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Abstract 

How human behaviour has changed over the long term in response to COVID-19-
related information, such as the number of COVID-19-infected cases and non-
pharmaceutical interventions (NPIs), is under-researched. It is also unclear how the 
increasing vaccination rates have affected human mobility. We estimate human mobility 
responses to such COVID-19-related information via the interactive effects model, 
which controls unobservable human mobility factors, using publicly available daily data 
on ‘human mobility for retail and recreation’ and ‘residential spent time’ in each 
Japanese prefecture. The results show that Japanese citizens were generally fearful of an 
unknown virus in the first wave of infection; however, they gradually habituated 
themselves to similar infection information in the subsequent waves. Nevertheless, the 
level of habituation decreased in view of information regarding new variants that 
differed from the previous ones. In contrast, as for NPIs, it is more plausible to consider 
human mobility responses to varying requests rather than habituation. We also find that 
rapid vaccination promotion motivates people to go out. Furthermore, we are the first to 
identify spatial interaction of infection information and heterogeneous responses during 
increasing and decreasing phases of infection. The long-term analysis is crucial for 
evidence-based policymaking during the long-term pandemic and future pandemics. 
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1 Introduction  

The COVID-19 pandemic, which has passed almost three years, has had significant 
global socio-economic impacts, including in Japan [1, 2]. Given that the COVID-19 
infection can be transmitted through direct or indirect contact with an infected person 
[3], increasing human mobility can promote the spread of COVID-19 infection [4, 5]. 
Hence, non-pharmaceutical interventions (NPIs), such as lockdowns, were employed to 
reduce COVID-19 infections [6-13]. Additionally, when the infection spreads, people 
restrict their own outgoing behaviour to avoid risks, reducing human mobility [14–16]. 
For example, from March to May 2020, in the U.S., customer visits to the stores fell by 
60%; 7% of which was explained by lockdowns, and the rest by own travel restrictions, 
owing to fear of infection [15].  

Throughout the COVID-19 pandemic, people have essentially been exposed to two 
main pieces of information: the increase in COVID-19 infections and NPIs [17–20]. 
Several studies thus explore the behavioural variations in response to COVID-19-
related information over time. For example, using data from 124 countries, one study 
[21] observes a gradual decline in adherence to social distancing under the continued 
NPIs from March to December 2020. Similarly, Japanese citizens gradually reduced 
their stay-at-home behaviour despite the infection-increasing phase in 2020 [18, 22]. 
Furthermore, regarding the declaration of a state of emergency (DSE), an NPI in Japan 
issued between 2020 and 2021, other studies [23, 24] find that the extent of curtailment 
of going-out behaviours slowly decreased from the first to the fourth DSE. 

Against the spread of COVID-19 infection, the Japanese government issued the 
first COVID-19 DSE on 7 April 2020 [25]. In the first wave, most Japanese citizens 
feared the unknown virus and the unprecedented widespread pandemic [26]. Since then, 
Japan has experienced six waves of COVID-19 infection (as of July 2022) [27], and the 
government has issued four DSEs [25]. In 2021, the government rolled out a rapid 
vaccination programme [28]. Additionally, the development of therapeutic agents has 
started worldwide [29], while much more has become known about post-infection 
effects [30]. However, new variants have emerged successively.  

Due to such a long-term pandemic, many individuals have grown tired of the 
COVID-19 pandemic, exhibiting the so-called ‘pandemic fatigue’ [21]. Although Japan 
has experienced the Omicron variant and its subvariant with a much faster infection rate 
[31, 32], people are slowly becoming accustomed to living with COVID-19. Despite 
these, the human behavioural changes in response to COVID-19-related information 
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over the long term, over almost three years, are still under-researched. The long-term 
analysis is crucial for evidence-based policymaking (EBPM) during the long-term 
pandemic and future pandemics. 

Our study uses publicly available human mobility data and analyses how human 
behaviour varies from COVID-19-related information over the long term, especially 
exploring whether people have become habituated to the information. Habituation [33, 
34] refers to the diminishing reaction to a repeated stimulus over time [35]. For 
instance, a study [36] using individual questionnaires shows that COVID-19 anxiety 
became habituated over sixteen months. To investigate whether habituation has 
occurred, first, we examine the variation in human mobility in response to COVID-19 
infection information over six waves over two and half years; second, we re-examine 
the impact of multiple DSEs on human behaviour. Additionally, whether increased 
vaccination rates will increase the number of people who are less fearful of infection 
and promote outgoing behaviour [37] will also be analysed. The impact of vaccination 
on human behaviour has only been studied in one empirical study [38], in which a slight 
increase in individual travel distance after vaccination is observed but not statistically 
tested. 

Meanwhile, several studies have noted the importance of considering regional 
spatial interaction when investigating the impact of COVID-19 infection [39, 40]. We 
examine the spatial interactions between prefectures using cross-prefecture travel to 
illustrate that information from other prefectures influences the changes in human 
mobility in one prefecture. As such, we incorporate a cross-term using a spatial weight 
matrix representing the spatial interactions between prefectures, which has not been 
done in previous related studies. Moreover, a single wave of infection comprises an 
increasing and decreasing phase. The difference between the two is that people are more 
likely to go out in the increasing phase but will gradually resume going out in the 
decreasing phase. Human mobility responses are considered heterogeneous across the 
two phases. We validate this conjecture for the first time by identifying the start, end, 
and peak of infection of different waves in each prefecture in Japan. Since unobservable 
factors also affect human mobility, we use the interactive effects model [41] in our 
regression analysis which is to control for the unobservable factors that change over 
time and are accompanied by loadings that differ among cross-sectional units. 

Exploring how human mobilities responded to the three pieces of information 
(repeated waves of infection or new variants, promotion of vaccinations for a few doses, 
and several DSEs), the spatial influences, and the different infection phases are 
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important for policy effectiveness during a long-term pandemic. While this study does 
not directly examine individual attitudes, it indirectly explores the changes in fears, risk 
awareness, and ‘pandemic fatigue’ through their responses to COVID-19-related 
information over time and assesses how human mobility responses change over the long 
term during a pandemic. 

 

2 Data 

Our study focuses on three pieces of publicly available COVID-19-related information 
that affect human mobility: COVID-19-infected cases, DSE (NPI), and vaccination rate. 

2.1 Human mobility 

The daily human mobility data for each prefecture used in this study are obtained from 
Google’s COVID-19 Community Mobility Reports [42], which are composed of six 
human mobility categories: retail & recreation, grocery & pharmacy, parks, transit 
stations, workplaces, and residential; from these, we select retail & recreation and 
residential. When avoiding unnecessary mobility, either in reducing the risk of infection 
or responding to the DSE by the government, people minimise their outings mainly to 
retail stores (not grocery stores and pharmacies, which are essential) and entertainment 
venues and also have a greater tendency to stay at home. In Google’s data, residential 
indicates time spent at home. 

The data show the percentage change compared to a day-of-the-week baseline 
calculated based on median values for each day of the week for the five weeks from 3 
January to 6 February 2020—just prior to the global outbreak of the COVID-19 
pandemic. Since these values have day-of-week fluctuations (i.e. each day of the week 
has its variation characteristics, such as large variations on weekends), we take the 
difference from the previous week (percentage points) of the percentage change from 
the baseline. Additionally, by taking the week-on-week difference, rather than using the 
percentage change from the baseline itself, we can capture the effect of new information 
in the short term, such as a week-on-week change in the number of daily newly infected 
cases, on people’s decision about whether to go out. An example of a dependent 
variable is shown in Fig. 1. We denote this dependent variable as ∆𝑦!", where 𝑖 =
1, 2,⋯ ,𝑁 stands for the prefecture, 𝑡 = 1, 2,⋯ , 𝑇 is the index of day, and ∆ is the 
difference from the previous week.  
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Figure 1. Example of a dependent variable for which the author created fake data for 
the baseline, 1 June 2021 (the previous week), and 8 June 2021. 

 

2.2 Infected cases of COVID-19 

Data on the daily number of newly infected cases of COVID-19 are obtained from NHK 
(NIPPON HOSO KYOKAI; Japan Broadcasting Corporation) [43]. Given that the 
number of new cases fluctuates over a vast range, it is better to take the logarithm of the 
data to mitigate heteroscedasticity. However, as the data contain zeroes, this is not 
possible (since the logarithm of zero is undefined). Instead, we use an inverse 
hyperbolic sine (IHS) transformation, which converts zeros to zeros and behaves 
similarly to a logarithm [7, 15, 17, 22]. Let 𝐼!" denote new cases; then, the IHS 
transformation of 𝐼!"; 𝐼!"∗  becomes 

𝐼!"∗ = ln /𝐼!" +1𝐼!"$ + 12. 

Additionally, since new cases have day-of-week fluctuations (e.g. fewer PCR tests 
on weekends), we convert the IHS transformation of new infections to the difference 
from the same day of the previous week. Hence, the week-on-week difference of daily 
new infected cases transformed by the IHS, ∆𝐼!"∗ , approximates the growth rate of new 
cases compared to the previous week. 

Another implication of considering the week-on-week difference is described in 
the Supplementary Information (Appendix A). Briefly, people tend to judge the severity 
of COVID-19 infection conditions primarily based on the change in the number of 
infections from the prior week, as announced in the daily news.  

2.3 The declaration of a state of emergency 

The baseline 
(median values for each day of 
 the week for the five weeks )

0.6 million people's 
outings

From 3 January to 6 
February 2020 1 June 2021 (Tuesday) 8 June 2021 (Tuesday)

-40% -30%

+10 percentage points

Google’s data →

Our dependent variable →

0.7 million people's 
outings

1 million people's  
outings (on Tuesday)
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The DSE data are obtained from the Cabinet Secretariat’s COVID-19 Information and 
Resources [25]. The timing of DSEs varied between prefectures. We set a dummy 
variable, 𝐸!", which takes 1 if a DSE is declared in a prefecture and 0 otherwise. The 
Supplementary Information (Appendix B) displays DSE periods for each prefecture 
(Fig. S1), while the NPIs in Japan and the contents of the DSE are described in 
Appendix C.1 and C.2. 

2.4 Vaccination rates 

The daily data on COVID-19 vaccination of each prefecture are obtained from the 
COVID-19 Vaccination Status by the Digital Agency [44]. We convert the data into a 
cumulative format to determine the vaccination rate per million persons. Population 
data for each prefecture (on 1 October 2020) are obtained from Population Estimates by 
the Statistics Bureau of Japan [45]. Since the number of vaccinations has day-of-week 
fluctuations, the data (vaccination rate per million persons) are converted to the week-
on-week change, denoted by ∆𝑉!".  

Other reasons for using the week-on-week change value are provided in the 
Supplementary Information, Appendix D. In brief, in terms of COVID-19-related 
information, the larger the increase in the vaccination rate compared to the previous 
week, the greater the number of people who got vaccinated and formed antibodies; 
presumably, they become more comfortable going out compared to the previous week. 

2.5 Time series plots 

The time series plots of variables used in the estimation are shown in Fig. 2. From the 
figure, infections and human mobility are moving in opposite directions. Further, the 
first and second vaccinations proceeded rapidly. Additionally, the timing of the DSE 
differs by prefecture. 
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Figure 2. Time series plots of the variables per prefecture used in the estimation. On 
each chart, the blue-green-coloured line (on the right-hand axis) is the 7-day backward 
moving average using the geometric mean of human mobility in retail and recreation; 
the red-purple-coloured line is the IHS transformation of the 7-day backward moving 
average number of infected persons; the purple-coloured double-dashed lines are the 
IHS transformation of the cumulative number of people vaccinated with 1–3 doses, and 
the pink-shaded areas are the DSE periods. The data transformation employed here, 
such as the 7-day backward moving average, is only for visualisation purposes; we use 
other transformations in our estimation. 

 

2.6 Spatial weight 

To construct a spatial weight matrix, we acquire a dataset called Cross-Prefecture 
Travel Data from V-RESAS, a website which contains publicly available information 
on human mobilities and the economy related to COVID-19 provided by the Cabinet 
Secretariat and the Cabinet Office, Government of Japan [46]. The details and the 
construction of the spatial weight matrix, 𝑊"

∗ = ∑ 𝑤!%"∗&
%'(  where 𝑖  and 𝑗 (𝑗 =

1, 2,⋯ ,𝑀) are the prefectural indexes, are provided in the Methods section and the 
Supplementary Information (Appendix E).  

During the pandemic, the more people travel from prefecture 𝑖 to their own 
prefecture 𝑗, the more the COVID-19 trend in prefecture 𝑖 is expected to affect human 
mobility inside 𝑗 substantially. Two factors can explain this: (1) the higher the 
interaction of the people between 𝑖 and 𝑗, the higher the risk of COVID-19 transmission 
across prefectural borders; and (2) for commuters 𝑗 to 𝑖, the trends in prefecture 𝑖 are of 
concern. 

As an example, the elements of the spatial weight matrix for the last week of 
January 2020 (27 January–2 February 2020) are illustrated in Fig. 3. This period 
occurred just prior to the pandemic when irregular movements due to the New Year 
celebrations in Japan had already dissipated; as a result, this week is representative of 
normal inter-prefecture travel. In Fig. 3, the dark-red-coloured cells indicate that more 
people travel between prefectures located in or around large cities such as Tokyo, Aichi, 
Osaka, and Fukuoka. 
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Figure 3. Spatial weight matrix per prefecture for the last week of January 2020 (27 
January–2 February 2020). Constructed using V-RESAS’s Cross-Prefecture Travel data 
from the Cabinet Secretariat and the Cabinet Office, Government of Japan. Within the 
figure, the darker the red colour, the greater the number of travellers between 
prefectures. 

 

2.7 Controls 

The Supplementary Information (Appendix F) provides details on the control variables.  

2.8 Identifying COVID-19 waves  

As the government made no official announcements regarding the beginning and end of 
COVID-19 infection waves, we independently determine the COVID-19 wave duration 
of each prefecture, as shown in Fig. 4. Further details are provided in the Supplementary 
Information (Appendix G). 
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Figure 4. COVID-19 wave durations in each prefecture. The data are from 22 February 
2020 to 20 June 2022. There are six waves in total, generated by taking a 7-day 
backward moving average of the number of daily new infections of COVID-19 from 
NHK. 

 

3 Results 

The empirical results for human mobility of retail and recreation are presented below.  

3.1 Empirical approach 

We use the long-term panel data from 47 prefectures over 850 days, from 22 February 
2020 to 20 June 2022. Lags are taken from 1 to 7 days for the week-on-week growth 
rate of new infections, week-on-week changes in vaccination rate, and the spatially 
weighted of these variables. Further details of our estimation strategy are provided in 
the Methods section. 

3.2 Retail and recreation human mobility response 

3.2.1 Infected cases in the increasing phase 
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As shown in Fig. 5a, during the phase of increasing infections, the fear of new 
infectious diseases substantially reduces human mobility in the first wave. A 1% week-
on-week increase in the number of infected cases results in a decrease in human 
mobility (which is the percentage change from the baseline) by 1.09-percentage-point 
(pp) week-on-week, at most (lag: 2, standard error (s.e.) = 0.13). The reduction in 
human mobility in the first wave weakened daily, from 2- to 7-day lags, as people tend 
to respond more strongly to the most recent information. The 6- and 7-day lags have a 
wide confidence interval (95% confidence interval (CI) for lag 7 = [-1.36 to -0.23]), 
indicating that human behaviours on these lag days after receiving infection information 
varied widely among prefectures.  

The extent of reductions during the second wave is smaller than during the first, 
but it is still high. Human mobility responses in the second wave also decreased daily, 
from 3- to 7-day lags, with a maximum 0.71 pp decrease (lag: 3, s.e. = 0.06). The third 
wave shows a more modest human mobility response than the first and second waves, 
indicating a tendency towards habituation, with a maximum 0.29 pp decrease (lag: 4, 
s.e. = 0.08). The response remained flat for each lag day. 

In the fourth wave, the Alpha variant became dominant, followed by the Delta 
variant in the fifth wave and the Omicron variant in the sixth wave [47]. Each new 
variant exacerbated the speed of infectivity [48], which led to increased fear of the 
virus. Accordingly, human mobility response rose in the fourth wave. The reduction of 
human mobility strengthened on lag days 4 and 5, and a maximum week-on-week 
decrease is 0.50 pp (lag: 5, s.e. = 0.06); people responded to the greatly increasing 
infected cases continuing for several days. 

In the fifth wave, although lag days 1 and 2 do not meet the 5% significance 
threshold, human mobility is largely reduced from the 3- to the 7-day lags to the same 
degree as in the fourth wave with a maximum 0.38 pp week-on-week decrease (lag: 3, 
s.e. = 0.16). The response of human mobility in the sixth wave gradually intensified 
from lag day 1 to 4 and remained significant until lag day 7, with similar reductions as 
in waves 4 and 5. The maximum week-on-week decrease is 0.42 pp (lag: 4, s.e. = 0.16). 

3.2.2 Infected cases in the decreasing phase 

During the phase of decreasing infection (the recovery phase), as presented in Fig. 5b, if 
the negative range in the estimated value is large, it indicates a prominent week-on-
week increase in human mobility (the percentage change from the baseline), responding 
to the decreasing infected cases. One explanation is that people become less fearful of 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 30, 2023. ; https://doi.org/10.1101/2022.08.15.22278703doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.15.22278703
http://creativecommons.org/licenses/by/4.0/


 12 

infection in the decreasing phase. Another is that if human mobility decreases greatly 
during the increasing phase, there is a positive rebound during the recovery phase. 

As a result, in the first wave, the negative range is relatively large. However, 
human mobility remains somewhat reduced, as the magnitudes of the estimates are 
smaller than those in the increasing phase. A 1% week-on-week decrease in the number 
of infections will result in, at most, a 0.48 pp (lag: 1, s.e. = 0.13) week-on-week increase 
in human mobility. In the second wave, the maximum is a 0.39 pp increase (lag: 7, s.e. 
= 0.04) for week-on-week changes. Only lag 5 is significant at the 5% level for the third 
wave; however, the estimated coefficient is small.  

By contrast, the decreasing phase of the fourth wave, shows at most a 0.46 pp (lag: 
1, s.e. = 0.05) week-on-week increase in human mobility—a similar magnitude to that 
of the increasing phase (0.50 pp); it had recovered to the same extent that it decreased 
during the increasing phase of the fourth wave. This recovery may be due to some 
positive news about COVID-19 (detailed explanations are provided in the Discussion 
section).  

However, in the fifth wave, the estimates are no longer significant, likely because 
the Delta variant is more transmissible and severe than the Alpha variant [48], making 
people more fearful of it. Therefore, human mobility did not recover. Finally, the sixth 
wave shows the highest value of all the waves with a maximum increase of 0.65 pp (lag: 
5, s.e. = 0.13). The Omicron variants are more transmissible than the previous ones but 
are less severe [48]. Therefore, people probably go out more when infections decrease 
(another explanation for this recovery is probably due to positive news; details are given 
in the Discussion). 

3.2.3 Spatially weighted infected cases 

The increasing and decreasing phases are not separated for the spatially weighted 
infected cases (Fig. 5c). We find that individual going-out behaviours dramatically 
changed in response to infection information from the other prefectures in the first 
wave. The maximum (in absolute value) is 1.37 pp (lag: 2, s.e. = 0.24), with the 
confidence interval being wider than that for the results of infected cases of one’s own 
prefecture (Fig. 5a,b). From the second to the third wave, the results are insignificant for 
most lags; the magnitudes are modest for those significant estimates. 

Conversely, in the fourth wave, lags 1 and 5 are significant at the 5% level; the 
maximum (in absolute value) is 0.75 pp (lag: 5, s.e. = 0.34); however, the confidence 
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intervals are wide. In the fifth wave, lags 5 to 7 are significant, with a maximum of 0.39 
pp (in absolute value) (lag: 7, s.e. = 0.10). All lags are significant in the sixth wave, with 
the largest being 0.21 pp (in absolute value)  (lag: 3, s.e. = 0.04). The fourth through 
sixth waves again affected going-out behaviours, possibly from information about 
infections of the more infectious variants in other prefectures.  

3.2.4 DSE and spatially weighted DSE 

A DSE was only issued for the first, third, fourth, and fifth waves (Fig. 5d). The first 
DSE (in the first wave) greatly reduced human mobility. Although the CI is relatively 
large, we see a 3.48 pp week-on-week decrease (s.e. = 1.37) in the percentage change 
from the baseline human mobility. Although significant in the second DSE (third wave), 
the magnitude is low (estimated coefficient (est.) = -0.27, s.e. = 0.11). In the third DSE 
(fourth wave), the magnitude is large, with a 1.21 pp week-on-week decrease (s.e. = 
0.51). The fourth DSE (fifth wave) lead to a slightly lower but still significant, with a 
0.56 pp week-on-week decrease (s.e. = 0.16). An interpretation of these results is 
probably due to the strength of the DSE requests; details are provided in the Discussion 
section. By contrast, the spatially weighted DSE is insignificant in any of the waves 
(Fig. 5e).  

3.2.5 Vaccination and spatially weighted vaccination 

Regarding vaccination, positive estimates are expected because as the vaccination rate 
increased from the previous week, the more secure people felt going out. As a result 
(Fig. 5f), for a first vaccine dose, only some lags are significant, with each having a 
negligible impact. The effect is more apparent for the second than the first dose, which 
is significant for all lag days. A 1 pp week-on-week increase in the vaccination rate 
leads to up to 0.21 pp week-on-week increase in the percentage change from the 
baseline human mobility (lag: 3, s.e. = 0.05). At that time, the public was informed that 
two vaccine doses would be effective [49]. However, none of the results is significant 
for the third dose because the timing of the third vaccination varies greatly by person. 
Spatially weighted vaccination is not significant for any doses (Fig. 5g, only lag 3 in the 
third dose is significant, while the magnitude is negligible). 

3.2.6 Controls  

As controls (Fig. 5h), each day and holiday dummy are significant. Additionally, the 
precipitation coefficient is negative and significant, meaning increased precipitation 
reduced human mobility. 
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Figure 5. Retail and recreation human mobility responses to COVID-19-related 
information. On each chart, the points are estimated coefficients, and the bars indicate 
upper and lower 95% confidence intervals. The grey line traces the average coefficients 
of each lag day. There are six infection waves, but DSEs were only issued for the first, 
third, fourth, and fifth waves. We take a daily lag from 1 to 7 days for infected cases in 
the increasing phase, infected cases in the decreasing phase, spatially weighted infected 
cases, vaccination, and spatially weighted vaccination. We conduct the regression 
analysis seven times, from lags 1 to 7. We do not take a daily lag for the DSE, spatially 
weighted DSE, and controls; these estimates are from the lag-1 regression.  

 

3.3 Robustness 

To test robustness, we conduct the estimation via the polynomial degree 1 Almon lag 
model of retail and recreation mobility (Fig. 6). As shown in Fig. 6, although 
vaccination is only significant at the second dose lag-4 (and although slightly different 
results for spatially weighted vaccinations), the results indicate a similar tendency to our 
main results. That is, regarding infected cases: 

• Habituation in the first to the third waves of the increasing phase 

• Augmented responses in the fourth to the sixth waves 

• Heterogeneity of responses in increasing and decreasing phases 

• Lag day trend 

• Spatial interactions in the first, fourth, fifth, and sixth waves 

Regarding DSEs and vaccination:  

• Responses of DSEs of own prefecture and second-dose vaccination of own 
prefecture 

In addition, the results of the residential time, which we expect to reflect the opposite 
impact of that for retail and recreation, are shown in the Supplementary Information 
(Appendix K) Figs. S3 and S4. These results confirm the robustness of our main results. 
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Figure 6. Retail and recreation human mobility responses to COVID-19-related 
information using the Almon lag model. On each chart, the points are estimated 
coefficients, and the bars indicate upper and lower 95% confidence intervals. The grey 
line traces the average coefficients of each lag day. There are six infection waves, but 
DSEs were only issued for the first, third, fourth, and fifth waves. We take a daily lag 
from 1 to 7 days for infected cases in the increasing phase, infected cases in the 
decreasing phase, spatially weighted infected cases, vaccination, and spatially weighted 
vaccination. We do not take a daily lag for the DSE, spatially weighted DSE, and 
controls. 

 

4 Discussion 

Retail and recreation mobility responses in the increasing (exacerbating) infection phase 
suggest that, initially, people feared the increase in infection numbers. However, people 
gradually became accustomed to the new infections over the first three waves. This 
process can be described as habituation, in which people become accustomed to similar 
infection information. However, smaller magnitudes of human mobility responses in the 
decreasing phase than in the increasing one over the first three waves exhibit 
heterogeneous responses. This heterogeneity shows that people were cautious about the 
recovery of human mobility, despite habituation trends in the increasing phase. Early in 
the pandemic, in 2020 and early 2021, the fear of new infections was presumed to be 
strong.  

By contrast, from the fourth to the sixth wave (from spring 2021 to June 2022), the 
Alpha, Delta, and Omicron variants began to dominate, respectively, and the responses 
of people in the increasing phase, which had declined until the third wave, began to 
strengthen again, and the level of habituation decreased. In addition, unlike the first 
three waves, where the response weakened daily or remained flat, from the fourth to the 
sixth wave, the responses tended to intensify from lag day 3 to lag day 5 in each wave. 
Due to the emergence of new variants, people probably became much more reluctant to 
go out after receiving information about a growing number of infections for successive 
days beyond their anticipation. Interestingly, the decreasing phase of infection in waves 
four and six suggest a prominent recovery of human mobility, which again implies the 
heterogeneous response between the increasing and decreasing phases. These results are 
probably due to some positive news: the promotion of a rapid vaccination programme 
[28] and the information regarding COVID-19 treatment and post-infection situation 
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[29, 30] (the sixth wave, as already mentioned, may also be due to a reduction in 
severity). 

The effect of vaccination is apparent: increased second-dose vaccination rates led to 
the recovery of human mobility. At that time, the Japanese government promoted rapid 
vaccination [28] and released information on the efficacy of the second dose [49]. 
During a long-term COVID-19 pandemic, a rapid vaccination programme and its 
information dissemination help alleviate people’s concerns regarding COVID-19 
infection and make them feel safe and secure. This reassurance is vital to maintaining 
economic activity without the need for stay-at-home measures [50]. 

As for DSEs, it is more plausible to consider changes in human mobility response 
as per varying requests rather than habituation (see Supplementary Information, 
Appendix C.2). Since the first DSE (first wave) was a very strong request, it greatly 
reduced human mobility. Additionally, the mobility reduction was large in the third 
DSE (fourth wave), in which the requests were strengthened compared to the second 
DSE to some extent. In comparison, the magnitudes of the responses in the second and 
fourth DSEs (third and fifth waves), in which the requests were somewhat mitigated, are 
low. This result differs substantially from similar studies [23, 24], showing that 
responses decreased with each DSE. Another possible explanation for the low response 
in the second DSE is described in Supplementary Information, Appendix C.3. 

Our study is the first to demonstrate that responses to information about COVID-19 
infection also arise from spatially connected prefectures using prefectural spatial 
interactions. These responses were remarkable when the public feared the new 
infectious disease and its more infectious variants. However, there is no evidence of 
DSE and vaccination spatial interactions; this is likely because both are only valid in 
one’s own prefecture. This lack of spatial effects is also observed in another study, 
which finds that the spatial spillover of NPIs to neighbourhoods has only limited effects 
on human mobility [11]. 

We acknowledge that this study possesses the following limitations: 

1. The data, which are macro data aggregated by prefecture, do not uncover the 
diversity of behaviours within a prefecture or for each individual. 

2. It does not consider policy measures other than emergency declarations, such as 
semi-state of emergency COVID-19 measures. 
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3. Although data on each variant’s infection speed and severity are also crucial for 
the human mobility response, we cannot incorporate this information into our 
model because of the complexity of these spreading mechanisms and the lack of 
data on people’s responses to individual information for each variant. Human 
mobility responses to this information probably are included mostly in the 
responses for the number of infections. 

4. It is impossible to disentangle human mobility recovery into (a) rebound from 
reduced human mobilities in the increasing phase, (b) announcement effect of 
promoting vaccination, (c) information about COVID-19 symptoms and 
treatment options, (d) people’s habituation, and (e) any other relevant 
components. 

Even considering the limitations noted above, our results have several key policy 
implications. To maintain economic activities during the long-term pandemic, the 
promotion of a rapid vaccination policy is effective. In fact, as of July 2022, the 
Japanese government is advancing its coexistence with COVID-19 mainly by 
promoting vaccination without implementing policies such as requests for restrictions 
on business activities or requests to reduce human mobility [51]. Our results imply that 
human mobility responds to the information: the number of infections or new variants 
and the promotion of vaccinations regardless of whether stay-at-home measures are in 
force or not. When trying to control human mobility, we should consider people’s 
habituation and heterogeneous responses to different infectious situations. In addition, it 
should be noted that human mobility also responds to the infection information of other 
regions. These implications are also useful in preparation for future pandemics. 
Examining human behaviour in response to information and policy effects in more 
detail will be necessary for EBPM during the pandemic. 

 

5 Methods 

5.1 Regression model 

Our analysis uses Bai’s ‘interactive effects model’ [41]. Suppose that we have a panel 
data set in which {(𝑦!" , 	𝑋!")}, 𝑖 = 1, 2,⋯ ,𝑁, 𝑡 = 1, 2,⋯ , 𝑇; then, the interactive effects 
model is expressed as follows: 

𝑌!" = 𝑿)!"𝜷 + 𝑣!" , 

𝑣!" = 𝝀)!𝑭" + 𝑒!" , (1) 
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where 𝑌!" is a dependent variable, 𝑋!" is a 𝑝 × 1 vector of explanatory variables such that 
𝑝 is the number of explanatory variables, and 𝛽 is a 𝑝 × 1 vector of the parameters to be 
estimated. While 𝜆! is a 𝑑 × 1 vector of factor loadings that differ for unit 𝑖, 𝐹" is a 𝑑 × 1 
vector of a common factor that varies over time 𝑡 , and 𝑒!"  is the error term. An 
unobservable term 𝑣!" has factor structure 𝜆)!𝐹" and random part 𝑒!". The factor structure 
allows the model to capture unobservable factors and their loadings. 

Applying the interactive effects model, our estimation model becomes: 

∆𝒚" = 𝛼 +P𝛽(*𝒔′*"

+

*'(

∆𝑰",-
∗!./012*!.3 	+P𝛽$*

+

*'(

𝒔′*"∆𝑰",-
∗41/012*!.3 	

+P𝛾(*

+

*'(

𝒔′*"𝑾",-
∗ ∆𝑰",-∗ +P𝛽5*

+

*'(

𝒔′*"𝑬" +P𝛾$*

+

*'(

𝒔′*"𝑾"
∗𝑬"

+P𝛽67

5

7'(

∆𝑽7",- +P𝛾57

5

7'(

𝑾",-
∗ ∆𝑽7",- + 𝜹𝑪" +P𝝀4𝐹"4

8

4'(

+𝝓𝑾"
∗

+ 𝜺" , (2) 

where ∆𝒚" is an 𝑁 × 1 (𝑁 = 47 prefectures) vector of the week-on-week difference in 
the percentage change from the baseline of human mobility or the residential time on day 
𝑡  (in pp). Variable ∆𝑰"∗  is an 𝑁 × 1  vector of the week-on-week difference of new 
infections transformed by the IHS. This variable approximates the growth rate of new 
infections compared to the previous week. We separate ∆𝑰"∗  for the increasing 
(∆𝑰"

∗!./012*!.3) and decreasing (∆𝑰"
∗41/012*!.3) phases. 𝒔*" is an 𝑁 × 1 vector of the step 

dummies, which takes 1 with each corresponding wave, 𝑠 = 1, 2,⋯ , 6. 

𝑬" is an 𝑁 × 1 vector of the DSE dummy that takes the value of 1 under a DSE and 
0 otherwise. Since DSEs were only issued for the first, third, fourth, and fifth waves, the 
DSE dummies for the second and sixth waves are zero. Variable ∆𝑽7" is an 𝑁 × 1 
vector of the week-on-week change in the vaccination rate per million persons. Index 𝑣 
denotes the number of vaccine doses (from the first to the third dose) administered.  

Here, spatial weight matrices 𝑾"
∗ = ∑ 𝑤!%"∗&

%'(  vary over time t, where 𝑤!%  is an 
element of the spatial weight matrix with row 𝑖 (travel from) and column 𝑗 (travel to), and 
diagonal element 𝑤!! is 0, and represent the weekly time-series changes in the movement 
of people between prefectures. Therefore, cross-terms 𝑾"

∗∆𝑰"∗ , 𝑾"
∗𝑬" , and 𝑾"

∗∆𝑽7" 
exhibit the impact of the number of infections, the DSE, and the vaccination rate from 
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other prefectures, respectively. The larger the spatial weight matrix elements are, the 
larger the impact on its own prefectures; that is, the more travel from the other prefecture, 
the more influenced by information from that prefecture. None of the studies that have 
explored human mobility regarding COVID-19 has considered these spatial interactions. 

Term 𝑪" is an 𝑁 × 𝐾 matrix of a control variable, where 𝐾 is the number of controls. 
𝐹"4  represents the common factors of dimension 𝑑; 𝝀4  is an 𝑁 × 1 vector where 𝑑 =
1, 2,⋯ , 𝐷 is the dimension of factors, representing factor loadings with dimension 𝑑. 
𝝓𝑾"

∗ = ∑ 𝜙%𝑤!%"∗&
%'(  represents spatially weighted fixed effects [52, 53]. Finally, 𝜺" is an 

i.i.d. (independent and identically distributed) random component vector. 𝝀4, 𝐹"4, and 𝜺" 
are unobservable. Parameters 𝛼, 𝛽(* , 𝛽$* , 𝛽5* , 𝛽67 , 𝛾(* , 𝛾$* , 𝛾57 , 𝜹 (𝐾 × 1 vector), and 
𝝓 (𝑀 × 1 vector) are to be estimated, while the parameters of interest are 𝛽(*, 𝛽$*, 𝛽5*, 
𝛽67 , 𝛾(*, 𝛾$*, and 𝛾57. 

In the estimation, reverse causality from the dependent variable (∆𝒚" , human 
mobility within one’s prefecture) to the spatial weight matrix (𝑾"

∗, human travel between 
prefectures) is not of concern; since we use the movement from other prefectures to the 
relevant prefecture to construct the spatial weight matrix, human mobility in one’s own 
prefecture does not directly affect human travel from other prefectures to one’s own 
prefecture. 

5.2 Spatial weight matrices 

The time dimension of our estimates is days, while V-RESAS’s cross-prefecture travel 
data in each prefecture are expressed in weeks. Therefore, in our estimation, we use 
spatial weight matrix (𝑾∗) for the week corresponding to day 𝑡 in the analysis, which 
gives 𝑾"

∗ (however, the value of the spatial weight matrix does not change per day within 
the same week). The larger the element of the spatial weight matrix, 𝑤!%∗ , the higher the 
number of people moving from prefecture 𝑖 to	𝑗. Further details on spatial weight matrices 
are provided in the Supplementary Information (Appendix E). 

5.3 Lags 

We take lags for the IHS difference (from the previous week) of new infections, ∆𝐼!"∗ ; its 
spatially weighted variables, 𝑾"

∗∆𝑰"∗; the week-on-week increased range of vaccination 
rate per million persons, ∆𝑽7"; and its spatially weighted variables, 𝑾"

∗∆𝑽7". Daily lag 𝑝 
from day 𝑡 is taken from 1 day (𝑝 = 1) to 7 days (𝑝 = 7). We also take a lag for the spatial 
weight matrix, 𝑾"

∗, which corresponds to lag day 𝑡 − 𝑝 of the estimation.  
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During the pandemic, most people decided whether to go out based on information 
regarding the infection status announced up to the previous day. Therefore, in our 
estimation, the maximum lag days is set to 7 (more details can be found in the 
Supplementary Information, Appendix I). The same is true for vaccination ∆𝑉!", whereby 
outgoing behaviour is determined by the vaccines administered up to the previous day. 
By contrast, the lag is not taken for DSE (𝐸!"), as DSE on the day, rather than the day 
before, influences outgoing behaviour. Similarly, lags are not taken for the control 
variables, day-of-the-week dummies, holidays-dummies, temperature, and precipitation, 
since each is only relevant for human mobility of that day. 

Estimates are conducted separately for each lag day: meaning that the estimation is 
performed seven times. The estimation of the interactive effects model is conducted using 
the ‘phtt’ R library with circumstances of R 4.0.5. A model encompassing all lag orders 
(distributed lag model) is also estimated to ensure robustness. We employ the polynomial 
degree 1 Almon lag model to avoid multicollinearity arising from the distributed lag 
model. Further details on the Almon lag model estimation are provided in the 
Supplementary Information (Appendix J). 

5.4 Common factors and loadings 

Common factors, denoted by 𝐹"4, are unobservable elements that vary over time and are 
common for all cross-sectional (prefectural in our case) units. While since each cross-
sectional unit (in our case, prefectures) receives a different load from the common factor, 
𝝀4  describes the difference in loadings. Component ∑ 𝝀4𝐹"48

4'( "  corresponds to the 
generalisation of individual-specific and time-specific fixed effects in the panel data 
analyses; this component can better describe time-varying unobservable elements with 
different loadings through cross-sectional units than ordinary two-way fixed effects. 

In fact, there are unobservable factors affecting human mobility that should be taken 
into account. For example, suppose a new variant of COVID-19 emerged in a country 
other than Japan. In that case, it is probable that people in urban areas such as Tokyo and 
Osaka, which have international airports and large population concentrations, would be 
more cautious of the outbreak than people in rural areas. Thus, when vigilant of the 
severity of a new variant infection, people in urban and rural areas will exercise different 
levels of caution in responding to such information.  

Another example of an unobservable factor is how government policies are 
transmitted. For instance, even if there is an announcement by the Japanese government 
regarding vaccinations, each prefecture has a different system for promoting vaccinations, 
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so residents in each prefecture (or, more specifically, each municipality, which is the main 
body promoting vaccinations) will receive the announcement differently. In addition, 
people may welcome the rapid vaccination programme announcement more in 
prefectures with higher infection rates.  

In such cases, these pieces of information are either unobservable or difficult to 
incorporate into the model. Additionally, such information affects all prefectures 
simultaneously; however, the level of sensitivity differs by prefecture. Therefore, the 
interactive effects model is a better method for controlling these unobservable factors. In 
the first example, common factors 𝐹"4 capture the risk of epidemics of the new variants, 
while the loadings 𝝀4 capture differences between prefectures in vigilance against the 
new variants. 

A Hausman-type specification test proposed by [41] is used to determine whether it 
is appropriate to use the factors or classical two-way fixed effect; the results of all tests 
support the factor type. Dimension d of factors is chosen by consistent estimation (Bai 
and Ng, [54]), which also considers the underestimation of the true variance. Our results 
show that dimension 𝑑 = 7 . For the variance-covariance matrix, we use 
heteroscedasticity- and autocorrelation-consistent estimators, proposed by Bai [41]. 

5.5 Spatially weighted fixed effects 

The details of spatially weighted fixed effects can be found in the Supplementary 
Information (Appendix H). 

5.6 Descriptive statistics and estimated results 

Descriptive statistics of the variables used in the estimation and all of the estimated results 
are demonstrated in the Supplementary Tables (Table S1-S5). 
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