the exposed susceptibles and the exposed infected,

define

ph(t, I) = PI(h)Qh(t, I) = PI(h)β
κ(t)I(t)

T (t)
(18)

where β, κ(t) and I(t)/T (t), respectively represent the probability that a susceptible person

is infected after having an infectious contact (contact with the pathogen), the proportion of

infected individuals shedding inoculum, and the proportion of infected individuals within

the population at time t. PI(h) represents the probability that the infection occurs within

a time window of length h, while being exposed to the pathogen causing the disease of

interest. As a consequence, the number of newly infected individuals between times t

and t+ h can be thought of as a random variable Xh
I (t) ∼ Bin

(
bε(t)S(t)c, ph(t, I)

)
, and

the expected number of newly infected individuals would then be ph(t, I)bε(t)S(t)c. We

will say that a new epidemic starts when the expected number of infections becomes an

increasing function of time.

In principle, it is possible to estimate the value of ph(t, I)ε(t), if data of new infections

is available. For infectious diseases like COVID-19, or ebola, if time is in minutes, or larger,

and h is only a few seconds (h << 1), then pI(h) ≈ 1, and the probability of infection
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given a contact with an infected individual is approximately β κ(t)I(t)/T (t), as it has been

proposed for models like the classical SIR.

3.3 Case fatality ratios and the necessity of considering infectious
with different severity stages

The probability that an individual recovers eventually (equation (8)) depends on the mean

time spent by an individual in the infectious state µR, and the mean time spent infected

before death, µD; two quantities mainly statistical in nature.

However, equation (8) does not capture the complexity of the relation between epi-

demiological waiting times like µR and µD, and the probability of having a good or a bad

outcome. For example, for some individuals the time between the initial inoculation and

the emergence of symptoms may be very small, as they quickly develop an increasingly

severe disease, significantly increasing the probability of death in comparison to other cases

in which the disease is not as severe (Salinas-Escudero et al., 2020). Also, for diseases

like COVID-19, the probability of recovery decreases as individuals spend more days in a

hospital (Faes et al., 2020; Salinas-Escudero et al., 2020). In fact, during the first months

of the COVID-19 pandemic, there were several studies reporting shorter hospitalization

times with fatal outcomes in comparison to those for people who recovered (Alimohamadi

et al., 2021; Porcheddu et al., 2020). Naturally, assuming µR > µD for the basic sED

model (and the SIR model) yields case-fatality ratios D/(D +R) > 1/2 (Figure 9 (a), (c),

(e)), which does not necessarily happen for all infectious diseases, and certainly not for

COVID-19, in which µR < µD and the CFR has been less than 0.1 for most variants and

most populations (Cao et al., 2020; Luo et al., 2021). As a consequence, the most simple

form of the sED model cannot yield small case-fatality ratios and simultaneously, capture

the macroscopic trends in the curve of cases vs time. To address this issue, we propose

an adaptation of the model that takes a more realistic description of the disease history of

individuals into account, therefore allowing the possibility of reproducing the macroscopic

infection dynamics and also, the more detailed evolution of the recovered and deceased

after infection.

3.3.1 Extension to consider infections with multiple states

To get a better idea of the progression through the infection and possibly the subsequent

clinical stages, imagine that an individual starts in the susceptible state. At some time she
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Figure 9: Case fatality ratios can be adjusted by assuming multiple infection-related epidemiolog-
ical stages. Epidemiological dynamics of for multiple infection-related stages (a,c,e) vs a single
infectious stage (b,d,f). Realisations in both cases were constructed assuming the same total expected
infection time with µR = 27 and µD = 24 for the basic sED and µ0R = 5, µ1R = 6, µ2R = 12,
µ3R = 4, and µ0D = 5, µ1D = 5, µ2D = 5, µ3D = 9 for the multistage sED.

might become infected, becoming part of those individuals in the initial state of infection.

From there, she could recover or the disease may increase in severity. In that case, we

model the increase in the severity of the disease as a switch to a more advanced infection

state, often characterised by the clinical traits. Importantly, the switching is assumed to

sequentially progress toward more severe illness, until possibly reaching the death state

in the absence of recovery. In other words, the individual either recovers, or advances to

the following illness state, and if the individual reaches the last infection stage, the only

possibilities become to either recover or die.

Before developing an extension for the basic sED model, it is important to remark that

the time period in which an individual is capable of transmission of the disease does not

necessarily coincide with the manifestation of clinical symptoms. For instance, shedding of

inoculum may occur during an incubation period for many infectious diseases. Alternatively,

it is also possible that an infected person stops transmitting the disease before recovering
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(Li, 2010). These events depend strongly on the disease (Baron, 1964). Of interest, it could

also be the case that individuals in a very advanced stage of the disease do not participate

in the chain of transmission. This may happen because of becoming spatially isolated (e.g.

due to hospitalisation or self isolation), or because of losing the ability to move. To start

considering these cases, we propose the aforementioned multistage sED model.

Assume that the subpopulation sizes of infected or ill people are represented by k

infectious stages {I0,..., Ik−1}, with increasing indices depending on severity of the disease.

The states do not necessarily represent clinical states. The total infected population is

therefore I = I0 + ...+ Ik−1. Of note, it is assumed here that, an individual may recover

from any infection state, and cannot become part of the subpopulation in infection state

j without having been through all the infection states of less severity. By extension, an

individual cannot die without having been through all the infection states I0, ..., Ik−1. For

instance, for COVID-19 it is reasonable to assume that there are at least four infectious

states labelled as 0, 1, 2, and 3, with population sizes I0, I1, I2, I3, respectively representing

an incubation period, an initial symptomatic state I1, a second (mild severity) symptomatic

state, and those in a severe disease state after which they could die (Figure 9 (b)).

Suppose that in a time window of size h, given that a susceptible individual has had

contact with an individual in the stage Ii, the probability of having an effective transmission

is given by hβiκi(t). Then, by using the law of total probability counting over the partition

on the different possible stages of the infected individual, the probability that a susceptible

individual becomes infected in a time window of size h is given by

ph(I0, ..., Ik−1, t) = h
k−1∑
i=0

βiκi(t)
Ii(t)

T (t)
. (19)

which generalises (18).

For the subsequent stages, in analogy with the Subsection 2.3.2, we can derive geomet-

rically distributed times for advancing or recovering to the next stage for each individual.

The probabilities that a person in stage Ii advances to the next stage Ii+1 or recovers, within

a small time interval of length h are estimated by

p
(i)
I ≈ h

µ
(i)
I

, (20)

p
(i)
R ≈ h

µ
(i)
R

, (21)

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.16.22278844doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.16.22278844
http://creativecommons.org/licenses/by-nc-nd/4.0/


where µ(i)
I is the mean elapsed time that a patient spends in stage Ii before moving forward

to the stage Ii+1, and µ(i)
R is the mean elapsed time that a patient who recovers after stage

Ii spends in that stage. Accordingly, an individual remains infected in the ith stage with

probability 1− (p
(i)
I + p

(i)
R ). For computational purposes, we can think the death stage as

the stage Ik+1, to be included in last equation. Therefore, a Multinomial approach can be

derived in each stage, to compute the number of individual that advances or recover in

each state to give a complete description of the dynamics for this extension. A system that

extends equations (3)-(5) taking into account the different infectious stages is thus given by

S(t+ h) = S(t)−Xh
0 (t) (22)

Ij(t+ h) = Ij(t) +Xh
j−1(t)− (Y h

j (t) +Xh
j (t)) ∀ j = 0, ..., k, (23)

R(t+ h) = R(t) +
k∑
j=1

Y h
j (t), (24)

D(t+ h) = D(t) +Xh
k (t), (25)

where S(t), I0(t), ..., Ik(t), R(t), and D(t) represent the numbers of individuals in each

stage at time t and

Xh
0 (t) ∼ Bin

(
bε(t)S(t)c, ph(t)

)
,

(Xh
j (t), Y h

j (t), Ij(t)−Xh
j (t)− Y h

j (t)) ∼Mult
(
Ij(t), p

(j)
I , p

(j)
R , 1− p(j)I − p

(j)
R

)
,

for all j = 0, 1, ..., k, assuming that all random elements are independent. Note that the

X ′s represent the quantity of people passing from some stage to the next (the last one could

be death), while the Y ′s represent the number of people recovering from the disease, at

some given time.

The dynamics that can be obtained from this extension of the basic sED can be such

that the total expected time before recovery is larger than the total expected time before

death due to disease (Fig. 9), but such that the case fatality ratio is much smaller than 1/2

depending on the parameters of the model.

3.3.2 Probability distribution of the final stage reached by an individual

In this section we illustrate some mathematical properties of the multistage extension of

the sED model just presented. Of interest, we focus on the maximal stage of infection or

disease that a given individual reaches before recovering, once that she has been infected.
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The reason is that the last stage and the final clinical outcome is of interest for clinical and

epidemiological purposes (Roger, 2011). This is developed in the context of the model with

multiple infection and disease stages sED (equations (22)).

Consider the sED model with multiple infection (and disease) stages, given by {S, I0, ..., Ik, R,D}
(equations (22)). Assume that one individual has been initially infected at some time t.

By construction, once the individual has been infected, her or his recovery time and the

maximal stage reached before recovering will not depend on the evolution of the epidemic,

but only in its (random) individual evolution through the infection and disease stages.

First, using the same rationale as in the basic sED model, if an individual is in stage i of

disease, the probability that the individual goes to the recovery state without passing to the

next stage (without getting worse) is given by the routing probability to recovery µ
(i)
I

µ
(i)
R +µ

(i)
I

(see Subsection 2.3.2).

By considering last equation for each stage, and assuming independence between the

sampling processes in different stages, the probability that the infected individual reaches

the stage Il (l ≤ k) as maximal stage of infection or disease before recovering is given by

( l−1∏
i=1

µ
(i)
R

µ
(i)
R + µ

(i)
I

)(
µ
(l)
I

µ
(l)
R + µ

(l)
I

)
. (26)

Using the same reasoning, the probability of death of such individual is

k∏
i=1

µ
(i)
R

µ
(i)
R + µ

(i)
I

. (27)

As aforementioned, last probabilities are expressed in only in terms of the expected

elapsed times in each stage of infection or disease.

4 Discussion

We have presented a derivation to model epidemiological dynamics for infectious diseases

based on a simple key assumptions: at any given time, individuals in any epidemiological

stage are the subjects of a random sampling process in which they either remain in their

epidemiological stage, or move to a different stage. Then we have distinguished two

different types of sampling: individuals from one population may get sampled depending

on an interaction with another subpopulation, as is the case in the infection process; or

sampling to switch epidemiological states may depend on waiting times given by individual,
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Table 2: Notation and values used in the multistage extension of the sED model.

Symbol Value Units Description
µ0
R [4.1-7.0] days Expected incubation time (Li et al., 2020)
µ1
R [4.3-7.5] days Expected time spent in first symptomatic stage (Li

et al., 2020)
µ2
R [9.0–15.0] days Expected time spent in the second (mild severity) symp-

tomatic stage (Zhou et al., 2020)
µ3
R [2.0–9.0] days Expected time spent in the third (severe) symptomatic

stage (Zhou et al., 2020)
µ0
D [4.1-7.0] days Expected incubation time (Li et al., 2020)
µ1
D [4.3-7.5] days Expected time spent in first symptomatic stage (Li

et al., 2020)
µ2
D [5.0–11.0] days Expected time spent in the second (mild severity) symp-

tomatic stage (Zhou et al., 2020)
µ3
D [4.0–12.0] days Expected time spent in the third (severe) symptomatic

stage (Zhou et al., 2020)

pathophysiological, or economical factors, to name a few. As a result, we have obtained a

simple, easy to implement model derived from common sense rules, that takes into account

different sources of randomness in the evolution of the dynamics in infectious diseases. The

model works for small and large populations as well, and also, allows extensions to study

the effects of specific factors that may become important determinants of the epidemics

(e.g. exposure of infected vs. exposure of susceptible, single vs. multiple disease stages).

En passage, we explain how to derive a continuous time, continuously valued SIR model

from the sED model, and in what circumstances do the classical SIR models work, and

expose some of the problems that arise in extensions of the SIR models intended take into

account deaths due to disease. We also show a few mathematical properties related to the

expected times spent by an individual in different epidemiological stages. Of particular

interest, we show how case fatality ratios in models with only one infectious stage would be

larger than or equal to 1/2 unless the expected time for recovery is shorter than the expected

time for death due to disease. We also show that lower values for the CFR smaller than 0.1

can be only be obtained in models with more than one infectious (or clinical) stage that

allows percolation of the population through different stages and recovery instead of dying.

4.1 Why do we need a different model than the SIR model?

Let us point out some similarities and differences between sED and SIR models.

One issue of interest is the theoretical impossibility of using the SIR model for small
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populations: population densities are discrete by construction, but they can be thought of

as continuous variables for large population sizes. However, there are many epidemics in

which the populations of interest are small (e.g. small villages in Liberia during Ebola

outbreaks). Nevertheless, for large enough populations the dynamics of the deterministic

SIR model in equations (15)-(16) can be compared to simulations of the dynamics obtained

with the sED model after dividing the sED state variables by the population size (Fig. 6).

This is illustrated by analyzing the distance between the normalized 3-dimensional vector

(S(t), I(t), R(t))/T (t) and its deterministic counterpart (x(t), y(t), z(t)), which decreases

robustly as T increases (Fig. 6).

There are many possible extensions that could be implemented from the sED model.

For instance, models taking into account different susceptibility. For instance, the need for

such extensions has been repeatedly suggested by surveillance data during the COVID-19

pandemic, from genetic profiling data (Velavan et al., 2021), from CT-value readings in RT-

PCR tests (Waudby-West et al., 2021), and from serological testing (Toulis, 2020). These are

examples of implementations that have been suggested, then regarded as unnecessary and

too complicated, and subsequently discarded. However, making such considerations adds a

layer of knowledge and understanding that renders realistic decision making impossible to

do without them.

The dynamics in the of SIR “with deaths” and sED are not supposed to be similar.
The results obtained in Subsection 3.1.1 show that simply adding another variable to

the regular SIR deterministic dynamics to account for deceases would not be coherent

mathematically, and also, with what would be expected from the sED dynamics, so it would

be profitless.

4.2 The exposure of susceptible and infected have different effects on
the epidemic dynamics.

Infection processes occurring between pairs of individuals depend at least in three aspects:

the infectivity potential of the infected individual, the vulnerability of being infected of

the susceptible individual, and the physical exposure between them, typically ocurring

through physical contact. These aspects are very difficult to measure precisely. However,

different indirect statistical measures have been used in each of them. Examples of these

include viral load as an indicator of infectivity potential (Jones et al., 2021; Marc et al.,

2021); existence of comorbidities to measure vulnerability (MK et al., 2021); presence of

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.16.22278844doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.16.22278844
http://creativecommons.org/licenses/by-nc-nd/4.0/


antibodies in an individual as indicators of infection severity (Legros et al., 2021); mobility

in cities as a proxy of physical exposure (Lu and Gan, 2022), especially in consideration

of lock downs and social distance and public health measures (Wu et al., 2021). The sED

model allows us to explicitly separate exposition of the susceptible population and the

exposure of people with the potential to infect others. This allows us to observe explicitly

the different dynamics resulting from having drastic reductions in one factor but not in the

other one, opening the possibility of establishing or discarding the efficacy of public health

measures directed to the reduction of such factors. As it should have been obvious, the

most effective strategy to mitigate the epidemics is to isolate the infected. Unfortunately,

this is impossible for epidemics in which the asymptomatic population is present, as is the

case for COVID-19.

4.3 Infection vs infectivity

The sED model can describe some aspects concerning the infectivity and lethality of a

disease that cannot be directly explained by the force of infection and the basic reproduction

number. For a fact, but also for epidemiological purposes, the infection time may not

necessarily be be equal to the time interval during which a person is infectious. For instance,

an infected person during the incubation period, or already in the process of clearing

the virus, may have a sufficiently low viral load such that the person is effectively not

infectious. Similarly, the infection time may include a period of symptoms that may be

severe enough to reduce the exposure of the infected person (e.g. hospitalisation or self

isolation), potentially decreasing the availability of inoculum shedding for other people to

get infected. The sED model can be easily extended to study the case in which infectivity

periods last less than the infection time and possibly include decreased levels of exposure

by the infected; we study those cases in a companion paper dedicated to study COVID-19.

Of note, hypothesis in the sED model that infection depends on the exposure of those

infected in environments where susceptibles may be inoculated applies also to infections

that depend on non-human vectors like dengue. This is justified by recent data from dengue

outbreaks and endemicity in densely populated urban areas (Falcón-Lezama et al., 2017;

Villabona-Arenas et al., 2016). Consider the case in which there is one female mosquito

per building in an apartment complex. The radius of interaction of the mosquito can

easily be 25 meters, without taking into account vertical interactions. This means that

one case of dengue in one building could result in many more cases, without the need

of an abundant population of mosquitoes. The sED model uses simple parameters to
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represent such complex process of infection. Those parameters can be calibrated using

the statistical information available. Then the model can be used to analyse qualitatively

different scenarios depending on those parameters. In particular, the multistage sED model

allows to divide the process of infection using different layers related to different possible

mechanisms of infection and transmission of the diseased studied.

4.3.1 Multiple stages for infection and illness progression.

As pointed out earlier, an adequate scheme to model the evolution of many diseases,

should be one in which classification of infection states is constructed according to the

physiological changes of the individual, whether or not they depend on clinical assessment.

The clinical stages associated with infections and disease due to such infections can then also

be considered. Note, however, that only taking into consideration clinical considerations

may result in very inaccurate assessments with possibly bad consequences. For instance,

infections with SARS-CoV-2 cause a large percentage of asymptomatic cases (non-clinical),

but not taking them into consideration has proven harmful for the sake of public health

(Zhao et al., 2020). This is at large our motivation for thinking about the pathophysiological

states of an individual during an infection as the base for our modelling scheme.

An important remark is that, constructing a model by taking the physiology related to

the infection as a basis to classify different subpopulations may result in an inability to

estimate parameters in an statistically meaningful way. However, the sED model is simple

enough and easy to expand so that anyone could use it to explore qualitatively different

behaviours of an epidemics to identify mechanisms underlying the epidemic guided by

fitting real data (e.g. prevalence and incidence curves). That was the case leading to the

extension of the basic sED model into the multistage model introduced in Section 3.3,

where we show how CFR with very low values can be obtained by simply introducing

multiple, subsequent stages and the condition that individuals who die from the infection

must go through all disease stages before dying. By means of exploration, the multistage

sED model thus provided some insight about why it would not be possible to obtain low

CFR with shorter recovery intervals in comparison to hospitalization times, as documented

during the first months of the COVID-19 pandemic. En passage, that analysis also shows

that it would not be possible to model COVID-19 with classical SIR dynamics unless the

model is modified by stratifying the disease stages before death.
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4.4 On numerical simulations and approximations

Of note, the fact that Ps(h) ≈ 1 for a small enough ratio µs/h suggest that sampling events

at time steps that are close to 1 may not be approximated as accurately as those with mean

waiting time larger than 1. As a note of caution, the sampling in the sED model would not

be well defined for mean waiting times shorter than the step size.

4.5 Concluding remarks

In this article we presented a new mathematical model to describe epidemiological dynamics.

Its purpose is to describe some crucial aspects observed in the evolution of pandemics often

not taken into account in the existing modelling literature, while simultaneously being

intuitive, based on common sense arguments, and robust enough to be easily adapted to

different particular features of diseases.
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JA Quesada, A López-Pineda, VF Gil-Guillén, JM Arriero-Marı́n, F Gutiérrez, and

C Carratala-Munuera. Incubation period of COVID-19: A systematic review and meta-

analysis. Revista Clı́nica Española (English Edition), 2020.
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