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Abstract  

Hydrocephalus is a genetically and phenotypically heterogenous condition with complex etiology. 

Ciliary dysfunction has been shown to play a role, either through interference with signaling 

functions in primary cilia, cerebrospinal fluid flow by motile cilia, or both. Ciliary function is 

highly energy-dependent, consequently, variation in mitochondrial OXPHOS function might be a 

susceptibility factor for hydrocephalus. Furthermore, familial hydrocephalus exhibits preferential 

maternal inheritance. Mitochondrial DNA (mtDNA) haplogroups, have been associated with 

different characteristics of OXPHOS function as well as susceptibility to autism spectrum disorders, 

a frequent co-morbidity of hydrocephalus. This nested case-cohort study, a substudy of the iPSYCH 

study, used mtDNA data from 191 hydrocephalus cases and 24,831 population controls and found 

no association between hydrocephalus and any mtDNA haplogroup. Likewise, the distribution of 

European macro-haplogroups, HV, JT, and UK, did not differ between 172 hydrocephalus cases 

and 21,850 population controls. Thus, mtDNA haplogroups are not susceptibility factors for 

hydrocephalus. 

Keywords: Mitochondrial DNA, Mitochondrial haplogroups, Hydrocephalus, Ciliopathies, 

Oxidative Phosphorylation 
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Introduction 

Hydrocephalus (HC) is a heterogeneous disorder characterized by the abnormal amounts of 

cerebrospinal fluid (CSF) within the ventricles and subarachnoid space of the brain.[1] It is a 

common disorder with a frequency of around 1:1000 children.[2] Primary HC, e.g., HC without 

underlying tumors, hemorrhage or CNS infections obstructing or impeding the normal flow or 

absorption of CSF may present as syndromic, as well as isolated HC. Primary HC may be caused by 

congenital obstructions of CSF outlets in the ventricular system, the most common being stenosis of 

the Sylvian aqueduct that connects the third and fourth ventricle. Communicating forms of primary 

HC may be caused by a disturbed balance of the production and absorption of CSF leading to 

accumulation of CSF in the ventricular system or the subarachnoid space, or by impaired 

neurogenesis yielding abnormal amounts of CSF relative to the brain volume.[3]  

Monogenic forms of HC exist,[4] but the genetic etiology is complex and > 100 genes associated 

with HC have been reported in the literature, however with highly variable penetrance. 

Interestingly, a nationwide population-based familial aggregation study of HC revealed preferential 

maternal inheritance.[2] The maternal component was not explained by risk factors likely to 

aggregate in families, [2] and may point towards X-linked genetic etiologies or involvement of 

mitochondrial DNA (mtDNA). 

Many of the known HC-associated genes are involved in classical ciliopathies [5, 6] or in signaling 

pathways, such a sonic-hedgehog (Shh), wingless (Wnt), Notch, and PI3K-Akt-mTOR pathways, 

that are essential for brain development.[7] These pathways are compartmentalized - at least partly - 

in primary cilia.[8, 9] This role of ciliary function [10] and cilia-associated genes in HC is 

supported by the finding that genetically engineered mice with a HC phenotype overwhelmingly 

had genetic variants in cilia-associated genes.[11] 
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As ciliary function depends on a multitude of energy-requiring processes;[12] genetic or 

environmentally induced variation in OXPHOS function, or more broadly, mitochondrial 

function,[13] could modify the phenotype. This “Bioenergetic paradigm” [14] has been suggested to 

play a role in metabolic disorders/ biophysical traits,[15, 16] neurological diseases,[17] 

cardiomyopathies,[18, 19, 20, 21, 22] psychiatric diseases,[23] cancers,[24] and developmental 

disorders.[25] Furthermore, HC exhibits many comorbidities, including autism spectrum disease 

[26] that has been associated with altered mitochondrial function,[27, 28] and in some – but not all 

[29, 30] - studies with mtDNA haplogroups.[31] Mitochondrial DNA haplogroups, representing 

evolutionarily fixed groups of sequence variants in mtDNA, exhibit different characteristics of 

OXPHOS function [32, 33] and disease associations.[14, 34] 

Based on the above, we hypothesized that variation in mtDNA haplogroups might explain the 

variable penetrance of HC. In consequence, we ascertained and compared mtDNA haplotypes and 

macro-haplotypes from HC cases and background population controls from the iPSYCH cohort. 
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Materials and Methods 

 

Study design 

This is a register-based case-cohort study using data from national health registries and genetic data 

from the iPSYCH study. The study is thus a sub-study of the Lundbeck Foundation Initiative for 

Integrative Psychiatric Research (iPSYCH: http://iPSYCH.au.dk). The iPSYCH cohort was selected 

from a study base of 1,472,762 singleton births born between May 1 1981 and Dec 31 2005. The 

inclusion criteria were that they were alive and residing in Denmark at one year of age, had an 

identifiable mother with a Danish Civil Registration number, and had a dried blood spot card stored 

in the Danish Neonatal Screening Biobank within the Danish National Biobank,[35]. The cohort 

comprised 57,875 psychiatric patients and a random sampled control cohort of 28,606 individuals. 

Details on time periods of selection as well as genomic variability data are given in Pedersen et al, 

2018.[36] 

Ethics 

The study was approved by the Scientific Ethics Committees of the Central Denmark Region 

(www.komite.rm.dk)(J.nr.: 1-10-72-287-12) and the Danish Data Protection Agency 

(www.datatilsynet.dk)(J.nr.: 2012-41-0110). Informed consent was waived in accordance with the 

conditions of ethics approval.[36] 

 

Hydrocephalus cases and controls 

Hydrocephalus cases included individuals registered in the Danish National Patient Register 2016 

or earlier with ICD 10 diagnosis code Q03, Q038, Q038A, Q038C, Q039, G910, G911, G912, 

G913, G918 and G919 or ICD 8 diagnosis code 74200, 74201, 74208, 7409, 34794 and 34795. 
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A total of 191 hydrocephalus cases were identified in the iPSYCH cohort with haplotyped mtDNA 

and 24,831 background population controls. Among these, 172 hydrocephalus cases and 21,850 

background population controls belonged to the European macro-haplogroups, HV, JT, and UK.  

 

Genetic analysis and mtDNA haplotyping 

Two 3.2-mm disks were excised from each blood spot. DNA was extracted using Extract-N-Amp 

Blood PCR Kit (Sigma-Aldrich), whole genome amplified (WGA) in triplicate using the REPLIg 

kit (Qiagen), followed by pooling into a single aliquot. The amplified DNA samples were 

genotyped at the Broad Institute (MA, USA) using the PGC developed PsychChip v 1.0 (Illumina, 

CA, USA) typing 588,454 variants. Finally, samples with less than 97 % call rate, or where the 

estimated gender differed from the expected gender, were removed. We then isolated the 418 

mitochondrial loci and reviewed the genotype calls, before exporting into the PED/MAP format 

using GenomeStudio (Illumina). MtDNA haplotyping was performed as described previously.[37, 

38] using the haplogroup defining SNPs reported in www.phylotree.org.[39] Figure 1 illustrates the 

phylogenetic tree of mtDNA haplogroups. 

 

 

Statistics 

The associations between HC and mtDNA haplogroups and macro-haplogroups (Figure 1) were 

examined using Fisher’s exact test. P-values less than 0.05 were considered significant.  
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Results 

 

We identified 191 cases of HC and 24,831 background population controls with available mtDNA. 

As presented in Table 1, 34 % of the HC cases were females, whereas 49 % of the background 

population controls were female. Mean age of HC cases was 22.4 years, which was virtually similar 

to the mean age of 22.8 years among background population controls. 

Table 2 and Table 3 present the distribution of mtDNA haplogroups and mtDNA macro-

haplogroups in HC cases and controls, respectively. The distribution of mtDNA haplogroups did 

not differ between HC cases and controls as shown in Table 2. Likewise, we observed no significant 

association between any of the European macro-haplogroups  (HV, JT, and UK) and HC (Table 3). 
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Discussion 

 

We have, for the first time, shown that genetic variation of mtDNA, at the level haplogroups and 

European macro-haplogroups is not associated with HC in the Danish population. This does not 

preclude that mtDNA variation at a more distant phylogenetic level, e.g. individual “private” 

variants or sub-haplogroups, may be of significance.  

The mtDNA haplogroup variation is frequently found associated with late-presenting degenerative 

diseases, whereas rarer mtDNA variants often present as classical mitochondriopathies,[14, 34] 

which are maternally inherited. This rarer mtDNA model of disease would be more in line with the 

tendency for maternal inheritance found in the previously mentioned familial aggregation study[2]. 

Furthermore, rarer mtDNA diseases often negatively influence the ability to reproduce. Many rare 

mitochondrial diseases, either caused by mtDNA variants or nuclear genes coding for parts of the 

mitochondrial proteome or mitochondrial regulatory genes, have been described to present with HC, 

e.g. fatty acid oxidation defects,[40] mitochondrial respiratory complex deficiencies,[41, 42] loss of 

mitochondrial apoptosis-inducing factor,[43] and Fowler syndrome.[44]  

Thus, this study does not exclude associations between rare mtDNA variants and hydrocephalus. 

Interestingly, we found hydrocephalus associated variants the MTO1 gene in a single heterozygote 

carrier among a subset of 72 whole-exome sequenced hydrocephalus patients from the same cohort 

as this study (yet unpublished data). MTO1 encodes the mitochondrial translocation optimization 1 

protein, which is involved in tRNA modification to increase the accuracy and efficiency of mtDNA 

translation.[45] Furthermore, the study revealed significant involvement of the ciliome. 

Hydrocephalus has been associated with other mitochondrial gene mutations in experimental 

studies, either because of impaired brain development or loss of ciliated epithelium in the 

ependymal layer.[43] 
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A limitation of the study is that we have not examined the potential significance of variation in the 

nuclear genes coding for a large part (~ 99 %) of the mitoproteome, and genes controlling 

interaction between mtDNA and the nuclear genome.[46] Such studies would have required a larger 

number of HC cases and much more extensive sequencing. Furthermore, the distribution of 

haplogroups in both controls and HC patients is similar to that previously reported for a large un-

biased Danish nation-wide study [37] with such a great variation in frequency of different 

haplogroups (Table 2), that the study has insufficient statistical power to evaluate the association 

between the less frequent haplogroups and hydrocephalus. 

In conclusion, we did not find significant associations between hydrocephalus and mtDNA at the 

haplogroup or macro-haplogroup levels. Yet, compelling evidence for the interaction between HC, 

brain development, ciliary- dependent signaling pathways,[47] and mitochondrial function 

exists,[13] but more likely due to rare mtDNA population variants. It has been shown that less 

frequent mtDNA variants are often mildly deleterious, and there have been attempts to link their 

collective impact with na number of phenotypes[48, 49, 50] We suggest that more extensive studies 

involving whole-exome-sequencing of the nuclear genome and full mtDNA sequencing are 

performed to better assess the role of mitochondrial function in modifying the complex genetic and 

molecular etiology of HC. This is of clinical importance as mitochondrial functional involvement 

may assist in defining new pharmaceutical targets.[51]  
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Table 1. Demographics of the cohort of HC patients and controls. 

 

 HC cases Controls 

Number 191 24,831 

Sex (Women %) 34.6 49.0 

Age, median (interquartile range) 22.4 (16.7 – 27.6) 22.8 (17.5 – 28.7) 
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Table 2. Distribution of mtDNA haplogroups in HC cases and controls. 

 

Haplogroup HC % (N) Controls % (N) OR (95% cfi) p-value 

H 47.1 (90) 45.6 (11 322) 1.03 (0.79 – 1.42) 0.716 

U 14.1 (27) 13.4 (3 338) 1.05 (0.67 – 1.60) 0.750 

J 11.0 (21) 9.0 (2 234) 1.22 (0.75 – 1.98) 0.311 

T 8.9 (17) 9.2 (2 285) 0.97 (0.55 – 1.59) 1.000 

K 4.7 (9) 7.4 (1 835) 0.64 (0.28 – 1.21) 0.208 

I 4.2 (8) 2.8 (685) 1.50 (0.65 – 3.11) 0.260 

V 3.7 (7) 3.4 (836) 1.09 (0.43 – 2.31) 0.690 

R 3.1 (6) 2.7 (673) 1.15 (0.42 – 2.60) 0.652 

M 1.0 (2) 1.6 (398) 0.63 (0.08 – 2.39) 0.773 

L 0.5 (1) 0.7 (175) 0.71 (0.02 – 4.23) 1.000 

N 0.5 (1) 1.2 (308) 0.42 (0.01 – 2.38) 0.734 

W 0.5 (1) 1.3 (333) 0.38 (0.01 – 2.20) 0.526 

X 0.5 (1) 1.6 (409) 0.31 (0.01 – 1.78) 0.382 

Total 100 (191) 100 (24 831) - - 
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Table 3. Associations between macro-haplogroups and hydrocephalus. 

Macro-haplogroup HC % (N) Controls % (N) OR (95%-cfi) p-value 

HV 56.3 (97) 55.6 (12 158) 1.03 (0.75 – 1.41) 0.8777 

JT 22.1 (38) 20.7 (4 519) 1.09 (0.74 – 1.57) 0.6371 

UK 21.5 (37) 23.6 (5 173) 0.88 (0.60 – 1.28) 0.5888 

Total  99.9  (172) 99.9  (21 850) - - 
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Figures 

 

Figure 1. 

 

 

Figure caption 

 

Figure 1. Phylogenetic tree of mtDNA haplogroups (www.phylotree.org). MRCA: Most recent 

common ancestor. The red circles denote the macro-haplogroups HV, JT, and UK. 
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