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Abstract 24 

Introduction 25 

Cardiac tamponade, caused by pericardial effusion (PE), is a life-threatening condition 26 

that can be resolved by timely pericardiocentesis. Nevertheless, PE measurement 27 

remains operator-dependent and may be difficult in some circumstances. Our study 28 

aimed to develop a deep-learning pipeline that measures the amount of PE based on 29 

raw echocardiography clips. 30 

Methods 31 

Echocardiographic examination data were collected from one medical center in 32 

southern Taiwan from 2010–2018. Four commonly used cardiac windows, including 33 

the parasternal long-axis, parasternal short-axis, apical four-chamber, and subcostal 34 

views from included ultrasound examinations, were used for analysis. We proposed a 35 

deep learning pipeline consisting of three steps: moving window view selection, 36 

automated segmentation, and width calculation from a segmented mask. The pipeline 37 

was then prospectively validated from 2019–2020 using a dataset from the same 38 

hospital, and externally validated using data from another medical center in Taiwan. 39 

Model performance was evaluated using mean absolute error, intraclass correlation 40 

coefficient (ICC), and R-squared value between the ground truth and predictions. 41 
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Results  42 

In this study, 995 echocardiographic examinations were included. Among these, 155 43 

were used for internal validation and 258 were used for external validation. The 44 

proposed pipeline had a predictive performance of ICC=0.867 for internal validation 45 

and ICC=0.801 for external validation. It accurately detected PE with an area under the 46 

receiving operating characteristic curve (AUC) of 0.926 (0.902–0.951) for internal 47 

validation and 0.842 (0.794–0.889) for external validation. Regarding the recognition 48 

of moderate PE or worse, the AUC values improved to 0.941 (0.923–-0.960) and 0.907 49 

(0.876–0.943) for internal and external validation, respectively. Of all the selected 50 

cardiac windows, our model had the best prediction in the parasternal long-axis and 51 

apical four-chamber views. 52 

Conclusions 53 

The machine-learning pipeline could automatically calculate the width of the PE from 54 

raw ultrasound clips.  The novel concepts of moving window view selection for image 55 

quality control and computer vision techniques for maximal PE width calculation seem 56 

useful in the field of ultrasound. 57 

 58 

  59 
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Abbreviations 60 

A4C, apical four-chamber; AI, artificial intelligence; AUC, area under the receiver 61 

operating characteristics curve; CGMH, Chang Gung Memorial Hospital; CNN, 62 

convolutional neural network ; DICOM, Digital Imaging and Communications in 63 

Medicine; EDH, E-Da Hospital; GPU, graphics processing unit; ICC, intraclass 64 

correlation coefficient; MWVS, moving window view selection; PE, pleural effusion; 65 

PLAX, parasternal long-axis; PSAX, parasternal short-axis; SC, subcosta 66 

 67 

Introduction 68 

Pericardial effusion (PE) is an acute or chronic accumulation of fluid within the 69 

pericardial space which is usually revealed by transthoracic echocardiography. Fluid 70 

accumulation increases pressure in the pericardial sac, leading to compression of the 71 

heart and subsequent cardiac tamponade. In acute settings, only 100–150 mL of fluid is 72 

necessary for cardiac tamponade to occur, which results in impaired diastolic filling 73 

and reduced cardiac output. PE is a life-threatening issue that can be resolved by timely 74 

pericardiocentesis.1 Therefore, the early detection of PE and measurement of PE width 75 

are important. 76 
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Echocardiography remains the gold standard imaging modality for verifying the 77 

presence of PE by demonstrating fluid collection in the pericardial space.2,3 It is 78 

considered the first-line imaging choice since it is less costly, more portable, more 79 

widely available, and can provide a comprehensive anatomical and functional 80 

assessment compared with computed tomography and magnetic resonance imaging.4,5 81 

Nevertheless, the presence and grading of PE is associated with intraoperative 82 

uncertainty. For example, mild PE does not always correspond to true effusion and can 83 

be indicative of pericardial fat.6 Furthermore, the image quality of a transthoracic 84 

echocardiogram might be compromised by elements such as the female breast or 85 

obscuration by bone or lung.4 Early disclosure of the precise PE grade might be difficult 86 

in some circumstances and is dependent on operator experience. 87 

Artificial intelligence (AI) has been used in many clinical settings to assist in the 88 

diagnosis of conditions based on echocardiograms. Considerable effort has been 89 

devoted to themes such as left ventricular function assessment, regional wall motion 90 

abnormality, right ventricular function, valvular heart disease, cardiomyopathy, and 91 

intracardiac mass.7-10 Regarding the diagnosis of PE, one study in 2020 that used a deep 92 

learning model to detect PE in echocardiography achieved an accuracy of 0.87–0.9.11 In 93 

daily practice, further information on PE width and severity is critical for initializing 94 

the necessary interventions. To the best of our knowledge, no study has analyzed the 95 
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grading of PE via machine learning. Thus, our study attempted to develop a deep 96 

learning model using echocardiography for PE detection and PE width measurement. 97 

In addition, to better deploy the deep learning model, we propose an end-to-end 98 

guideline that can output the prediction results from raw ultrasound files. 99 

 100 

Method 101 

The data collection and protocols utilized in this study were authorized by the 102 

Institutional Review Board of E-Da Hospital (EDH; no: EMRP24110N) and the 103 

Institutional Review Board of Kaohsiung Chang Gung Memorial Hospital (CGMH; no: 104 

20211889B0 and 202101662B0).  105 

Data Collection 106 

In this study, images from routine echocardiography were generated at two medical 107 

centers, EDH and CGMH, in southern Taiwan. The deep learning model was trained 108 

and internally validated in EDH and externally validated in CGMH. 109 

During data collection, we used “pericardial effusion” as a keyword to search the 110 

Hybrid picturE Report System in EDH to collect the examination list. We obtained 111 

patients’ raw data from transthoracic echocardiography examinations with PE 112 
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performed at EDH between January 1, 2010, and June 30, 2020. These data were 113 

divided into training and validation datasets based on the respective index dates of the 114 

examinations. Examinations with index dates prior to December 31, 2018, were used 115 

for the development of the model, and examinations with index dates after January 1, 116 

2019, were used for internal validation. To test the generalizability of the model, we 117 

retrieved echocardiography data from CGMH between January 1, 2019, and June 30, 118 

2020, for external validation. The study flowchart and data summary are presented in 119 

Figure 1. 120 

 121 

Echocardiography 122 

Images were gathered in a normal manner, with patients lying in the left lateral 123 

decubitus position. The ultrasound system (IE33, Philips Healthcare; S70, GE 124 

Healthcare; or SC2000, Siemens Healthineers) was used to perform echocardiographic 125 

examinations in EDH. Data from CGMH for external validation were acquired using 126 

EPIC7 (Philips Healthcare), Vivid E9 (GE Healthcare), or SC2000 (Siemens 127 

Healthineers). All examinations were saved in picture archiving and communication 128 

systems in the Digital Imaging and Communications in Medicine (DICOM) format.  129 
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After extracting the raw DICOM files, we processed the image from each patient to 130 

select the proper echocardiography views for developing a deep learning pipeline. The 131 

selected views were the parasternal long-axis (PLAX), parasternal short-axis (PSAX), 132 

apical four-chamber (A4C), and subcostal (SC) views. The ground truth of PE width 133 

was annotated from the examination report by a proficient cardiac physiologist and was 134 

inspected by a cardiologist who delegated the confirmed reports.  135 

 136 

Deep Learning Model Development 137 

In this study, we developed an end-to-end pipeline for the automated measurement of 138 

PE based on the steps outlined below (Figure 2). The training subset of videos from 139 

EDH was used for the three main tasks of our pipeline:  140 

 141 

Step one: moving window view selection (MWVS) 142 

We proposed a pipeline to directly manage echocardiography files from the 143 

workstation, similar to the work done by Zhang et al. and Huang et al., with some 144 

adjustments (Figure 2A).10,12  To distinguish the four primary views (PLAX, PSAX, 145 

A4C, and SC) from other views during each examination, we developed the first deep 146 

neural network model. This model was a ResNet-50-based two-dimensional model that 147 

aimed to classify each frame from the extracted DICOM files of echocardiography into 148 
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the selected view types.13 To train this model, we randomly selected 6,434 images from 149 

the training dataset of EDH and labeled them according to the four primary views or 150 

other views, including low-quality views. We trained the model with data splitting of 151 

80% and 20% for the training and validation sets, respectively. The model weight with 152 

the best prediction performance in the validation set during the training process was 153 

preserved. The prediction accuracy was assessed for each view class and weighted 154 

average result.  155 

While managing the input video from the patient, we used 48 frames moving window to 156 

filter all videos. For each video, we retrieved a clip of 48 frames with the best 157 

confidence with regard to the specific view type by majority voting (Figure 3). The 158 

MWVS concept was used not only as a view classifier but also for quality control. This 159 

process not only helps the algorithm to identify the right video but also retrieves the 160 

best 48 frames of the video with regard to image quality. If a video did not contain any 161 

of the 48 consecutive frames that consisted of qualified frames higher than 50% from 162 

one of the four primary views, it was excluded from further analysis. Moreover, the 163 

view-classifying confidence levels for all images obtained from the clip of 48 frames 164 

were averaged to evaluate the general image quality, and they correlated with further 165 

performance. Ultrasound videos with an average confidence level of < 0.8 were 166 

excluded from further automated segmentation. 167 
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 168 

Step two: automated segmentation 169 

From the dataset, we annotated 2,548 randomly selected frames in the EDH training 170 

dataset which were evenly distributed over the four primary views. For each view, we 171 

manually labeled the segmented area for PE at three different phases in the cardiac 172 

cycle: end-systolic phase, end-diastolic phase, and middle phase between the two 173 

aforementioned phases. We also labeled the segmented areas for the four cardiac 174 

chambers to enhance the model performance in separating these fluid-containing areas. 175 

We used a mask region-convolutional neural network (R-CNN) as the framework to 176 

train object instance segmentation based on the labeled ground truth (Figure 2B). The 177 

model was trained with 80% and 20% data splitting for the training and validation sets, 178 

respectively. Mask R-CNN is commonly used for instance segmentation tasks in 179 

medical applications because it can simultaneously perform pixel-level segmentation 180 

and classification of multiple target lesions.14 The implemented model generates 181 

bounding boxes and targeting masks for each instance of an object in an image. As such, 182 

the input comprised consecutive ultrasound frames, and the output comprised a 183 

segmented mask, which indicated the corresponding four cardiac chambers and PE. 184 

The accuracy of the segmentation model was assessed using the Dice coefficient 185 

metric.  186 
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 187 

Step three: measurement of pericardial effusion 188 

After generating a segmented mask for PE, we proposed a computer vision technique 189 

(maximal width calculator of the segmented mask) to calculate the largest width of the 190 

PE in each ultrasound frame (Figure 2C). For this task, we iterated through the vertical 191 

axis in each frame and hypothetically drew a horizontal line to see if there was any 192 

intersection between the segmented mask and horizontal line. If an intersection existed, 193 

we obtained a normal line from the edge of the mask over the intersection point. The 194 

length of the normal line that passes through the segmented mask was counted as the 195 

width of the PE at that intersection point. The largest width of the PE through the 196 

iteration over the vertical axis was regarded as the width of the PE of the frame. The 197 

same technique was applied to all 48 frames in the ultrasound video to provide the 198 

optimal PE width. 199 

 200 

Statistical Analysis 201 

Continuous variables are presented as mean (standard deviation) if normally distributed, 202 

otherwise they are presented as median with the interquartile range. Dichotomous data 203 

are presented as numbers (percentage). Categorical variables were analyzed using the 204 
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χ2 test. Continuous variables were analyzed using the independent-sample t-test if 205 

normally distributed; otherwise, the Mann-Whitney U test was used. 206 

Model performance regarding PE width measurement was analyzed based on the mean 207 

absolute error, intraclass correlation coefficient (ICC), and R-square value between the 208 

ground truth and prediction. We further examined the prediction of the existence of PE 209 

and moderate PE using sensitivity, specificity, and area under the receiver operating 210 

characteristic curve (AUC). The deep learning models in the proposed pipeline were 211 

developed using the TensorFlow Python package. Image manipulation was performed 212 

using OpenCV 3.0 and scikit images. All analyses were performed using SPSS for 213 

MAC version 26. 214 

 215 

Results 216 

In this study, 737 examinations from EDH were included in the analysis, of which 582 217 

were included in the training set and 155 were in the internal validation set. For the 218 

external validation, 258 examinations from CGMH were included. Because there were 219 

less than 10 SC views in the CGMH dataset, the SC view was excluded from further 220 

analysis in the external validation.  221 

The demographic and clinical characteristics of those who underwent 222 

echocardiography are presented in Table 1. The mean ages of patients in the training, 223 
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internal validation, and external validation set were 67.4±15.4, 59.8±19.2, and 224 

66.4±16.1 years, respectively; 46.5% and 63.2% of patients in the internal and external 225 

validation groups, respectively, had PE. The average ejection fraction was 64.3±7.1% 226 

in the internal validation group and 61±13.9% in external validation group. 227 

The view classifier achieved an average accuracy of 0.91 and 0.87 in predicting image 228 

classes in the training and validation sets, respectively. The independent accuracies in 229 

the validation set for each class were 0.90, 0.87, 0.93, 0.76, and 0.88 for PLAX, PSAX, 230 

A4C, SC, and others, respectively. 231 

After MWVS, most of the ultrasound videos, ranging from 80–100% among the four 232 

selected ultrasound views in EDH, successfully passed through for the segmentation 233 

model. In the external validation (CGMH dataset), 686 ultrasound videos from the four 234 

selected views were obtained. Our MWVS scanned through all DICOM files of 258 235 

patients, and 53.2% of the 686 ultrasound videos were preserved for segmentation 236 

inference. The videos selected by our pipeline were further checked by a cardiologist, 237 

and none of them were misclassified into other cardiac views.  238 

In image segmentation, the mask R-CNN-based model effectively localized the cardiac 239 

chambers and PE area within the four different views (Figure 4). In the validation set 240 

consisting of 510 images, the average Dice coefficient ranged from 0.67–0.82 among 241 

the four different views, with the SC view being the lowest. PE segmentation in the 242 
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PLAX view showed the best Dice result 0.72, while the SC view had the poorest result 243 

(0.56) (Table 2). Based on the segmentation of the PE area, we calculated the maximal 244 

PE width from each frame. 245 

Figure 4 shows the scatter plot of the PE width measurement between the ground truth 246 

and model prediction after finding the largest normal line passing the segmented mask 247 

in each frame. Compared with the ground truth, we reported the absolute difference and 248 

correlation between automated and manual measurements of PE in both the internal 249 

(EDH) and external (CGMH) validation datasets. The mean absolute error was 0.33 cm 250 

and 0.35 cm in internal and external datasets, respectively. Interobserver variability 251 

was highly correlated for the measurement of PE width between our model and human 252 

expert (ICC=0.867, p<0.001, EDH; ICC=0.801, p<0.001, CGMH). The R2 was 0.594 253 

for EDH and 0.488 for CGMH validation dataset. 254 

Our model accurately detected the existence of PE in the internal validation 255 

(AUC=0.926 [0.902–0.951]) and external validation (AUC=0.842 [0.794–0.889]). 256 

With regard to recognizing moderate PE or worse, the AUC values improved to 0.941 257 

(0.923–-0.960) and 0.907 (0.876–0.943) in the internal and external validation groups, 258 

respectively.  259 

We further performed a stratified analysis of the model prediction in the different 260 

echocardiography views. In the internal validation, the model prediction of PE width 261 
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was highly correlated with the ground truth in the four different views, with ICC 262 

ranging from 0.802–0.910. The PLAX and A4C views appeared to have the best 263 

prediction results with ICCs of 0.910 (0.876–0.935) and 0.907 (0.871–0.932), 264 

respectively. In the external validation, similar to internal validation, the model 265 

performed better in the PLAX and A4C views, with ICCs of 0.807 (0.726–0.864) and 266 

0.897 (0.846–0.931), respectively. The other performances are listed in Table 3. 267 

 268 

Discussion 269 

Computer vision and deep learning models have proven useful for aiding 270 

echocardiography interpretation, estimating cardiac function, and identifying local 271 

cardiac structures. In recent years, deep learning algorithms have also been applied to 272 

facilitate the diagnosis of PE.15 Nayak et al. developed a CNN that detected PE in the 273 

A4C and SC views with accuracies of 91% and 87%, respectively.11 Pericardiocentesis 274 

is an essential therapeutic procedure for the treatment of symptomatic PE. However, 275 

this therapeutic procedure can be life-threatening. The major complications of 276 

pericardiocentesis are mortality, cardiac arrest, cardiac perforation, and cardiac 277 

chamber laceration, while other complications include pneumothorax, supraventricular 278 

tachycardia, and pneumopericardial fistula.16 Blind pericardiocentesis is associated 279 

with a mortality rate of 6% and complication rates of 20–50%17,18. With 280 
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ultrasound-assisted pericardiocentesis, the mortality rate is <1%, and the overall 281 

complication rate is approximately 4–20%.18-20 Therefore, it is important to identify the 282 

location and distribution of pericardial fluid while avoiding the accidental puncture of 283 

vital organs. 284 

In this study, we proposed a machine learning pipeline that could process raw DICOM 285 

files from ultrasound and predict the PE width in clinical practice. This pipeline 286 

combines two steps of the deep learning model and one technical calculation algorithm 287 

to accurately predict PE width. Few efforts have been made to predict PE existence,11 288 

with some studies being based on computed tomography scans.21,22 To the best of our 289 

knowledge, this is the first video-based machine learning model to predict the PE width 290 

using echocardiography. The correlation between the prediction of our model and 291 

human experts was highly in both the internal and external validation datasets, with the 292 

best performance noted in the PLAX view. The speed of inference from accessing the 293 

file to the output for our model in one graphics processing unit (GPU; NVIDIA RTX 294 

3090) was approximately 30–40 s for one examination, which is usually faster than 295 

human assessment. 296 

The two methods proposed in this study are novel concepts, including MWVS for view 297 

selection and the maximal width calculator of the segmented mask. These two methods 298 
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are crucial for real-world predictions, particularly for relatively smaller datasets. Many 299 

previous studies used datasets manually selected by human experts during dataset 300 

cleaning for machine learning and used only “textbook-quality” images for 301 

training.23-26 In contrast, we hypothesized that an analytic pipeline could automatically 302 

analyze echocardiograms and be easily applied to personal devices or web applications. 303 

Hence, it is important to exclude processes that require an expert sonographer or a 304 

cardiologist. Madani et al. trained a CNN to simultaneously classify 15 standard 305 

echocardiogram views acquired based on a range of real-world clinical variations, and 306 

the model showed high accuracy for view classification.19 Similarly, in our study, we 307 

used echocardiogram video clips randomly obtained from the real world, which were 308 

taken for a variety of clinical purposes, including ejection fraction calculation and for 309 

detecting PE, valve disease, regional wall abnormality, cardiomyopathy, and 310 

pulmonary arterial hypertension. We developed an initial screening model for view 311 

classification and quality control. All raw images from the medical image database 312 

were input into the screening model, leaving a specific view of sufficient quality for 313 

diagnosis. In addition, with the “moving window” concept, we retrieved only clips with 314 

48 consecutive frames that fulfilled the image quality. We found that ICC and 315 

diagnostic accuracy were significantly improved after MWVS. By avoiding limited or 316 
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idealized training datasets, we believe that this model is broadly applicable to clinical 317 

practice. 318 

Rather than previous studies using three-dimensional CNN architecture for training the 319 

view classifier,10 we used a two-dimensional ResNet structure. The two-dimensional 320 

structure consumes significantly less computing resources and can be deployed as a 321 

real-time feedback system for ultrasound operators using only one GPU. We proposed 322 

MWVS by combining a two-dimensional image classifier with a moving-window 323 

algorithm for clinical usage. MWVS is a novel concept that has not yet been proposed 324 

in the field of echocardiography assisted by machine learning. MWVS plays the role of 325 

an image quality filter, and the major function of MWVS is to ensure image quality in 326 

keeping with the next step in the pipeline. In EDH, echocardiography is performed by 327 

well-trained technicians who follow the protocol designed by the echocardiologist 328 

consensus committee. Therefore, the original images from EDH had good homogeneity, 329 

and MWVS filtered out fewer patients. At CGMH, echocardiography is performed by a 330 

separate echocardiologist who has the respective habit to perform echo study. 331 

Therefore, the original images from CGMH had poor homogeneity, and MWVS 332 

filtered out more patients. This finding proved that MWVS plays a significant role in 333 

maintaining image quality. However, this finding also confirms that the applicability of 334 

machine learning depends on image homogeneity.  335 
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After segmenting the PE, we developed a computer vision technique to calculate the 336 

largest PE width. The current categorization of PE size depends on linear 337 

measurements of the largest width of the effusion at end-diastole and is graded as small 338 

(<1 cm), moderate (1–2 cm), and large (>2 cm).27 This semiquantitative classification 339 

method is prone to errors because of the asymmetric loculated effusion and shifts in 340 

fluid location during the cardiac cycle.28 Therefore, an automated calculation system 341 

could help identify the largest width of the PE in every ultrasound frame without any 342 

errors. Compared with AI-based models, the computer vision technique is more similar 343 

to the method used by human experts. The AI-based model not only consumes more 344 

computing resources but also requires a large number of datasets for training and 345 

validation. To our knowledge, our study is the first to use computer vision techniques 346 

for classifying PE grades. 347 

This study had certain limitations. First, we conducted the study retrospectively and 348 

trained our model using only one hospital dataset. The sample size and ethnic diversity 349 

were limited and the results may not be generalizable to other areas. The dataset should 350 

have greater heterogeneity in a multicenter setting. However, the enrolled images were 351 

obtained using different ultrasonography machines operated by several 352 

echocardiographers. Moreover, we used standard views for diagnosis, and model 353 

achievement was similar during external validation. Second, although we graded the 354 
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amount of PE, there was no information on whether there was a sign of cardiac 355 

tamponade, because PE volume does not necessarily correlate with clinical 356 

symptoms.29 Further research should also evaluate the collapsibility of the cardiac 357 

chambers and the presence of tamponade signs. 358 

 359 

Conclusion 360 

We developed a machine-learning pipeline that automatically calculates the width of 361 

the PE from raw ultrasound clips. The model achieved high accuracy in detecting PE 362 

and predicting the PE width in both internal and external validation. The concept of 363 

MWVS for image quality and computer vision techniques for maximal PE width 364 

calculators is a novel application in the field of ultrasound. 365 

Figure Legend 366 

Figure 1. Flow chart illustrating the study design and data summary 367 

Figure 2. Deep Learning Pipeline for PE Measurement 368 

This graphic demonstrated the end-to-end pipeline proposed in this study. The 369 

pipeline consisted of three major steps, which were moving window view selection 370 

(Figure 2A), automated PE segmentation (Figure 2B), and PE width calculation from 371 
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segmented mask (Figure 3B). The pipeline was able to process raw DICOM file from 372 

echocardiography exam directly and output PE width prediction. 373 

Figure 3. Moving Window View Selection 374 

We used 48 continuous frames as window to iterate through raw video. In each 375 

window, the view will be classified by majority voting from the prediction of all48 376 

frames. For example, if most frames in the window were classified as view 2, the 377 

window was classified as view 2. As the window iterate through raw video, the 378 

window with highest confidence of classification will be preserved for further 379 

analysis. 380 

 381 

Figure 4. Scatter plot of PE prediction from deep learning model compare with 382 

human expert 383 

Figure 4A represent the scatter plot from internal validation, and Figure 4B from 384 

external validation. 385 
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Table 1. Demographics, Basic Characteristics, and Clinical Findings of the patients 505 

Variables Training set Internal Validation set External Validation set 

Number of patients 582 155 258 

Age(y) 67.4±15.4 59.8±19.2 66.4±16.1 

Gender Male 49.5% Male 53.2% Male 58.1% 

Height, cm 157.9±9.2 162.1±8.4 161.6±8.4 

Weight, kg 53.7±35.6 65.9±16.8 61.8±13.3 

BMI, kg/m2 23.3±5.2 24.4±1.5 23.6±4.5 

Mode EF % 61.1±13.8 64.3±7.1 61±13.9 

Mode EF<50 (%) 12.8% 8.4% 19.3% 

patients with PE 582(100%) 72(46.5%) 163(63.2) 
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Table 2. Dice coefficient of image segmentation 508 

 Dice Coefficient 

 PE RV LV RA LA Average 

PLAX 0.72 0.86 0.85  0.84 0.82 

PSAX 0.69 0.59 0.85   0.71 

A4C 0.58 0.81 0.86 0.82 0.83 0.78 

SC 0.56 0.66 0.71 0.70 0.72 0.67 
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Table 3.  511 

 number before view 

selection 

number after moving 

window selection 

Mean Absolute Error 

(cm) 

ICC R2 

Internal validation      

PLAX n=155 n=146 0.28 0.910 (0.876-0.935) 0.700 

PSAX n=155 n=155 0.46 0.802 (0.728-0.856) 0.469 

A4C n=155 n=155 0.32 0.907 (0.871-0.932) 0.754 

SC n=155 n=124 0.40 0.865 (0.808-0.905) 0.590 

External validation      

PLAX 222 n=127 0.32 0.807 (0.726-0.864) 0.457 

PSAX 252 n=138 0.44 0.714 (0.600-0.796) 0.337 

A4C 212 n=100 0.11 0.897 (0.846-0.931) 0.662 
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 Development Data 

Echocardiography with pericardial effusion 

in E-Da Hospital between Jan 2010 – Dec 2018. 

582 exams 

External Validation Set 

258 exams in KCGM Hospital (Jan 2019-Jun 2020) 

163 exams with PE, 95 exams without PE 

Internal validation Set 

155 exams in E-Da Hospital (Jan 2019-Jun 2020) 

72 exams with PE, 83 exams without PE 

 

Moving Window View Classifier 

Data: 6434 images from 582 exams  

Automated Segmentation 

Data: 2548 images from 582 exams 

Pericardial Effusion Width Calculation 

Deployment Model 
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