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Abstract  
 
Mislabeled learning for high-dimensional data is essentially important in AI health and relevant fields but 
rarely investigated in machine learning. In this study, we address the challenge by proposing a novel 
mislabeled learning algorithm for high-dimensional data: psychiatric map diagnosis and applying it to 
solve a long-time bipolar disorder and schizophrenia misdiagnosis in psychiatry. The proposed algorithm 
can automatically detect mislabeled observations and relabel them with the most likely ground truth before 
reproducible machine learning besides providing informative visualization for mislabeling detection. It 
attains more accurate and reproducible psychiatry diagnoses besides discovering latent psychiatry 
subtypes not reported before.  It works well for those datasets with a limited number of samples and 
achieves leading advantages over the deep learning peers. This study also presents new insight into the 
pathology of psychiatric disorders by constructing the devolution path of psychiatric states via relative 
entropy analysis that discloses latent internal transfer and devolution road maps between different 
psychiatric states. To the best of our knowledge, it is the first study to solve mislabeled learning for high-
dimensional data and will inspire more future work in this field. 

Keywords: Mislabeled learning, high-dimensional data, bipolar disorder, schizophrenia, fSOM  

1 Introduction 

With the surge of data amount and complexity in machine learning (ML), more and more mislabeled data 
challenges the existing machine learning models and AI methods. The mislabeled data generally refers to 
those data with incorrect information due to the artifacts of experimental design, system noise, or human 
mistakes. For example, some pathological images in AI health can be mislabeled probably due to doctors’ 
mistakes, the incidence of patient identification errors or other unexpected factors. Almost all classic 
machine learning models would encounter mediocre or even poor performance under mislabeled data 
because existing machine learning models assume that data label information is correct by default. 
However, such an assumption may not match the existing data and reality, i.e., almost all data in AI practice 
can be mislabeled for various reasons in AI practice, especially because data volume and complexity 
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involved in learning may increase greatly in recent years.  It was reported that mislabeled ratios in real 
world data generally can range from 8% to 38.5%, but some fields may have higher ratios [1,2]. For example, 
it was reported that more than a third of patients with severe psychiatric disorders such as schizophrenia 
and bipolar disorder were misdiagnosed (39.16%) in psychiatry [2,3].   
 
The mislabeled data may corrupt the training procedure in AI and unavoidably produce misleading or 
wrong learning results by constructing biased or distorted decision functions. We call machine learning 
involved with mislabeled data as mislabeled learning. Investigating mislabeled learning has great practical 
significance, especially for various AI application domains in health and medicine. However, mislabeled 
learning is still not well investigated in the literature particularly for high-dimensional data for the 
following reasons.  
 
First, most works focus on theoretical studies and deep learning models [2,4-8]. Some proposed techniques 
may not be automatic and some level of human supervision especially for large-scale data [5,6].  It remains 
unknown whether the results can apply to other machine learning models involved in mislabeled learning 
because they may demonstrate different fault tolerance in learning.  
 
Second, the proposed methods mainly focus on benchmark sample datasets (e.g., MNIST data) in deep 
learning. Those datasets are not ‘truly mislabeled data’ by nature because they are artificially mislabeled 
with generated ‘incorrect labels’ with known ground truth. Compared to those ‘truly mislabeled data’ 
whose true labels are unknown; the former datasets are more transparent and relatively easy to handle. As 
such, it remains unclear whether the proposed methods can apply to those mislabeled data from a specific 
application domain (e.g., real psychiatry data with built-in mislabeled information) or not. 
 
Third, more importantly, the proposed mislabeled learning methods generally may only apply to low-
dimensional data rather than high-dimensional data, which is also widely used in all kinds of AI 
applications in health and medicine. The former is characterized by a large number of observations but a 
small number of variables. Most data in the existing mislabeled learning literature belong to low-
dimensional data in which mislabeling occurs in the sample space with redundancy.  
 
On the other hand, the latter is characterized by a large number of variables (e.g., ~O(104))  but a small 
number of observations (e.g., ~O(102)). It suffers from the ‘curse of dimensionality in which mislabeling 
happens in a sparse sample space with limited entries, whereas the variable space has redundant 
information, and it is also not easy to seek meaningful variables for the sake of learning. Therefore, it can 
be hard to extend the existing mislabeled learning techniques developed for low-dimensional data to high-
dimensional data. For instance, it can be infeasible to drop suspiciously mislabeled samples identified by 
the existing mislabeled learning techniques because of the very limited number of observations involved 
in learning.  
 
As such, developing effective machine learning techniques to handle high-dimensional mislabeled data 
can be an urgent problem in applied AI and data science domains. High-dimensional mislabeled data 
brings more challenges in mislabeled learning in comparison with low-dimensional mislabeled data. Its 
sparse sample space contains mislabeling labels with unknown ground truth due to the ‘curse of 
dimensionality.  To the best of our knowledge, there are almost no proposed methods to handle such high-
dimensional mislabeled data in the previous studies.  On the other hand, considering high-dimensional 
data is an essential component in AI health and precision medicine, efficient and effective high-dimensional 
mislabeled learning algorithms would not only bring positive impacts on the applied AI domains via 
concrete problem solving but also enrich the mislabeled learning techniques.  
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In this study, we address mislabeled learning for high-dimensional data by solving a long-time bipolar 
disorder (BPD) and schizophrenia (SCZ) misdiagnosis in psychiatry. Schizophrenia (SCZ) and bipolar 
disorder (BPD) both are highly heritable, complex neuropsychiatric diseases that share some similar clinical 
symptoms [9-11]. SCZ is a chronic and severe mental health disorder characterized by hallucinations, 
delusions, and disorganized thinking. BPD is a chronic mental illness that causes dramatic shifts in a 
person’s mood, energy, and ability to think clearly. According to the National Alliance on Mental Illness 
(NAMI), it is reported that about 1% and 2.9% of Americans are diagnosed with SCZ and BPD respectively 
each year.  
 
High-dimensional data (e.g., SNP data) is widely employed to detect the molecular signatures of SCZ and 
BPD in various AI diagnoses. However, it is essentially a high-dimensional mislabeled learning problem 
rooted in the misdiagnosis of SCZ and BPD. The label information of high-dimensional data is obtained 
from the clinical diagnoses that generally rely on the symptoms of patients rather than their real genetic 
differences. Since the symptoms of BPD and SCZ can be similar or even hard to distinguish for psychiatry 
doctors, a large portion of incorrect label information can appear due to the misdiagnosis, which 
also echoes their high misdiagnosis rates (e.g., >30%) in clinical practice [2-3]. The misdiagnosis between 
SCZ and BPD is a long-time challenging problem in psychiatry and presents a hurdle in AI-based diagnosis 
by generating mislabeled data in machine learning [11]. To some degree, solving the high-dimensional 
mislabeled learning problem is equivalent to overcoming the misdiagnosis between SCZ and BPD. 
 
Recent bioinformatics studies show that SCZ and BPD may have different genetic differences. It was 
reported that there existed both unique and overlapping molecular signatures between SCZ and BPD [12]. 
Li et al suggested the different roles of DNA methylation in the pathogenesis of BPD and SCZ [13]. Ellis et 
al reported that the BPD and SCZ transcriptomes were not significantly correlated as originally expected 
[14]. Liu et al showed that SCZ and BPD shared common pathways and BPD could be a subtype of SCZ via 
manifold learning and pathway analysis [15]. Recent neuroimaging studies also reveal that SCZ and BPD 
patients can exhibit more characteristic patterns in brain imaging than normal people [16-18].  Since it is 
still premature to use both bioinformatics and neuroimaging results to correct the misdiagnosis between 
SCZ and BPD, the label information of the high-dimensional omics samples in AI diagnosis is inevitably 
noised and their ground truth remains unknown.   
 
It can be more challenging to solve the high-dimensional mislabeled learning problem than the low-
dimensional mislabeled learning problems because of the scarcity of samples and variable redundancy. 
The small number of observations in high-dimensional data brings a serious issue in model selection. Those 
powerful deep learning techniques developed for mislabeled data generally need many samples to build 
an informative training space. Furthermore, the variable redundancy from a large number of features along 
with the mislabeled data may also bring difficulties in feature selection: many feature selection models 
need to know the ground truth, but it is not always available for mislabeled high-dimensional data, because 
the mislabeled information can be rooted in the avoided misdiagnoses [15].  
 
However, solving this problem will bring unpreceded impacts on AI health in which high-dimensional 
omics data is widely employed to conduct disease diagnosis and treatment. Technically, it will provide 
algorithmic support to advance high-dimensional mislabeled learning in AI health and fields interacting 
with it. Practically, it will shed new light on overcoming the long-time misdiagnosis of SCZ and BPD by 
providing more accurate diagnoses.  The solving of misdiagnosis of SCZ and BPD not only brings a 
revolutionary breakthrough in psychiatry but also contributes to a deeper understanding of the 
pathogenesis [19]. More importantly, it will inspire new mislabeled learning algorithm development, 
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especially for those AI applications involved with only a limited number of observations by enriching 
machine learning 
 
In this study, we propose a novel mislabeled learning algorithm: psychiatric map (pMAP) diagnosis for 
high-dimensional data by overcoming the long-time misdiagnosis problem between SCZ and BPD. The 
proposed pMAP diagnosis can automatically identify and correct mislabeled high-dimensional samples 
through novel feature self-organization maps (fSOM) learning, DBSCAN clustering, and relabeled sample 
learning. Furthermore, it attains more accurate and reproducible BPD and SCZ psychiatry diagnoses 
besides discovering latent psychiatry subtypes not reported before.  
 
As a special characteristic map of each high-dimensional sample on a two-dimensional geometric plane, 
the psychiatric map (pMAP) is the prototype, which is obtained from fSOM learning, that summarizes the 
essential characteristics of each psychiatric sample as well as provides informative visualization. 
Mathematically, each pMAP is the low-dimensional nonlinear embedding of its corresponding high-
dimensional sample in the subspace spanned by ‘condensed basis variables’ calculated from fSOM 
learning. Each condensed basis variable is the low-dimensional embedding summarizing the essential 
characteristics of a set of original variables. The total condensed basis variables summarize essential 
characteristics of all variables. 
 
The proposed fSOM learning is a customized self-organizing map for high-dimensional data to retrieve the 
prototype of each sample to unveil its ground truth characteristics by seeking meaningful condensed basis 
variables. Unlike traditional self-organization map (SOM) that clusters input samples through self-
organizing learning, fSOM seeks the nonlinear low-dimensional embedding 𝑍 ∈ ℝ𝑘×𝑛  of input high-
dimensional data 𝑋 ∈ ℝ$×%with n observations across p variables (𝑝 ≫ 𝑛, 𝑝 ≫ 𝑘) by implementing a map:   
𝐹!"#$: 𝑋 → 𝑍 ∈ ℝ𝑘×𝑛  [20]. Each observation in the low-dimensional embedding 𝑍  has 𝑘  condensed basis 
variables. Geometrically it is represented as a psychiatric map (pMAP) maps onto an fSOM plane with  
√𝑘 × √𝑘 neurons.   
 
Figure 1 illustrates the pMAPs of the control, BPD, and SCZ samples under fSOM using high-dimensional 
SNP data in our study. It shows that those high-dimensional samples from the same groups share similar 
or the same prototypes.  On the other hand, the pMAPs of the control samples demonstrate clear 
differences from those of the BPD and SCZ samples. It suggests that there is no mislabeling occurrence 
between the control and disease (BPD/SCZ) samples. Such a result is consistent with the classification 
results in our previous studies, i.e., an SVM model can achieve nearly linearly separable performance to 
answer the query if a coming SNP sample is a control or diseased one.  
 
Besides the three types of observations: control, BPD, and SCZ from the original SNP data, the proposed 
mislabeled learning algorithm employs pMAPs to unveil latent subtypes by identifying control 0/1 
subtypes in the control group, and BPD 0/1 subtypes in the BPD group, and SCZ 0/1/2 in the SCZ group 
illustrated in Figure 1. It suggests that the algorithm is good at revealing latent information of high-
dimensional data that contributes to identifying and correcting mislabeled samples well.  
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Fig 1. The psychiatric maps (pMAPs) of control, BPD, and SCZ samples obtained under fSOM learning by 
using SNP data.  A pMAP is a characteristic map of each SNP sample of psychiatry data (e.g., control, SCZ, 
or BPD) on the fSOM plane. pMAPs also unveil latent two control, two BPD, and three SCZ subtypes: 
control_0/1, BPD_0/1, and SCZ_0/1/2. 
 
This study has the following contributions to mislabeled learning and psychiatry disorder diagnosis. First, 
it presents a novel mislabeled learning algorithm for high-dimensional data by enriching the existing 
mislabeled learning. To our knowledge, it is the first high-dimensional mislabeled learning algorithm. It 
includes novel techniques: pMAP generation using fSOM learning, pMAP clustering, and relabeled sample 
learning to overcome mislabeled high-dimensional data along with a data-driven feature selection 
algorithm without requiring the ground truth information for high-dimensional data: nonnegative singular 
value approximation (nSVA) [21]. Unlike the existing mislabeled learning methods that mainly filter noisy 
samples, our method can automatically detect mislabeled observations and relabel them with the most 
likely ground truth. Furthermore, the proposed mislabeled learning algorithm does not require a large 
number of samples and works well for the ‘small-sample data’, the datasets with a limited number of 
samples.  Therefore, it shows a good advantage in handling the sample scarcity issue in learning over 
almost all mislabeled learning peers [22].  
 
Second, it provides a way to solve the long-time misdiagnosis of SCZ and BPD in psychiatry [15]. 
Compared to using bioinformatics approaches to identify possible driver genes, pathways, or other 
molecular signatures of SCZ and BPD, our AI-based approach is more reproducible, less expensive, and 
more applicable to accurate SCZ and BPD diagnoses.  Since the proposed method can discover latent 
subtypes by identifying previously not reported subtypes, it can provide valuable feedback to psychiatry 
doctors to examine and validate more latent SCZ/BPD subtypes [23].  
 
Third, our study presents a novel visualization tool: pMAP for high-dimensional SNP psychiatry data 
besides disclosing mislabeled samples. The proposed fSOM learning maps each high-dimensional sample 
into a corresponding pMAP, a prototype that captures the essential characteristics of the sample in the 
subspace spanned by ‘condensed key SNPs’ (condensed basis variables) that summarizes the essential 
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characteristics of all SNPs. Geometrically, it is a characteristic 2D image on the fSOM plane. To the best of 
our knowledge, it is the first work to convert a psychiatry disorder sample (SNP data) to a psychiatric 
characteristic image, i.e., pMAP, for the sake of knowledge discovery in mislabeled learning. Unlike existing 
mislabeled learning algorithms, the proposed pMAP diagnosis is a more explainable AI technique because 
it provides powerful sample visualization for the sake of mislabeled sample identification and labels 
correction. On the other hand, it makes mislabeled learning techniques and SCZ and BPD misdiagnosis 
overcome more transparent and trustworthy. The pMAP visualization can be exploited to provide 
knowledge-discovery-based visualization in other biomedical fields that use high-dimensional data. The 
knowledge-revealing pMAPs will assist doctors to understand the latent disease statuses/subtypes, achieve 
high-accuracy diagnoses, and enhance clinical decision-making.  
  
Last but not least, we construct the devolution paths and internal transfers between different psychiatric 
states by conducting a novel relative entropy analysis for the pMAPs to shed light on the pathology of 
psychiatric disorders. We also employ a new customized entropy analysis to explain the results of pMAP 
diagnosis in BPD and SCZ detection.  We find that both BPD and SCZ samples tend to have lower entropies 
than the control samples. It suggests that molecular patterns of the samples with psychiatric disorders 
should contain a ‘less random’ information pattern than the ordinary samples from SNP data analysis.  
 
This paper is structured as follows. Section 2 introduces a high-dimensional mislabeled learning algorithm: 
pMAP diagnosis for psychiatry SNP data in a detailed way. It includes pMAP generation using 
fSOM learning, DBSCAN clustering for pMAPs, and relabeled sample learning.  Section 3 covers data and 
data preprocessing and section 4 presents the results of psychiatric map diagnosis from different 
perspectives. a novel devolution path model is developed in this section to explain the dynamics of 
psychiatric states by conducting relative entropy analysis for different pMAPs. Section 5 compares the 
proposed pMAP diagnosis with the state-of-the-art ML and deep learning methods. Finally, we discuss the 
potential weakness and possible enhancements of our methods before concluding this study. 
  

2 Psychiatric map (pMAP) diagnosis: a mislabeled-learning algorithm for high-
dimensional data 

A high-dimensional mislabeled learning problem can be described as follows. Given a training dataset 
𝑋 = {(𝑥& , 𝑦&)}&'(% , 𝑥& ∈ 𝑅$, 𝑦& ∈ {1,2⋯𝑘}, 𝑝 ≫ 𝑛,each sample (𝑥& , 𝑦&) is assumed independent and identically 
distributed and the label information 𝑦& can be corrupted and may not always reflect the ground truth of  
the corresponding sample 𝑥& .  The goal of mislabeled learning is to seek a relabeling function 𝑓):  𝑋 →
𝑋∗ = {(𝑥& , 𝑦&∗)}&'(%  to map each sample 𝑥&  to its most likely ground truth 𝑦&∗ ∈ {1,2⋯𝑘}:  𝑓): (𝑥& , 𝑦&) → (𝑥& , 𝑦&∗), 
such that for an ML model 𝜃, the following equation holds: 
 

minℛ(𝜑|𝑓) , 𝑋, 𝜃) ≪ minℛ(𝜑|𝑋, 𝜃)                                                     (1) 

The empirical risks of the relabeled samples and the original samples under a loss function 𝝋 are defined 
as  𝓡(𝝋|𝒇𝒄, 𝑿, 𝜽) = |𝟏𝒏∑ 𝝋(𝒙𝒊,𝒏

𝒊'𝟏 𝒚𝒊∗|𝜽) and 𝓡(𝝋|𝑿, 𝜽) = |𝟏𝒏∑ 𝝋(𝒙𝒊,𝒏
𝒊'𝟏 𝒚𝒊|𝜽) respectively. 

It can be technically hard to attain a satisfactory learning performance by only applying existing ML models 
to high dimensional data with mislabeled information. It might be possible when the percentage of 
corrupted labels is ignorable (e.g., 1%). However, data in our context is SNP data of BPD and SCZ with 
over 30% misdiagnosis ratios. On the other hand, the existing mislabeled learning techniques may not be 
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able to apply to the high-dimensional SNP data in out context because they are mainly developed for low-
dimensional data in which a large number of samples are available. For example, adding a noise filtering 
in deep neural networks (DNN) may filter samples with corrupted labels, but it can’t apply to high-
dimensional data because the filtering scheme can be too luxury to implement for a dataset only with 
limited number of samples [1,22].  Thus, it is necessary to seek an effective mislabeling correction technique, 
which acts as the relabeling function 𝑓) , to tackle the problem, to retrieve the most likely ground truth for 
each sample. 
 
It is desirable to extract the prototype of each observation to distinguish possibly mislabeled high-
dimensional samples from an unsupervised learning approach before any possible label correction. 
Compared to an original high-dimensional sample, the prototype is a small vector but contains the essential 
characteristics of the sample. The prototype should be able to identify itself without using any label 
information no matter whether it is true or false.  The prototype should also provide visualization support 
so that its identity can be easily detected by comparing the visualizations of different prototypes.  If samples 
A and B share similar or even the same prototype but with different labels, it is easy to conclude the 
occurrence of mislabeling. Since it is also likely that many samples may share one or a few prototypes, the 
prototypes can be an excellent discriminator to correct the mislabeled samples.  
 
Which unsupervised learning approaches can generate the prototypes we need? Traditional dimension 
reduction techniques in unsupervised learning (e.g., PCA) may not be able to accomplish it because the 
low-dimensional embeddings from the methods are not representative enough to identify the original 
sample [24-25]. This is because of the built-in limitations of the methods. For example, PCA can only extract 
the global data characteristics of input data. The principal components, the bases of the PCA embedding 
space, are the linear combination of variables by maximizing the data variances globally [25]. As a result, 
the PCA embedding of a high-dimensional sample unavoidably misses the important local data 
characteristics that can be essential to identify two similar samples sharing some global similarities.   
 
On the other hand, t-SNE, a classic manifold learning method, is good at extracting local data characteristics 
well rather than global ones [25-26]. It produces a low-dimensional embedding by minimizing the KL 
divergence between the Gaussian and student distributions modeling the sample similarities in the input 
and embedding space. The embedding is not strongly related to the variables of input data but the 
similarities of the input observation under a distance metric (e.g., Euclidean distance). As a result, the 
essential global data characteristics of high-dimensional data may not be caught in the t-SNE embedding. 
Besides, since t-SNE generates the embedding by solving a non-convex optimization problem, the 
embedding generation is unstable and not unique. Therefore, an unsupervised learning method to generate 
the prototype of input data should satisfy the following conditions.  

1) It should generate the reprehensive prototype of input high-dimensional data rather than only 
focusing on only global or local data characteristics.  

2) It should produce a stable prototype strongly related to the variables of high-dimensional data by 
solving a convex optimization problem. The bases of the embedding space should consist of the  
condensed basis variables summarizing the essential characteristics of all variables. The learning 
procedure to generate the condensed basis variables should follow the similarities between the 
original variables rather than other externally imposed standards. 

3) It can provide powerful visualization support for each prototype so that different prototypes can 
be compared visually for the sake of mislabeled sample identification.  

 
To satisfy the prototype conditions, we propose a novel feature self-organizing map (fSOM) learning to 
obtain prototypes of high-dimensional data by satisfying the requirements. Unlike traditional SOM which 
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dynamically looks for similarities between input samples, the proposed fSOM seeks to condense thousands 
of SNP features through self-organizing learning by seeking the similarities between SNPs to construct a 
low-dimensional embedding space spanned by the condensed SNPs summarizing the key characteristics 
of all SNPs. The fSOM is equivalent to solving a convex optimization via gradient learning to obtain 
prototypes to represent high-dimensional data without over-emphasizing on global or local data 
characteristics. Moreover, fSOM can provide powerful characteristic visualization for each prototype by 
visualizing the values of the corresponding embedding vector on an fSOM plane. We name the prototype 
of each high-dimensional sample a psychiatric map (pMAP) in this study because it is a characteristic map 
of each psychiatric SNP sample. We also employ a data-driven method: nonnegative singular value 
approximation (nSVA) to select meaningful SNP to reduce the variable redundancy issue [15,21].  
 
2.1 Psychiatric map diagnosis: a mislabeled learning algorithm for high-dimensional data 

 
 
Fig 2. The flowchart of the proposed psychiatric map (pMAP) diagnosis. It employs feature self-organizing 
(fSOM) to generate a psychiatric map (pMAP), the prototype of each psychiatry observation which can be 
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a schizophrenia (SCZ), a bipolar disorder (BPD), or a control sample. The prototypes then go through the 
DBSCAN clustering to seek the ground truth before relabeling each observation to its most likely ground 
truth [27-28].  Finally, a reproducible learning machine (e.g., multi-class SVM) is employed to conduct 
psychiatry diagnosis under the corrected labels besides different pMAP-based post analysis [29]. 
 
Figure 2 illustrates the flowchart of the proposed pMAP diagnosis that consists of three major steps. 1) 
pMAP generation using feature self-organizing (fSOM) learning. 2) DBSCAN clustering for the pMAPs. 3) 
Relabeled sample learning besides following post analysis. We describe the detailed steps as follows. 
 
pMAP generation employs fSOM learning to obtain the prototype of each psychiatry SNP sample in the 
embedding space spanned by the k condensed basis SNPs: 𝑆 = 𝑠𝑝𝑎𝑛(𝑠%,𝑠',…𝑠))  by implementing  
𝐹!"#$: 𝑋 ∈ ℝ*×, → 𝑍 ∈ ℝ)×,, 𝑝 ≫ 𝑛, 𝑝 ≫ 𝑘.  For each condensed basis SNP, there exists a set of SNPs: 𝑥&.

(1) falling 
in a small enough neighbor of 𝑠) with radius 𝛿) : ||𝑥&.

(1) − 𝑠𝑘|| < 𝛿𝑘, 𝑖 = 𝑖(, … 𝑖3,. Mathematically a pMAP is the 
reference vector in ℝ) , 𝑘 ≪ 𝑛, representing the characteristic map of the corresponding high-dimensional 
sample on the √𝑘 × √𝑘  fSOM plane. In addition, the pairwise distance between two pMAPs in the 
embedding space induced by fSOM learning will be less than their original high-dimensional samples in 
the input space  ||𝐹𝑓𝑠𝑜𝑚(𝑥.𝑖) − 𝐹𝑓𝑠𝑜𝑚L𝑥.𝑗M|| < ||𝑥

.𝑖
− 𝑥.𝑗|| because of the dimensionalities of the condensed basis 

SNP under self-organizing map for features.   
 
The pMAPs will demonstrate good sensitivity for mislabeled sample identification. Since each pMAP is the 
prototype of a high-dimensional psychiatry sample, it is natural that the samples from the same psychiatry 
class will share similar or the same prototype, but the mislabeled samples will be those labeled with the 
same psychiatry type but with very different pMAPs or those with similar or the same pMAPs but with 
different labels.  
 
DBSCAN clustering for pMAPs. The pMAP diagnosis employs a robust density clustering algorithm:  
DBSCAN (density-based spatial clustering of applications with noise) to cluster the pMAPs of input 
samples in the fSOM embedding space to correct possible mislabeled samples. It is noted that the ground 
truth is unknown because of the misdiagnosis between SCZ and BPD. There are two reasons for us to select 
the density-based clustering method DBSCAN rather than the popular K-means. The first is that K-means 
would require input data is convex. But we cannot guarantee the pMAPs generated from fSOM learning 
will satisfy it. Furthermore, we find that pMAPs can have concaved shapes on the fSOM plane. The second 
is that K-means would limit the possible new subgroup detection somewhat. K-means may look like a good 
candidate for pMAP clustering because we already know the prior three groups of samples: control, SCZ, 
and BPD. However, the pMAP generation stage has brought the prototypes of input samples that are not 
only limited to the original three types. Instead, the pMAPs generated from fSOM learning unveil new 
knowledge in the self-organizing learning process: the control, SCZ, and BPD groups all have their different 
subtypes. Thus, we do need a clustering algorithm like DBSCAN that can automatically identify the 
number of clusters for input pMAPs for the sake of deep knowledge discovery [27].   
 
The following proportion states that the two high-dimensional psychiatry samples will share the same 
ground truth if their pMAPs fall in the same cluster and are both classified as the core points.  A core point 
in DBSCAN is the point whose neighborhood with an enough number of points to form a ‘dense region’. 
Given a set of observations 𝑋 = {𝑥(,𝑥5,⋯𝑥%}, a neighbor radius 𝜀,  and an integer 𝑚𝑖𝑛𝑝𝑡𝑠 > 0,  𝑥 ∈ 𝑋 is a 
core point if and only if |{𝑥6: |𝑥 − 𝑥6| < 𝜀}| ≥ 𝑚𝑖𝑛𝑝𝑡𝑠, in which 𝑚𝑖𝑛𝑝𝑡𝑠 is the minimum number of points to 
form a ‘dense region’ in DBSCAN. More details about DBSCAN can be found in Section 2.3. 
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Proposition 1. Given any two high-dimensional samples 𝑥.& and 𝑥.7 if their pMAPs 𝐹89:;(𝑥.&)	𝑎𝑛𝑑	𝐹89:;L𝑥.7M 
both fall in the same cluster under DBSCAN and both of them are the core points under DBSCAN, then  
Pr	{𝑦&∗ ≠ 𝑦7∗| |𝐹89:;(𝑥.&) − 𝐹89:;(𝑥.&)	|< 𝜀} → 0, in which 𝑦&∗ and 𝑦7∗ are the ground truth labels of 𝑥.& and 𝑥.7 
respectively, and  𝜀 is the neighborhood radius in DBSCAN. 
 
Relabeled sample learning. We relabel the original samples and their pMAPs according to the DBSCAN 
clustering result and employ a reproducible learning machine to conduct psychiatry diagnosis.  Given two 
psychiatric high-dimensional samples 𝑥.& and 𝑥.7 and the DBSCAN clustering indices 𝑐&,𝑐7 of their pMAPs: 
𝑧&'𝐹89:;(𝑥.&), 𝑧7'𝐹89:;L𝑥.7M: 𝑐&,𝑐7←𝑑𝑏𝑠𝑐𝑎𝑛L𝑧.& , 𝑧.7M, then the labels of 𝑧.& , 𝑧.7  are updated by their clustering 
indices 𝑙& ← 𝑐& and  𝑙7 ← 𝑐7 respectively. So do the labels of 𝑥.& and 𝑥.7 . 
 
Although we have found the previously unknown subtypes for each psychiatric group in the pMAP 
generation, we still label those from the same group as one type rather than dividing them into different 
types for the sake of learning and peer comparisons. For examples, two different control subtypes are found 
in the pMAP generation and corresponding two clusters are founded in the following DBSCAN clustering. 
We still label the pMAPs and their original samples as the original control type according to the original 
label of the core points rather than assign a new label. The following proposition 2 describes the relabeling 
rule under this situation. 
 
Proposition 2 Given pMAPs 𝑧.& and 𝑧.7 with different DBSCAN clustering indices 𝑐&, ≠ 𝑐7 , if their original 
samples 𝑥.& and 𝑥.7 share the same label 𝑦& and the label 𝑦& shared by the original samples of the majority of 
the core points of the clusters 𝑐& and 𝑐7 , then the new labels of 𝑧& and 𝑧7  will be assigned as 𝑙& = 𝑙7 ← 𝑦& . 
 
It may be possible theoretically to label those pMAPs and their original samples with the new subtypes 
unveiled in clustering. However, it may potentially create a learning risk because it is likely that some 
subtypes have only a few samples. The scarcity of samples in a certain type will generate inaccurate or even 
biased learning results. 
 
Reproducible learning model selection.  After the relabeling procedure, an ML model is used to conduct 
diagnosis for the relabeled psychiatric maps. Theoretically, any ML models can be employed, but we prefer 
the ML model to satisfy the following standards for high-performance psychiatric diagnosis.  
 
First, it should have good reproducibility so that the psychiatry diagnosis would not change from run to 
run. Good reproducibility is important in clinical practice to decrease false positive rates and build 
customers’ trustworthiness. In other words, we should avoid those ensemble learning methods such as 
random forests or deep learning models because their results may lack good reproducibility for their built-
in randomness in learning, though their learning performance can be good [30]. 
 
Second, it should have a built-in advantage to handle high-dimensional data with a small number of 
samples. In other words, its complexity should not increase much for high-dimensional data. The deep 
learning models generally need a large amount of data in training to build sophisticated prediction 
functions, but they are not good for high-dimensional data with only a small number of samples. This is 
mainly because almost all deep learning models suffer from the data scarcity problem, i.e., deep learning 
may have poor performance for datasets with only a limited number of observations [22].  
 
In this study, we employ multi-class support vector machines (multi-class SVM) because it satisfies the 
standards well. SVM demonstrates good reproducibility because it is equivalent to solving a deterministic 
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nonlinear programming problem with the least randomness compared to the ensemble learning and deep 
learning methods. Furthermore, SVM is good at handling high-dimensional data because kernel matrix 
computing will be efficient for its small size. It contributes to speeding up the whole SVM learning by 
avoiding possible computing overhead. The one-versus-one (‘ovo’) scheme is employed to extend relevant 
binary SVM to corresponding multiclass diagnoses. It decomposes the k-class classification problem as the 
combination of k(k-1)/2 binary SVM classification problems. The reason for using the ‘ovo’ rather than peer 
one-versus-rest (‘ovr’) multi-class handling scheme is that the latter may face an imbalanced learning issue 
[31]. We briefly describe the binary SVM model as follows. 
 
A binary SVM model constructs an optimal hyperplane 𝑦 = 𝑤=𝑧 + 𝑏 to separate two groups of pMAPs of 
psychiatry SNP data under the training data 𝑍 = {𝑧.& , 𝑙&}&'(% , 𝑧.& ∈ 𝑅1 , 𝑙& ∈ {−1,+1} to by solving a quadratic 
programming problem:  

               𝑚𝑖𝑛> 	
(
5
𝑤=𝑤 + C∑ 𝜉& 	%

&'(  , 𝑤 ∈ 𝑅1	, 𝜉& ∈ 𝑅, 𝑏 ∈ 𝑅                                              (2) 

𝑠. 𝑡. 𝑙&(𝑤=𝜑(𝑧.&) + 𝑏) ≥ 1 − 𝜉&	, 𝜉& ≥ 0, 𝑖 = 1,2⋯𝑛, 

It is noted that 𝑧.5 ∈ 𝑅)  is a pMAP of the original SNP sample 𝑥&  and 𝑙&  is the label from the relabeling 
procedure. The normal vector  𝑤 is in 𝑅1, in which k is the number of neuros on the fSOM plane, C ∈ 𝑅? is 
the regularization parameter, and 𝜑(∙) is an implicit feature function mapping input data to the high-
dimensional feature space for evaluation using kernel tricks. The Gaussian kernel 𝐾L𝑧.& , 𝑧.7M = 𝑒@A∥C.$@C.%∥, 
Υ > 0 is mainly employed to model nonlinear relationships.  The kernel parameter Υ is tuned under the grid 
search technique for the sake of effective diagnoses [32].   
 
 The following Algorithm 1 summarizes the proposed psychiatric maps (pMAP) diagnosis. The complexity 
of the proposed algorithm complexity is 𝑂(𝑛𝑝𝑘 + 𝑝𝑙𝑜𝑔𝑝) + 𝑂(𝜃),  where 𝑛  and 𝑝  are the number of 
observations, features of input data and 𝑘  is the number of neurons on the fSOM plane. 𝑂(𝜃)  is the 
complexity of the machine learning method, which is multi-class SVM, used in psychiatric map diagnosis, 
thus 𝑂(𝜃) = 𝑂(𝑛𝑘').   
 

Algorithm 1: Psychiatric map (pMAP) diagnosis 
Input: 

Data:	𝑋 ∈ ℝ,×$	with m observations across n features, n>>m	
Machine learning model: 𝜃 (default: multi-class SVM) 
The size of fSOM plane √𝑘 × √𝑘 (default: k =  20 × 20	) 
Epoch of fSOM (default 1000) 
𝑚𝑖𝑛𝑝𝑡𝑠 (the minimum number of points in a core-point neighborhood: default 10)  
𝑒𝑝𝑠 (the minimum distance between two points in clustering: default 0.05)	

Output: 
Psychiatric maps (pMAPs):	𝑋*$6* 
Predicted labels of test data in 𝑋 
 

1. 𝑋*$6* ← 𝑓𝑆𝑂𝑀(𝑋, 𝑘, 𝑒𝑝𝑜𝑐ℎ) // Compute the psychiatric map (pMAP) for each observation 
2. 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥	 ← 𝐷𝐵𝑆𝐶𝐴𝑁(𝑋*$6*, 𝑚𝑖𝑛𝑝𝑡𝑠, 𝑒𝑝𝑠) // DBSCAN clustering for psychiatric maps (pMAPs) 
3. 

 
(𝑋*$6*, 𝑙𝑎𝑏𝑒𝑙) ←Relabel(𝑋*$6*,	𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥)	//Relabeling pMAPs according to clustering results 

4. 𝜃 ← 𝑓𝑖𝑡(𝜃, 𝑋*$6*7865, , 𝑙𝑎𝑏𝑒𝑙) // Train machine learning model θ using relabeled training data 
5. 𝑦7̀ 	← 𝜃. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋*$6*79"7 ) // Prediction for test data  
6. Return 𝑦7̀ 
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In the post-analysis of the pMAP diagnosis, we propose novel entropy and relative entropy (KL divergence) 
analysis to quantify relabeled psychiatric samples and investigate possible devolutionary relationships 
between them. Traditionally, it is almost impossible to compute the metrics for a group of psychiatric 
samples because they are not defined for a matrix originally. With the help of the pMAPs, we innovatively 
calculate them and examine possible devolution paths of psychiatric states and find that the psychiatric 
disorder samples may have more special SNP patterns than those of the normal ones. Please see more 
relevant details in Section 4. 
 
 
2.2 Feature self-organizing map (fSOM) learning  

Unlike traditional SOM, feature self-organizing map (fSOM) assumes input data is high-dimensional data 
and seeks the prototype of input data by conducting self-organizing learning for features rather than 
sample clustering.   
 
fSOM consists of an input high-dimensional dataset, in which each row is a feature, and each column is an 
observation, 𝑋	 ∈ 	ℝ$×%, 𝑝 ≫ 𝑛, an fSOM plane 𝛲 =∪&'(1 𝑜& , a two-dimensional lattice consisting of √𝑘 × √𝑘 
(e.g., k=400) neurons, and a loss function ℒ to define the embedding error in obtaining the prototype data, 
i.e., 𝑓𝑆𝑂𝑀 = (𝑋, 𝛲, ℒ). Each neuron 𝑜& ∈ 𝛲 is associated with an embedding vector 𝑧& ∈ ℝ1. Given input data 
with n samples across p features, fSOM produces its prototype 𝑍 by completing the nonlinear dimension 
reduction mapping: 𝐹!"#$: 𝑋 ∈ ℝ*×, → 𝑍 ∈ ℝ)×,,  𝑝 ≫ 𝑛, 𝑝 ≫ 𝑘  in a low-dimensional embedding space, in 
which  𝑍 = [𝑧.(,𝑧.5⋯𝑧.%]	𝑖𝑠	𝑡ℎ𝑒	 the extracted prototype data of input data 𝑋.  The each column of the 
embedding data 𝑍  represents a corresponding prototype of an input sample. The embedding space is 
spanned by the condensed basis variables: 𝑠(, 𝑠5⋯𝑠1 in ℝ,, which are technically the row vectors of the 
embedding data: 𝑠&~𝑧&., 𝑖 = 1,2⋯𝑘, in which 𝑧&. represents the 𝑖7: row of the embedding data 𝑍. 
 
 Each condensed basis variable ∆9$ is the characteristic variable of a set of most similar variables: ∆9$: ∆"!=
b𝑥: ‖𝑥 − 𝑠5‖ < d𝑥 − 𝑠;d, 𝑖 ≠ 𝑗, 𝑥 ∈ ℝ,g, 𝑖 = 1,2⋯𝑘.  As a small set of  characteristic variables,  the condensed basis 
variables summarize the original high-dimensional variable space according to different characteristics of 
variables.  
 
The fSOM learning: competition, cooperation, and adjusting. The fSOM learning consists of a loop of 
three stages: competition, cooperation, and adjusting.  In the competition stage, given a feature 𝑥 ∈ 𝑋,  
fSOM queries all neurons 𝑜5 ∈ 𝑃, 𝑖 = 1,2⋯𝑘 to find a neuron candidate 𝑜;∗  whose associated embedding 
vector 𝑧;∗.  is nearest to 𝑥  according to a distance metric (e.g., Euclidean): 𝑜;∗ = 𝑎𝑟𝑔𝑚𝑖𝑛

##
||𝑥 − 𝑧##.|| . The 

candidate 𝑜;∗ will be the winning neuron in the competition stage and called the best match unit (BMU) for 
𝑥. 
	
In the cooperation stage, the embedding vectors associated with the neurons in the neighborhood of the 
winning neuron 𝑜;∗ is updated to make them more and more ‘similar’ to the feature 𝑥 by following the 
iteration scheme: 

𝑧&.(𝑡 + 1) = 𝑧&.(𝑡) + 𝛼(𝑡)ℎ7∗&(𝑡)(𝑥 − 𝑧&.(𝑡))                                               (3) 
 

where 𝛼(𝑡)) ∈ (0,1)  is the learning rate at time 𝑡 . The neighborhood function ℎ;∗5  models the proximity 
degree of the neurons in the neighborhood with respect to the winner. The function is chosen as a Gaussian 
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kernel ℎ;∗5(𝑡) = 𝑒<8#∗=8!<
$ '>$(7)A  in this study for its fast convergence,  in which  𝑟;∗ and 𝑟5 are the topological 

locations of  the winning unit 𝑜;∗ and 𝑖7: neuron 𝑜5 on the fSOM plane, and the parameter 𝜎 denotes the 
neighborhood radius.  

 
In the adjusting stage, the learning rate is adjusted, and the neighborhood radius decreases with respect to 

time exponentially to localize the iteration. That is, 𝜎(𝑡) = 𝜎(0)𝑒
%&
'(, 𝛼(𝑡) = 𝛼(0)𝑒

%&
'$, 𝑡 = 0, 1,2,⋯. The 𝛼(0) and 

𝜎(0) are the initial learning rate and neighborhood size respectively and 𝜏% and 𝜏' are pre-selected time 
constants. The three stages are repeated until the embedding vector matrix 𝑍	converges: ‖𝑍(𝑡 + 1) − 𝑍(𝑡)‖ <
𝜂	(10!"), or an expected epoch reached.  
 
 The fSOM learning is equivalent to a gradient-based optimization with the loss function ℒ(𝑥, 𝑧, 𝑡) =
∑ ∑ ℎ;5(𝑡)‖𝑥 − 𝑧5(𝑡)‖',)

5B%C  defined in a neighborhood centered in the winning neuron 𝑗, where the distance 
measure can be any specified distance metric. Thus, the iteration scheme is equivalent to finding the 
optimal embedding vector of a neuron to minimize the loss function through gradient optimization 
problem: 

 𝑧5(𝑡) = 𝑧5(𝑡) − 𝛼(𝑡)𝐼
𝜕ℒ(𝑡)
𝜕𝑧5(𝑡)

 (4) 

where I is an identity matrix and 𝛼(𝑡)𝐼 is the learning rate matrix. The computing complexity of one epoch 
of training to minimize the loss function is 𝛰(𝑛𝑝𝑘). It is theoretically possible to a take second-order 
Newton method to accelerate the learning, but its effectiveness may rely on the initial point selection and 
the size of the neighborhood.  
 
It is noted that the prototype data 𝑍 = [𝑧.(,𝑧.5⋯𝑧.%]	can serve as a better embedding to represent the original 
data than those PCA, t-SNE, or UMAP embeddings because it is built by partitioning the variable spaces 
into different condensed basis variables through self-organizing learning [33]. It avoids possible 
information loss in PCA, t-SNE, or UMAP for each sample in embedding by over-emphasizing global or 
local data characteristics as well as overcomes the instability of t-SNE/UMAP embeddings., The prototypes 
can provide powerful visualization to distinguish possible mislabeled samples. Therefore, each prototype 
sample can be a valuable information source for overcoming corrupted or noisy labels in mislabeled 
learning.  We have the following results about the nonlinear embedding obtained from fSOM.   
 
Proposition 3. Given high-dimensional samples 𝑥.& , 𝑥.&6 and 𝑥.7 with corresponding labels 𝑦& , 𝑦7, and 𝑦7, 𝑦& ≠
𝑦7, in which the ground truth label of 𝑥.&6 is 𝑦& , then 𝑧.& and 𝑧.&6will be more likely to fall in the same cluster 
than 𝑧.& and 𝑧.7 under a clustering algorithm Π, in which 𝑧.& , 𝑧.&6 and 𝑧.7 are corresponding embeddings of 𝑥.& , 
𝑥.&6 and 𝑥.7 under fSOM. 
 
2.3 Density-based spatial clustering of applications with noise (DBSCAN) 

DBSCAN is a density-based clustering algorithm that handles arbitrary-shaped clusters with noise [27-28]. 
DBSCAN classifies points as core, reachable, and outliers (noise). A core point simply refers to a point 
whose neighborhood has enough points under a radius 𝜀. A reachable point is a point that can be reached 
by one or a sequence of core points and an outlier is an unreachable point, i.e., noise. In our context, it will 
be a transaction with exceptional trading behaviors that are potential to be trading markers. The core points 
form clusters because of their high densities, the reachable points form the edge of clusters, and the outliers 
stand out as noise in clustering.  
 
The primary idea of DBSCAN can be described briefly as follows. Given a point to be clustered, DBSCAN 
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retrieves its ε-neighborhood. If the neighborhood size is ≥  the minimum number of points (minpts) 
required to form a ‘dense region’, i.e., a region with an enough number of close points, the neighbor will 
be initialized as a cluster and the point is marked as a core point. Otherwise, the point is marked as an 
outlier.  If the point is a reachable point for a cluster, its ε-neighborhood will be marked as a part of that 
cluster. All points in the ε-neighborhood will be added to the cluster until the density condition is satisfied. 
This procedure continues until all clusters and outliers are identified. The average running time complexity 
of DBSCAN is 𝑂(𝑛𝑙𝑜𝑔𝑛)  if a meaningful neighborhood radius ε is selected, though the worse time 
complexity is 𝑂(𝑛'). 

3 Data and preprocessing 

The original SNP data (GSE71443) downloaded from the NCBI GEO database includes 74 control, 65 
bipolar disorder (BPD), and 64 schizophrenia (SCZ) subjects [35-36]. To obtain the significant differentially 
expressed SNP loci, we first filter those SNPs with missing annotations, not on autosomes or sex 
chromosomes, or diverged from Hardy-Weinberg equilibrium (HWE) with 𝑝_𝑣𝑎𝑙𝑢𝑒 < 10=%D [35]. We still 
have a total of 627,693 SNPs left after the initial filtering. We further screen statistically significant SNPs 
using ANOVA with 𝐹𝐷𝑅 < 0.01 and remove those SNPs in the linkage disequilibrium (LD) using 𝑅' > 0.25 
[35]. Finally, we obtain a dataset with 5,843 SNPs across 74 control, 65 BPD, and 64 SCZ samples. Although 
it is theoretical to conduct fSOM for the preprocessed data, it may be desirable to seek more important 
features for the following unsupervised learning and pMAP diagnosis besides lowering the complexities 
caused by the high dimensionality.   
 
As we mentioned before, the variable redundancy in mislabeled high-dimensional can bring difficulties in 
feature selection because many feature selection models need to know the ground truth. We seek the most 
critial features from the preprocessed SNP data by employing nonnegative singular value approximation 
(nSVA), an effective data-driven feature selection algorithm proposed by Han for high-dimensional data 
that does not need ground truth information [21]. Unlike the traditional model-driven methods that 
generally assume SNP data subject to a specific probability distribution, nSVA feature selection does not 
need the prior probability distribution besides ground truth information. It exploits the nonnegativity of 
input SNP data and ranks the importance of features according to its projection onto the first singular vector 
direction. Our previous work shows that it can identify meaningful feature selection for high-accuracy 
downstream analysis such as classification and pathway analysis [15,21].  

4 Results  

The pMAP generation from fSOM learning not only unveils new knowledge by discovering the latent 
subtypes of control, BPD, and SCZ, but also obtains data distributions that cannot be computed from input 
high-dimensional mislabeled data.  It provides more information for mislabeled sample correction. Unlike 
the original assumptions that samples are partitioned as control, BPD, and SCZ groups, the pMAPs discover 
that there are two subtypes for control, two subtypes for BPD, and three subtypes for SCZ. It suggests that 
pMAPs provide a meaningful knowledge discovery process to disclose intrinsic data characteristics that 
are essential for mislabeled data correction. On the other hand, pMAPs also provide a powerful 
visualization technique to discover different new subtype information for the original samples to identify 
mislabeled samples visually. 
 
Mislabeled sample visualization.  Figure 3 illustrates the pMAPs of the three types of samples as well as 
their new subtypes discovered in fSOM learning. Fig 3 (a) shows that control has two types of psychiatric 
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maps named ‘control’ type 0 and 1, both of which have blue regions, in which the embedding vectors have 
small values, on the right boundary of the fSOM plane. It is also clear that the pMAPs of the controls 
demonstrate quite clear differences from those of the BPD and SCZ samples. This actually concurs with our 
previous results that general machine learning can achieve 98% diagnostic accuracy between control and 
BPD/SCZ, which is approximately a linearly separable problem [36].  Fig 3 (b) shows that the SCZ samples 
consist of three different hidden types of pMAPs, named SCZ 0, 1, and 2 respectively. The pMAPs of SCZ 0 
(‘type 0’), SCZ 2 (‘type 2), and BPD 0 (‘type 0’) share very similar patterns indicating they are highly 
potentially mislabeled ones. For example, the pMAPs of SCZ 0 and BPD 0 share very similar patterns, but 
they are labeled as different types. Therefore, those samples (e.g., SCZ 0 and BPD 0) with similar pMAPs 
but different labels are highly likely to be mislabeled ones from their pMAP visualizations.  

 
Fig 3. The pMAPs of control, BPD, and SCZ generated from fSOM learning.  (a) shows the type 0 and 1 
pMAPs of control, BPD, and SCZ.  (b) illustrates the pMAPs of all the three discovered SCZ subtypes.  The 
pMAPs of controls demonstrate obvious differences from those of the BPD and SCZ. The pMAPs of SCZ 0 
(‘type 0’), SCZ 2 (‘type 2), and BPD 0 (‘type 0’) share very similar patterns indicating they are highly 
potentially mislabeled ones. 
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Fig 4.  The p.d.f.s of the different subtypes of the control, BPD, and SCZ samples. The subplots (a) to (c) 
illustrate the p.d.f.s of the subtypes of the three groups and suggest quite good differences between the 
control and two psychiatric groups for their different shapes as well as different skewness and kurtosis 
values. The subplots (d) to (i) illustrate the pairwise comparisons of the p.d.f.s of the BPD and SCZ subtypes. 
It also strongly suggests the similarity between the subtypes BPD 0, SCZ 0, and SCZ 2, which may indicate 
the occurrence of mislabeled types. 
 
Psychiatric type probability density function estimation.  The pMAPs also provide a powerful way for us 
to estimate the probability density function (p.d.f) for each psychiatric type, which is almost impossible for 
input high-dimensional data even if it does not have noisy labels. Such an estimation contributes to 
detecting mislabeled samples in a more rigorous way. We apply Gaussian kernel density estimation to the 
reference vector matrix of each sample, which is reshaped as a 1-dimensional vector, to estimate the 
probability density functions of different types of samples [37]. To the best of knowledge, it is the first work 
in estimating the p.d.f. of high-dimensional mislabeled data.  
 
Figure 4 compares probability density functions (p.d.f.s) of the subtypes of the control, BPD, and SCZ 
samples, where the horizontal direction represents the gene expression levels. The subfigures from (a) to 
(c) summarize the p.d.f.s of the subtypes in each group and indicate their obvious differences, where 
the p.d.f.s of the two control subtypes have very different skewness. For example, the skewness and kurtosis 
values of 'control 0' are 0.9946 and -0.3445, but those of 'control 1' are 0.3517 and -1.3085.  The subfigures 
from (d) to (i) pairwisely compare the p.d.f.s of the subtypes of the BPD and SCZ groups. It also strongly 
suggests the similarity between the subtypes BPD 0, SCZ 0, and SCZ 2, which may indicate the occurrence 
of mislabeled types.  
 
On the other hand, the ranges of the SNP expression levels of the different p.d.f.s of the subtypes fall in 
different intervals on the fSOM plane. For example, the range of the SNP expressions of p.d.f.s of the control 
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0 and control 1 fall in [20, 70] and [28,70] respectively.  It illustrates the good sensitivity of fSOM learning 
in uncovering the latent data characteristics of each group in a low-dimensional space.  
 
4.1 DBSCAN pMAP clustering and relabeling  

As we mentioned before, DBSCAN prepares itself as a good candidate for pMAP clustering to screen the 
possible mislabeled samples to look for the ground truth. The results of DBSCAN clustering demonstrate 
that those originally mislabeled samples that are highly likely to share the same ground truth labels will be 
more highly likely to fall into the same cluster because of the proximity of their pMAPs.  For example, a 
BPD 0 sample will be clustered into the same cluster as an SCZ 0 or SCZ 2 sample because their pMAPs 
share good similarities. The clustering result strongly suggests the possible mislabel between them though 
they have similar psychiatric symptoms according to the current BPD and SCZ categorization standards 
Error! Reference source not found.. Figure 5 shows the DBSCAN clusters the pMAPs of the three groups a
s 5 subclusters, where the control samples form the two subclusters are separated well from those of the 
BPD and SCZ samples.  
 
 

 
 
Fig 5. The structure of the pMAP clustering.  The pMAP clustering result consists of 5 subclusters under 
DBSCAN:  the control group partitioned as the control 0 and 1 subclusters is clearly separated from the 
mixed BPD and SCZ groups consisting of three subclusters.  Different colors indicate different scales of the 
values in the pMAP, i.e., red and yellow symbolize the largest numerical values, and dark blue indicates 
the corresponding numerical values close to zero. The BPD 0, SCZ 0, and SCZ 2 samples, which are 
clustered in the two subclusters for their similar pMAPs, form a new psychiatric group BPD*. So are the 
clustered BPD 1 and SCZ 1 samples that generate another psychiatric group SCZ*.  
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Since the samples with different labels falling in the same cluster may indicate the possible mislabeling 
issue, we relabel them by following the rebelling rule provided in Section 2.1 to form new psychiatric 
groups/classes. Since the BPD 0, SCZ 0, and SCZ 2 samples are clustered in the two close subclusters and 
BPD 1 and SCZ 1 samples are clustered as a relatively independent subcluster, we relabel them as  BPD* 
and SCZ* separately to reflect the ground truth better, i.e., the cluster consisting of BPD 1 and SCZ 1 
samples from the BPD* group and the clusters consisting of BPD 0, SCZ 0, and SCZ 2 generate the SCZ* 
group. Such a clustering-based relabeling mechanism can provide a more direct and effective mislabeling 
information correction. Although it is possible to further exploit the statuses of each sample in DBSCAN 
clustering to make more refined relabeling, it may need more human intervene besides algorithmic efforts 
for those outlier (noise) points in each cluster.  
 
4.2 The devolution paths of psychiatric states via relative entropy analysis  

Devolution path and intrinsic transfer. To further demonstrate the possible pathological devolution path, 
we conduct a novel relative entropy analysis for the pMAPs after the relabeling procedure. The devolution 
path refers to the generic devolution process from a normal psychiatric state to dysregulated psychiatric 
states such as bipolar disorders or schizophrenia states. Similarly, we call the change between two subtypes 
of dysregulated psychiatric states an internal transfer. The reason for us to conduct such post pMAP 
analysis is that it cannot only unveil new knowledge about devolution paths of different psychiatric states 
from the normal state but also validate the correctness and effectiveness of the relabeling from the mislabel 
correction procedure. 
 
The devolution path can be inferred by calculating the relative entropy, i.e., the K-L divergence of the 
different psychiatric states. Unlike the traditional symmetric distances, the non-symmetry of the K-L 
divergence provides a good measure to evaluate the devolution distance between the two psychiatric 
states. It is almost theoretically impossible to achieve it using the original SNP data because the probability 
distribution of high-dimensional SNP data is unknown. However, we can define the K-L divergence by 
exploiting the pMAPs of each psychiatric group to estimate their relative entropies. 
 
K-L divergence between two psychiatric groups. Given high-dimensional datasets 𝑋 = {𝑥&}&'(% ∈ 	ℛ%×$ and 
𝑇 = {𝑡&}&'(; ∈ ℛ;×$	, 𝑝 ≫ 𝑛,𝑚 representing two different psychiatric sample groups, the K-L divergence 
between them is defined as,  

 𝐾𝐿(𝑝 ∥ 𝑞) =�𝑝&𝑙𝑜𝑔
𝑝&
𝑞&

%

&'(

 (5) 

where  𝑝7 = 𝑠7/∑ 𝑠7
$
7'( , 𝑠7 is the jth singular value of the prototype data of 𝑋  𝑍D = 𝐹89:;(𝑋) ∈ ℛ%×1 under 

fSOM learning and 𝑞7 = 𝑢7/∑ 𝑢7
$
7'( , 𝑢7 is the jth singular value of 𝑍= = 𝐹89:;(𝑇) ∈ ℛ;×1 . 

 
Figure 6 illustrates the K-L divergences from the two control subgroups to the other two dysregulated 
psychiatric states. The results seem to echo our previous relabeling result as well as provide more insights 
for possible devolution paths.  Figure 6 (a) shows that the control 1 subgroup is closer to BPD 1 in terms of 
KL-divergence than control 0.  It suggests that the control 1 state tends to go devolution to the BPD 1 state 
more likely compared to the control 0 state. That both control 0 and control 1 have almost the same K-L 
divergence to the SCZ 0 suggests they have the same likelihood to devote to the ‘SCZ 0’ state. Similarly, 
the ‘control 1’ state seems to devote to the SCZ 2 with a higher likelihood than the ‘control 0’ state. Figure 
6 (b) illustrates that the. The ‘BPD 1’ state is least likely to conduct an internal transfer to the SCZ 2 
compared to other dysregulated psychiatric states. 
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Fig 6. The K-L divergence analysis between the different psychiatric groups based on pMAPs. The subfigure 
(a) shows the K-L divergences of the controls 0 and 1 with respect to BPD 0, 1, and SCZ 0,1,2 respectively. 
The subfigure (b) describes the K-L divergence relationships between BPD 0, 1, and SCZ 0,1,2. It suggests 
the possible devolution paths and internal transfers between different psychiatric states. 
 
Integrating with the previous relabeling results, we have the following interesting devolution path 
information.  The control groups have a shorter devolution path genetically to the BPD* group for their 
relatively less K-L divergence values. On the other hand, a longer devolution path can exist from the control 
to the SCZ* group because they have a larger K-L divergence. Figure 7 illustrates the possible devolution 
paths of the control groups to the BPD* and SCZ* respectively according to their K-L divergences as well 
as internal transfers between the disease states, where the K-L divergence value is marked for each path or 
internal transfer. Classic psychiatric studies seem to support the devolution path because a subject can start 
from a normal psychiatric state to a more dysregulated, complicated, or unstable state in a gradual or 
abrupt manner.  Moreover, previous studies also support the finding because it was reported that bipolar 
disorder can be a transition state between the normal and schizophrenia states [38].  
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Fig 7. The possible devolution paths of the control groups to the BPD* and SCZ* according to their pMAP 
patterns. The pMAPs of the BPD* and SCZ* groups have more complicated patterns than those of controls. 
It indicates that the BPD* is an intermediate psychiatric state between the SCZ* and control.  
 

5 The comparisons of psychiatric map diagnosis with peer methods 

We conduct control, BPD, and SCZ diagnosis with the relabeled data to validate the correctness and 
effectiveness of the relabeling. The effective relabeling should lead to good improvements in diagnostic 
accuracy and poor or mediocre diagnosis performance may suggest the relabeling does not do a good 
correction for the noisy labels. In other words, if the ground truth labels are assumed as the relabeled ones, 
it should show improvements in comparison with the previous labels if the relabeling is correct and solid 
enough under a reproducible machine learning model. As we pointed out before, we employ multi-class 
support vector machines (SVM) in this study to conduct the psychiatric map diagnosis for its good 
reproducibility, transparency, and interpretability.  
 
Since the traditional classification measures are neither efficient nor interpretable in assessing different 
machine learning models’ performance, we extend the proposed diagnostic index (d-index) measure under 
binary classification to provide a more explainable and sensitive learning performance evaluation [39]. This 
is because the traditional classification measure assessment may only reflect one aspect of classification 
performance. As a result, it is inconvenient to compare many classification measures for different machine 
learning model performances on different datasets in a more explainable approach. The d-index definition 
of the binary classification can be found in the following section and more d-index information can be 
found in [40]. 
 
Diagnostic index (d-index). Given a prediction function 𝑓�(𝑥): 𝑥 → {−1,1} constructed from training data 
𝑋E = {𝑥& , 𝑦&}&; under a machine learning model 𝛩, where each sample 𝑥& ∈ ℛ$ and its label 𝑦& ∈ {−1,1}, 𝑖 =
1,2,⋯𝑚,   d-index evaluates the performance of 𝑓�(𝑥) in predicting the class of test data 𝑋9 = {𝑥7′, 𝑦7′}73 .  It is 
defined as  

 𝑑 = 𝑙𝑜𝑔'(1 + 𝑎) + 𝑙𝑜𝑔'(1 +
𝑠 + 𝑝
2 )   (6) 

where 𝑎, 𝑠 and 𝑝 represent the corresponding accuracy, sensitivity, and specificity in diagnosing test data 
respectively. The larger the d-index value, the better the predictability of 𝑓�(𝑥),  i.e., the better learning 
performance achieved by the machine learning model 𝛩.  The maximum value of d-index is 2 where 
classification has the perfect results. The minimum value of the d-index is 2𝑙𝑜𝑔5(

F
5
)  if there is no 

underfitting [40]. 
 
Figure 8 compares the d-index values and misclassification rates before and after relabeling in detecting 
control, BPD, and SCZ, under four machine learning models: SVM, random forests (RF), extremely 
randomized trees (ET), and deep neural networks (DNN), where training and test datasets have 80% and 
20% samples of the total samples respectively [15, 30, 31]. We employ nSVA to select p% (p=10, 20, …100) 
top-ranked features to observe how the relabeling results impact those datasets under different percentages 
of top- feature selection. The d-index values of the diagnoses after relabeling are much higher than those 
before relabeling for all datasets across all four models under the nSVA feature selection. Correspondingly, 
the error rates of learning performance decreases significantly for those relabeled data. It strongly suggests 
the correctness and effectiveness of the relabeling. Furthermore, all the models have low misclassification 
rates after relabeling and SVM had the lowest ones, which indicates the strong reproducibility of the 
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proposed psychiatric map diagnosis.  
 

 
Fig 8. The comparisons of control, BPD, and SCZ diagnoses before and after relabeling under nSVA feature 
selection under four machine learning models.  
 
Figure 9 compares the precision, recall, and F1 values under multi-class SVM as well as entropy values 
before and after relabeling for different psychiatric groups under different percentages of features selected 
by nSVA.  The precision, recall, and F1 values are consistent with the d-index values well.  Interestingly, 
we have found that the original BPD and SCZ groups only show they have relatively smaller entropy values 
than that of the control group and the relationship of the entropies of the BPD and SCZ groups looks 
‘random’. However, the entropies of the relabeled subgroups demonstrate more regular patterns: the 
relabeled BPD* subgroup regularly has the smallest entropies, and SCZ* has the second-smallest entropies.   
The results somewhat validate the correctness of relabeling besides suggesting that the psychiatric disorder 
samples may have more special SNP patterns than those of the normal ones. 
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Fig 9. Classification metric and entropy comparisons before and after relabeling under different 
percentages of top-ranked features by nSVA. The subfigures (a) and (b) compares the values of recall 
precision, F1-score before and after relabeling before and after relabeling under multi-class SVM. The 
subfigures (c) and (d) illustrate the differences of entropies of control, SCZ, and BPD.  
 
5.1 Comparison with state-of-the-art machine learning methods 

We compare our results with state-of-the-art machine learning methods to further validate the effectiveness 
of the proposed pMAP diagnosis for mislabeled high-dimensional learning. The methods include one-shot 
learning, convolutional neural networks (CNN), residual neural networks (ResNet), long short-term 
memory (LSTM), Transformer, and generative adversarial networks (GAN), as well as classic support 
vector machines (SVM) [41-46]. The comparison results can alternatively answer the query: ‘what will 
happen to the deep learning and ML models under mislabeled high-dimensional data?’ 
 
We briefly describe the deep learning models for the convenience of description. CNN is characterized by 
a partially connected layer structure and different layers have different functionalities such as 
convolutional, and max/average pooling.  It demonstrates powerful learning capabilities, especially for 
image data besides decent feature extraction. ResNet is an enhanced CNN using residual learning 
techniques to tackle the challenges of gradient disappearance and explosion in CNN learning. It 
demonstrates advantages over CNN in handling big and more complicated data.  LSTM, which is widely 
employed in time-series data analysis, overcomes the weakness of general recurrent neural networks 
(RNN) in handling long-time information dependence by employing LSTM cells that consist of three 
different gates. GAN employs two different neural networks: a generator and discriminator (e.g., CNN and 
LSTM) to contest with each other to accomplish learning. GAN stops at the point when the discriminator 
was completed ‘confused’ by the learning results from the generator. In addition, Transformer is a special 
feedforward neural network taking advantage of the self-attention mechanism in topology and learning. It 
improves the parallelism of the model and decreases its reliance on long-term memory. One-short learning 
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aims to handle the data scarcity issue in deep learning, i.e., input data itself is small enough to satisfy the 
training demand for the number of observations in training. It creates models that can accurately identify 
test samples with a limited quantity of training data. More details about the models can be found in the 
literature [41,47]. 
 
Figure 10 compares the proposed pMAP diagnosis with the state-of-the-art deep learning models as well 
as SVM which is a representative of the classic learning method, under different levels of feature selection 
by nSVA. It is obvious that the pMAP diagnosis demonstrates its superiority to the rest of the methods no 
matter in learning effectiveness or stability. It suggests that all deep learning models show quite poor 
performance on the original data. For example, LSTM obviously fails the whole learning process by 
encountering overfitting because of its very low d-index value [40]. 
 

 
 

Fig 10 The comparisons of the proposed pMAP diagnosis with its peer methods: SVM, one-short learning, 
CNN, GAN, LSTM, ResNet, and Transformer. The pMAP diagnosis demonstrates stably leading 
performance compared to its peers under different levels of feature selections.  Almost all deep learning 
models show poor performance for the original data. Both one-short learning and LSTM encounter 
underfitting.  
 
As we pointed out that deep learning may not work well for mislabeled high-dimensional data learning. 
The two reasons can interpret the poor performance from the deep learning models. The first is the issue 
of the data scarcity issue, i.e., the high-dimensional data has a small number of samples that prevents it 
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from taking advantage of the powerful learning capabilities of the deep learning models. The second, which 
can be more important, is the problem itself is a mislabeled learning problem, but there are no deep learning 
techniques available to handle mislabeled high-dimensional data. This also can explain why one-short 
learning encounters poor performance because of underfitting. 
 
On the other hand, why the pMAP diagnosis leads all the other methods lies in that it is a specifically 
designed algorithm for mislabeled learning. It exploits fSOM learning to gain the pMAP for each SNP 
observation and density clustering to seek the similarities between the pMAPs.  It takes advantage of the 
DBSCAN clustering results of the prototypes of the original observations to relabel data to decrease or even 
eliminate mislabeling information at the most level. Finally, the kernel method SVM is employed to conduct 
psychiatry prediction by exploiting its reproducibility and efficiency in learning. Therefore, the pMAP 
diagnosis is more effective, efficient, and robust in handling the mislabeling psychiatry learning problem 
than its possible peer methods.  

6 Discussion and conclusion 

We propose a novel mislabeled learning algorithm for high-dimensional data to provide a technique to 
overcome the long-time misdiagnosis between BPD and SCZ in psychiatry from an AI perspective. To the 
best of our knowledge, mislabeled learning for high-dimensional data is a rarely investigated but 
essentially important and challenging problem in modern AI and data science. With the surge of big data 
and AI, more and more mislabeled learning problems need serious investigations according to their ‘data 
background’. Simply assuming the label information is correct would cause ML to encounter mediocre or 
poor performance and produce a serious misdiagnosis in many AI-driven disease diagnoses (e.g., mental 
disorder detection) and present a hurdle in AI health and related interacting fields.  
 
The proposed psychiatric map diagnosis employs feature self-organizing map (fSOM) learning to tackle 
mislabeled learning for high-dimensional data successfully. It generates the low-dimensional prototype: 
pMAP for each observation that synthesizes their essential characteristics. The pMAPs discover and unveil 
new knowledge for input data besides their data distributions, i.e., it identifies different unknown hidden 
subtypes for each group. For example, it finds that there are two subtypes in the control group, 2 subtypes 
in the BPD, and 3 subtypes in the SCZ group. We employ a novel relabeling technique to correct label 
information according to DBSCAN clustering for the prototype data of input high-dimensional data, before  
employing reproducible multi-SVM prediction for high-accuracy psychiatric diagnosis. It provides a more 
explainable and implementable technique without human intervene to overcome the long-time 
misdiagnosis issue in psychiatry from AI perspective and sheds new light on mislabeled learning for high-
dimensional data.  
 
Furthermore, the devolution path of psychiatric states via relative entropy analysis provides insights into 
existing pathological psychiatry. The novel devolution path analysis unveils latent internal transfer and 
devolution road maps between different subtypes of the control, BPD, and SCZ groups, which have been 
rarely investigated in the existing psychiatry studies and bioinformatics research. It will inspire more future 
studies on this topic via similar devolution path analysis ways. However, it still may need more data and 
experiments or genetic findings to validate its effectiveness furthermore. 
 
Although this method is designed to tackle mislabeled learning for high-dimensional data, it can be 
theoretically applied or extended to more general mislabeled learning because its essential components 
such as prototype learning, DBSCAN clustering, multiclass SVM can essentially apply to any kind of data.   
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However, it needs to point out that fSOM assumes input data is high-dimensional data rather than general 
data in this study. It may not get desirable results by just applying it to other data because the variable 
space may not be that meaningful in the embedding space. It is also noted that fSOM may need a huge 
computing demand in generating pMAPs especially because the dimensionality of input data is high. We 
have spent about 2 weeks completing fSOM learning on a 20x20 fSOM plane to generate 203 pMAPs on an 
Intel Xeon E5-2620 machine under OS Ubuntu 20.04 LST (Focal Fossa) with RAM 128Gb and CPU speed 
2.1Ghz. We are seeking to implement fSOM via an FPGA approach to tackle the high computing demands 
[48].  
 
In addition, there are quite a few aspects to be improved in the proposed methods. For example, it is 
desirable to design more customized data-driven kernels in multiclass SVM rather than rely on some 
standard nonlinear kernels (e.g., Gaussian kernel), which can be especially important for other types of 
data.  Furthermore, we are interested in exploring to build new interpretable machine learning models by 
employing new techniques such as hierarchical level fSOM learning structure or FPGA speedup to decrease 
its complexity for the sake of scalability and adaptability, especially for large-scale high-dimensional data.  
Furthermore, it is possible to substitute the existing DBSCAN by DBSCAN++, HDBSCAN, OPTICS or  other 
variants such as OPTICS to handle large data and get better pMAP clustering performance before relabeling 
[49-51]. Last but the least, we are also interested in continuing our investigations in AI-based devolution 
path theory in psychiatry proposed in this study.   
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