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Long-term changes in human mobility responses to

COVID-19-related information in Japan

Shinya Fukui®T

Abstract

How human behaviour has changed over the long term in response to COVID-19-
related information, such as the number of COVID-19-infected cases and non-
pharmaceutical interventions (NPIs), is under-researched. It is also unclear how the
increasing vaccination rates have affected human mobility. We estimate human mobility
responses to such COVID-19-related information via the interactive effects model,
which controls unobservable human mobility factors, using publicly available daily data
on ‘human mobility for retail and recreation’ and ‘residential spent time’ in each
Japanese prefecture. The results show that Japanese citizens were generally fearful of an
unknown virus in the first wave of infection; however, they gradually habituated
themselves to similar infection information in the subsequent waves. Nevertheless, the
level of habituation decreased in view of information regarding new variants that
differed from the previous ones. In contrast, as for NPIs, it is more plausible to consider
human mobility responses to varying requests rather than habituation. We also find that
rapid vaccination promotion motivates people to go out. Furthermore, we are the first to
identify spatial interaction of infection information and heterogeneous responses during
increasing and decreasing phases of infection. The long-term analysis is crucial for

evidence-based policymaking during the long-term pandemic and future pandemics.
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1 Introduction

The COVID-19 pandemic, which has passed almost three years, has had significant
global socio-economic impacts, including in Japan [1, 2]. Given that the COVID-19
infection can be transmitted through direct or indirect contact with an infected person
[3], increasing human mobility can promote the spread of COVID-19 infection [4, 5].
Hence, non-pharmaceutical interventions (NPIs), such as lockdowns, were employed to
reduce COVID-19 infections [6-13]. Additionally, when the infection spreads, people
restrict their own outgoing behaviour to avoid risks, reducing human mobility [14-16].
For example, from March to May 2020, in the U.S., customer visits to the stores fell by
60%; 7% of which was explained by lockdowns, and the rest by own travel restrictions,
owing to fear of infection [15].

Throughout the COVID-19 pandemic, people have essentially been exposed to two
main pieces of information: the increase in COVID-19 infections and NPIs [17-20].
Several studies thus explore the behavioural variations in response to COVID-19-
related information over time. For example, using data from 124 countries, one study
[21] observes a gradual decline in adherence to social distancing under the continued
NPIs from March to December 2020. Similarly, Japanese citizens gradually reduced
their stay-at-home behaviour despite the infection-increasing phase in 2020 [18, 22].
Furthermore, regarding the declaration of a state of emergency (DSE), an NPI in Japan
1ssued between 2020 and 2021, other studies [23, 24] find that the extent of curtailment
of going-out behaviours slowly decreased from the first to the fourth DSE.

Against the spread of COVID-19 infection, the Japanese government issued the
first COVID-19 DSE on 7 April 2020 [25]. In the first wave, most Japanese citizens
feared the unknown virus and the unprecedented widespread pandemic [26]. Since then,
Japan has experienced six waves of COVID-19 infection (as of July 2022) [27], and the
government has issued four DSEs [25]. In 2021, the government rolled out a rapid
vaccination programme [28]. Additionally, the development of therapeutic agents has
started worldwide [29], while much more has become known about post-infection

effects [30]. However, new variants have emerged successively.

Due to such a long-term pandemic, many individuals have grown tired of the
COVID-19 pandemic, exhibiting the so-called ‘pandemic fatigue’ [21]. Although Japan
has experienced the Omicron variant and its subvariant with a much faster infection rate
[31, 32], people are slowly becoming accustomed to living with COVID-19. Despite

these, the human behavioural changes in response to COVID-19-related information
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over the long term, over almost three years, are still under-researched. The long-term
analysis is crucial for evidence-based policymaking (EBPM) during the long-term

pandemic and future pandemics.

Our study uses publicly available human mobility data and analyses how human
behaviour varies from COVID-19-related information over the long term, especially
exploring whether people have become habituated to the information. Habituation [33,
34] refers to the diminishing reaction to a repeated stimulus over time [35]. For
instance, a study [36] using individual questionnaires shows that COVID-19 anxiety
became habituated over sixteen months. To investigate whether habituation has
occurred, first, we examine the variation in human mobility in response to COVID-19
infection information over six waves over two and half years; second, we re-examine
the impact of multiple DSEs on human behaviour. Additionally, whether increased
vaccination rates will increase the number of people who are less fearful of infection
and promote outgoing behaviour [37] will also be analysed. The impact of vaccination
on human behaviour has only been studied in one empirical study [38], in which a slight
increase in individual travel distance after vaccination is observed but not statistically
tested.

Meanwhile, several studies have noted the importance of considering regional
spatial interaction when investigating the impact of COVID-19 infection [39, 40]. We
examine the spatial interactions between prefectures using cross-prefecture travel to
illustrate that information from other prefectures influences the changes in human
mobility in one prefecture. As such, we incorporate a cross-term using a spatial weight
matrix representing the spatial interactions between prefectures, which has not been
done in previous related studies. Moreover, a single wave of infection comprises an
increasing and decreasing phase. The difference between the two is that people are more
likely to go out in the increasing phase but will gradually resume going out in the
decreasing phase. Human mobility responses are considered heterogeneous across the
two phases. We validate this conjecture for the first time by identifying the start, end,
and peak of infection of different waves in each prefecture in Japan. Since unobservable
factors also affect human mobility, we use the interactive effects model [41] in our
regression analysis which is to control for the unobservable factors that change over

time and are accompanied by loadings that differ among cross-sectional units.

Exploring how human mobilities responded to the three pieces of information
(repeated waves of infection or new variants, promotion of vaccinations for a few doses,

and several DSEs), the spatial influences, and the different infection phases are
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important for policy effectiveness during a long-term pandemic. While this study does
not directly examine individual attitudes, it indirectly explores the changes in fears, risk
awareness, and ‘pandemic fatigue’ through their responses to COVID-19-related
information over time and assesses how human mobility responses change over the long

term during a pandemic.

2 Data

Our study focuses on three pieces of publicly available COVID-19-related information
that affect human mobility: COVID-19-infected cases, DSE (NPI), and vaccination rate.

2.1 Human mobility

The daily human mobility data for each prefecture used in this study are obtained from
Google’s COVID-19 Community Mobility Reports [42], which are composed of six
human mobility categories: retail & recreation, grocery & pharmacy, parks, transit
stations, workplaces, and residential; from these, we select retail & recreation and
residential. When avoiding unnecessary mobility, either in reducing the risk of infection
or responding to the DSE by the government, people minimise their outings mainly to
retail stores (not grocery stores and pharmacies, which are essential) and entertainment
venues and also have a greater tendency to stay at home. In Google’s data, residential

indicates time spent at home.

The data show the percentage change compared to a day-of-the-week baseline
calculated based on median values for each day of the week for the five weeks from 3
January to 6 February 2020—just prior to the global outbreak of the COVID-19
pandemic. Since these values have day-of-week fluctuations (i.e. each day of the week
has its variation characteristics, such as large variations on weekends), we take the
difference from the previous week (percentage points) of the percentage change from
the baseline. Additionally, by taking the week-on-week difference, rather than using the
percentage change from the baseline itself, we can capture the effect of new information
in the short term, such as a week-on-week change in the number of daily newly infected
cases, on people’s decision about whether to go out. An example of a dependent
variable is shown in Fig. 1. We denote this dependent variable as Ay;;, where i =
1,2,---, N stands for the prefecture, t = 1, 2,---, T is the index of day, and A is the

difference from the previous week.
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From 3 Januaryto 6 1June2021 (Tuesday) 8 June 2021 (Tuesday)

February 2020
1 million people's 0.6 million people's 0.7 million people's
outings (on Tuesday) outings outings

The baseline
(median values for each day of Google’s data — -40% -30%
the week for the five weeks ) I *

Our dependent variable —| +10 percentage points

Figure 1. Example of a dependent variable for which the author created fake data for
the baseline, 1 June 2021 (the previous week), and 8 June 2021.

2.2 Infected cases of COVID-19

Data on the daily number of newly infected cases of COVID-19 are obtained from NHK
(NIPPON HOSO KYOKAI,; Japan Broadcasting Corporation) [43]. Given that the
number of new cases fluctuates over a vast range, it is better to take the logarithm of the
data to mitigate heteroscedasticity. However, as the data contain zeroes, this is not
possible (since the logarithm of zero is undefined). Instead, we use an inverse
hyperbolic sine (IHS) transformation, which converts zeros to zeros and behaves
similarly to a logarithm [7, 15, 17, 22]. Let I;; denote new cases; then, the [HS

transformation of I;;; I;; becomes

I}, =In <1it + /Il?t + 1).

Additionally, since new cases have day-of-week fluctuations (e.g. fewer PCR tests
on weekends), we convert the [HS transformation of new infections to the difference
from the same day of the previous week. Hence, the week-on-week difference of daily
new infected cases transformed by the IHS, Al;;, approximates the growth rate of new

cases compared to the previous week.

Another implication of considering the week-on-week difference is described in
the Supplementary Information (Appendix A). Briefly, people tend to judge the severity
of COVID-19 infection conditions primarily based on the change in the number of

infections from the prior week, as announced in the daily news.

2.3 The declaration of a state of emergency
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The DSE data are obtained from the Cabinet Secretariat’s COVID-19 Information and
Resources [25]. The timing of DSEs varied between prefectures. We set a dummy
variable, E;;, which takes 1 if a DSE is declared in a prefecture and 0 otherwise. The
Supplementary Information (Appendix B) displays DSE periods for each prefecture
(Fig. S1), while the NPIs in Japan and the contents of the DSE are described in
Appendix C.1 and C.2.

2.4 Vaccination rates

The daily data on COVID-19 vaccination of each prefecture are obtained from the
COVID-19 Vaccination Status by the Digital Agency [44]. We convert the data into a
cumulative format to determine the vaccination rate per million persons. Population
data for each prefecture (on 1 October 2020) are obtained from Population Estimates by
the Statistics Bureau of Japan [45]. Since the number of vaccinations has day-of-week
fluctuations, the data (vaccination rate per million persons) are converted to the week-

on-week change, denoted by AV;;.

Other reasons for using the week-on-week change value are provided in the
Supplementary Information, Appendix D. In brief, in terms of COVID-19-related
information, the larger the increase in the vaccination rate compared to the previous
week, the greater the number of people who got vaccinated and formed antibodies;

presumably, they become more comfortable going out compared to the previous week.
2.5 Time series plots

The time series plots of variables used in the estimation are shown in Fig. 2. From the
figure, infections and human mobility are moving in opposite directions. Further, the
first and second vaccinations proceeded rapidly. Additionally, the timing of the DSE
differs by prefecture.


https://doi.org/10.1101/2022.08.15.22278703
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.08.15.22278703; this version posted January 30, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

Hokkaido Aomori Iwate Miyagi Akita
20 o 20 20 20 20 20 20 < 20
Y R E s AT ;vw £ 2 F AR
8 815 P 03 g P 038 o 0381 e /_..og
8 810 Y02 8o /202 8o P w2 B0 ;7 L
& g PR et { I EE N
s S5 ! i 408 S 5 Ij 408 S 5 WO 408 S 5 [ 408
N 5 i £ Yo\ 5 i 5
0+ -60< 0+ — -60< 0 —_— -60< 0+ -60<
Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun-
2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022
Yamagata Fukushima Ibaraki Tochigi Gunma
20 20 20 20 20 20 20 20 20 20
R TN (TP E L W™ R z. NN E g
g5 ’ 038 - 03 8 03 8 b 03 8 S o3
S0 A, 02 §10 A 280 02 810 A 02 8 10 A I 02
5 i LB ' &S &S PR I
S5 I 208 S 5 ! i 408 S 5 408 3 5 WA 408 S 5 I\ L 408
Iy = | f = = Iy . E ] =
0+ -60< 0 — -60< 0 -60< o/ = B -60< 0 —a -60<
Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun-
2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022
Saitama Chiba Tokyo Niigata
20 20
20 :CE 20 g 20 g: 20 :CE M VWL 20 g
8 58 0 5 033 0§ g o 3
8 28 2 28 2810 : 2
£ -20§ £ -20§ -20§ g -20§ £ [ i -20§
> 408 > 400G 408 S 408 S 5 ', i 408
= = = = i =
——l 6% R N 502 —— 02 o =M Leof
Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun-
2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022
Toyama Ishikawa Yamanashi Nagano
20 U‘M V‘fw ' “F20 ‘-_:E 20 20 W 20 g 20 m 20 ‘;:[
T L g g g W&”B- Mo §
rel / > o el o = e 4 | =
_(g\; 10 .zomg _g .g 10 ,g 10 ' .zomg _g 10 1 i »205
s 40& S S5 s i 408 S 5 N 408
0+ 0= oL B2 0 0+ '— w02 o LAY 60=
Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun-
2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022
Gifu Shizuoka Aichi Mie Shiga
20 20T 20 20T 20x 20 20 T
1] E 1% 13 S 0 E [} V‘ S
815 03 8 815 038 038 e o 3
810 202 8 810 202 8 202 810 R
s B E 5 WE S WE E i B
Ss 408 S S5 408 S 408 S 5 WA 408
|| = = E | H =
oS L -60< 0 -60< -60< 0t e -60<
Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun-
2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022
Kyoto Osaka Nara
20 T 20 T 20 T
c c c
3 038 3 033 0§ 8
o > Qo Qo 3 Qo 3 Qo
“Es -3 c=s
> -40g > > -40g; > -40g >
-60< -60< -60<
Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun-
2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022
Tottori Okayama Hiroshima Yamaguchi
20 TR 20 T 20T 20 y 20 T 20 T
- W W 2 ” g ., g . g .,
27 038 o3 8 038 038
810 : 28 202 810 Sl 8 202 8
& [ IEE 5§ e 5§
= s | (408 S 408 > 5 N\ 408 > 408 >
01 L 0% 0= 0 ——= 602 602
Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun-
2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022
Tokushima Kagawa Ehime Fukuoka
20T 20 20T 20x 20 20 T
1] 5 (%] 1% S 1] 5 (%] 5
3 o3 8 81 038 o381 o 3
8 28 810 S ol202 8 202 810 202
& YEE 3 | INEE YEE g
> 408 > > 5 [ i 408 > 408 > 5 i 408
= 5 = I .
602 0+ - 602 602 vl 02
Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun-
2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022
Saga Nagasaki Kumamoto Oita Miyazaki
20T 20 T 20x 20 20x 20 20
1] E 1% E 1% S 1] E (%]
3 038 o3 8 o3 81 o3 8
rel ==l > o 3 8., /! R 3 85
S5 I I 40T > 40T > 405 S 5 YN 408 > 5
| | = = = { \ =
0+ T -60< -60< -60< 0 -60< 0+
Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun- Jun-
2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022
Kagoshima Okinawa
20 N 20 g
815 - _lp 3 2
8 W\/‘Wlﬁ 8
_g 10 ] i -200Z _%
S I /} |f “0g >
o = 0=
Jun- Jun- Jun- Jun- Jun- Jun-
2020 2021 2022 2020 2021 2022


https://doi.org/10.1101/2022.08.15.22278703
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.08.15.22278703; this version posted January 30, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

Figure 2. Time series plots of the variables per prefecture used in the estimation. On
each chart, the blue-green-coloured line (on the right-hand axis) is the 7-day backward
moving average using the geometric mean of human mobility in retail and recreation;
the red-purple-coloured line is the IHS transformation of the 7-day backward moving
average number of infected persons; the purple-coloured double-dashed lines are the
IHS transformation of the cumulative number of people vaccinated with 1-3 doses, and
the pink-shaded areas are the DSE periods. The data transformation employed here,
such as the 7-day backward moving average, is only for visualisation purposes; we use

other transformations in our estimation.

2.6 Spatial weight

To construct a spatial weight matrix, we acquire a dataset called Cross-Prefecture
Travel Data from V-RESAS, a website which contains publicly available information
on human mobilities and the economy related to COVID-19 provided by the Cabinet
Secretariat and the Cabinet Office, Government of Japan [46]. The details and the
construction of the spatial weight matrix, W;" = Z?l:l w;ie where i and j (j =

1, 2,---, M) are the prefectural indexes, are provided in the Methods section and the

Supplementary Information (Appendix E).

During the pandemic, the more people travel from prefecture i to their own
prefecture j, the more the COVID-19 trend in prefecture i is expected to affect human
mobility inside j substantially. Two factors can explain this: (1) the higher the
interaction of the people between i and j, the higher the risk of COVID-19 transmission
across prefectural borders; and (2) for commuters j to i, the trends in prefecture i are of

concern.

As an example, the elements of the spatial weight matrix for the last week of
January 2020 (27 January—2 February 2020) are illustrated in Fig. 3. This period
occurred just prior to the pandemic when irregular movements due to the New Year
celebrations in Japan had already dissipated; as a result, this week is representative of
normal inter-prefecture travel. In Fig. 3, the dark-red-coloured cells indicate that more
people travel between prefectures located in or around large cities such as Tokyo, Aichi,
Osaka, and Fukuoka.
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Figure 3. Spatial weight matrix per prefecture for the last week of January 2020 (27
January—2 February 2020). Constructed using V-RESAS’s Cross-Prefecture Travel data
from the Cabinet Secretariat and the Cabinet Office, Government of Japan. Within the
figure, the darker the red colour, the greater the number of travellers between

prefectures.

2.7 Controls
The Supplementary Information (Appendix F) provides details on the control variables.
2.8 Identifying COVID-19 waves

As the government made no official announcements regarding the beginning and end of
COVID-19 infection waves, we independently determine the COVID-19 wave duration
of each prefecture, as shown in Fig. 4. Further details are provided in the Supplementary

Information (Appendix G).
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Figure 4. COVID-19 wave durations in each prefecture. The data are from 22 February
2020 to 20 June 2022. There are six waves in total, generated by taking a 7-day
backward moving average of the number of daily new infections of COVID-19 from
NHK.

3 Results
The empirical results for human mobility of retail and recreation are presented below.
3.1 Empirical approach

We use the long-term panel data from 47 prefectures over 850 days, from 22 February
2020 to 20 June 2022. Lags are taken from 1 to 7 days for the week-on-week growth
rate of new infections, week-on-week changes in vaccination rate, and the spatially
weighted of these variables. Further details of our estimation strategy are provided in
the Methods section.

3.2 Retail and recreation human mobility response

3.2.1 Infected cases in the increasing phase

10
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As shown in Fig. 5a, during the phase of increasing infections, the fear of new
infectious diseases substantially reduces human mobility in the first wave. A 1% week-
on-week increase in the number of infected cases results in a decrease in human
mobility (which is the percentage change from the baseline) by 1.09-percentage-point
(pp) week-on-week, at most (lag: 2, standard error (s.e.) = 0.13). The reduction in
human mobility in the first wave weakened daily, from 2- to 7-day lags, as people tend
to respond more strongly to the most recent information. The 6- and 7-day lags have a
wide confidence interval (95% confidence interval (CI) for lag 7 =[-1.36 to -0.23]),
indicating that human behaviours on these lag days after receiving infection information

varied widely among prefectures.

The extent of reductions during the second wave is smaller than during the first,
but it is still high. Human mobility responses in the second wave also decreased daily,
from 3- to 7-day lags, with a maximum 0.71 pp decrease (lag: 3, s.e. = 0.06). The third
wave shows a more modest human mobility response than the first and second waves,
indicating a tendency towards habituation, with a maximum 0.29 pp decrease (lag: 4,

s.e. = 0.08). The response remained flat for each lag day.

In the fourth wave, the Alpha variant became dominant, followed by the Delta
variant in the fifth wave and the Omicron variant in the sixth wave [47]. Each new
variant exacerbated the speed of infectivity [48], which led to increased fear of the
virus. Accordingly, human mobility response rose in the fourth wave. The reduction of
human mobility strengthened on lag days 4 and 5, and a maximum week-on-week
decrease is 0.50 pp (lag: 5, s.e. = 0.06); people responded to the greatly increasing
infected cases continuing for several days.

In the fifth wave, although lag days 1 and 2 do not meet the 5% significance
threshold, human mobility is largely reduced from the 3- to the 7-day lags to the same
degree as in the fourth wave with a maximum 0.38 pp week-on-week decrease (lag: 3,
s.e. =0.16). The response of human mobility in the sixth wave gradually intensified
from lag day 1 to 4 and remained significant until lag day 7, with similar reductions as

in waves 4 and 5. The maximum week-on-week decrease is 0.42 pp (lag: 4, s.e. = 0.16).
3.2.2 Infected cases in the decreasing phase

During the phase of decreasing infection (the recovery phase), as presented in Fig. 5b, if
the negative range in the estimated value is large, it indicates a prominent week-on-
week increase in human mobility (the percentage change from the baseline), responding

to the decreasing infected cases. One explanation is that people become less fearful of
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infection in the decreasing phase. Another is that if human mobility decreases greatly

during the increasing phase, there is a positive rebound during the recovery phase.

As a result, in the first wave, the negative range is relatively large. However,
human mobility remains somewhat reduced, as the magnitudes of the estimates are
smaller than those in the increasing phase. A 1% week-on-week decrease in the number
of infections will result in, at most, a 0.48 pp (lag: 1, s.e. = 0.13) week-on-week increase
in human mobility. In the second wave, the maximum is a 0.39 pp increase (lag: 7, s.e.
= 0.04) for week-on-week changes. Only lag 5 is significant at the 5% level for the third

wave; however, the estimated coefficient is small.

By contrast, the decreasing phase of the fourth wave, shows at most a 0.46 pp (lag:
1, s.e. = 0.05) week-on-week increase in human mobility—a similar magnitude to that
of the increasing phase (0.50 pp); it had recovered to the same extent that it decreased
during the increasing phase of the fourth wave. This recovery may be due to some
positive news about COVID-19 (detailed explanations are provided in the Discussion

section).

However, in the fifth wave, the estimates are no longer significant, likely because
the Delta variant is more transmissible and severe than the Alpha variant [48], making
people more fearful of it. Therefore, human mobility did not recover. Finally, the sixth
wave shows the highest value of all the waves with a maximum increase of 0.65 pp (lag:
5, s.e. = 0.13). The Omicron variants are more transmissible than the previous ones but
are less severe [48]. Therefore, people probably go out more when infections decrease
(another explanation for this recovery is probably due to positive news; details are given

in the Discussion).
3.2.3 Spatially weighted infected cases

The increasing and decreasing phases are not separated for the spatially weighted
infected cases (Fig. 5¢). We find that individual going-out behaviours dramatically
changed in response to infection information from the other prefectures in the first
wave. The maximum (in absolute value) is 1.37 pp (lag: 2, s.e. = 0.24), with the
confidence interval being wider than that for the results of infected cases of one’s own
prefecture (Fig. Sa,b). From the second to the third wave, the results are insignificant for

most lags; the magnitudes are modest for those significant estimates.

Conversely, in the fourth wave, lags 1 and 5 are significant at the 5% level; the

maximum (in absolute value) is 0.75 pp (lag: 5, s.e. = 0.34); however, the confidence
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intervals are wide. In the fifth wave, lags 5 to 7 are significant, with a maximum of 0.39
pp (in absolute value) (lag: 7, s.e. = 0.10). All lags are significant in the sixth wave, with
the largest being 0.21 pp (in absolute value) (lag: 3, s.e. = 0.04). The fourth through
sixth waves again affected going-out behaviours, possibly from information about

infections of the more infectious variants in other prefectures.
3.2.4 DSE and spatially weighted DSE

A DSE was only <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>