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Abstract  27 

Background 28 

The microbial community present in the respiratory tract can be disrupted during influenza virus 29 

infection, leading to functional effects on the microbial ecology of the airways and potentially 30 

impacting transmission of bacterial pathogens. Determining the transmission of airway 31 

commensals, which can carry antibiotic resistance genes that could in turn be transferred to 32 

bacterial pathogens, is of public health interest. Metagenomic-type analyses of the microbiome 33 

provide the resolution necessary for microbial tracking and functional assessments in the airways.  34 

Results 35 

We obtained 221 respiratory samples that were collected from 54 individuals at 4 to 5 time points 36 

across 10 households, with and without influenza infection, in Managua, Nicaragua. From these 37 

samples we generated metagenomic (whole genome shotgun sequencing) and 38 

metatranscriptomic (RNA sequencing) datasets to profile microbial taxonomy and gene 39 

orthologous groups. Overall, specific bacteria and phages were differentially abundant between 40 

influenza positive households and control (no influenza infection) households, with bacterial 41 

species like Moraxella catarrhalis and bacteriophages like Chivirus significantly enriched in the 42 

influenza positive households. Some of the bacterial taxa found to be differentially abundant were 43 

active at the RNA level with genes involved in bacterial physiology differentially enriched between 44 

influenza positive and influenza negative samples, primarily for Moraxella. We identified and 45 

quantified CRISPR arrays detected in the metagenomic sequence reads and used these as 46 

barcodes to track bacteria transmission within and across households. We detected a clear 47 

sharing of bacteria commensals and pathobionts, such as Rothia mulcilaginosa and Prevotella 48 

bacteria, within and between households, indicating community transmission of these microbes. 49 

Antibiotic resistance genes that mapped to Rothia and Prevotella were prevalent across our 50 

samples. Due to the relatively small number of households in our study we could not determine if 51 

there was a correlation between increased bacteria transmission and influenza infection. 52 
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 53 

Conclusion 54 

This study shows that microbial composition and ecological disruption during influenza infection 55 

were primarily associated with Moraxella in the households sampled. We demonstrated that 56 

CRISPR arrays can be used as high-resolution markers to study bacteria transmission between 57 

individuals. Although tracking of antibiotic resistance transmission would require higher resolution 58 

mapping of antibiotic resistance genes to specific bacterial genomes, we observed that individuals 59 

connected by shared bacteria had more similar antibiotic resistance gene profiles than non-60 

connected individuals from the same households. 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

  69 
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Introduction 70 

Influenza infection as a contagious respiratory illness causes significant morbidity and mortality 71 

worldwide. Bacterial co-infection during influenza infection, particularly in the elderly and 72 

immunocompromised populations, can play an important role in disease progression leading to 73 

complications and severe disease outcomes [1]. Infections with respiratory viruses can also 74 

disrupt the microbiome of the airways and potentially contribute to disease severity [2]. A number 75 

of studies have demonstrated viral disruption of the microbiota in the respiratory tract with 76 

changes in relative abundance of bacterial taxa such as Pseudomonas, Corynebacterium, and 77 

Streptococcus [3, 4]. The use of antibiotics, often prescribed for influenza patients because of 78 

secondary bacterial infections, can disrupt the microbiota and diminish the protective function of 79 

the microbiome [5], as well as contribute to the emergence of antibiotic resistant bacterial strains. 80 

We and others have shown that the respiratory tract can be a potential reservoir of antibiotic 81 

resistance genes in humans. Interestingly, the presence and expression of antibiotic resistance 82 

genes detected were often to drugs the subjects had not been taking [6, 7], indicating potential 83 

transmission between individuals. The transmission of opportunistic pathogens in the respiratory 84 

tract, such as Streptococcus pneumonia, is known to be associated with respiratory tract viral 85 

infection and younger age of the infected subject [8, 9]. For bacteria to transmit to a new host, the 86 

invading bacteria need to interact with the residing microbes and establish colonization [8, 10], 87 

more likely to occur when the microbiome in the new host is disrupted.  88 

 89 

Despite these observations for influenza and other viral pathogens [2-4], the dynamics of the 90 

respiratory tract microbiome and the disruption of its overall microbial ecology in human seasonal 91 

influenza infection remains to be characterized. For example, very little has been reported on the 92 

modulation of phages in the respiratory tract during acute respiratory virus infection [11]. Phages, 93 

an important entity in the human microbiome, were found to shape and co-evolve with their 94 

bacterial hosts impacting bacterial growth, metabolic activities, virulence, and antibiotic resistance 95 
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[12]. The compositional shift of phages and the microbiome were found to be associated with 96 

human disease, such as inflammatory bowel disease [13]. Interacting with both their bacterial 97 

hosts and eukaryotic cells, phages can potentially provide another layer of information to the 98 

characterization of the microbiome in response to influenza infection. In this study, we used 99 

CRISPR spacers to study the interactions between bacteria and phages. CRISPR functions as 100 

the bacterial immune system to defend against virus infection by integrating a 20-70 bp viral 101 

spacer into the CRISPR locus when the bacteria are first exposed to the virus. Bacteria that have 102 

the integrated sequences are then able to defend themselves against viruses that match those 103 

spacer sequences [14]. We hypothesized that this unique history record of a bacteria’s encounter 104 

with a phage could be used to profile the dynamics of the microbial ecology within the respiratory 105 

tract.  106 

 107 

 108 

A goal of our study was to profile the disruption of the microbiome with influenza infection and to 109 

determine, from metagenomic analyses of upper respiratory tract samples, whether we could 110 

quantify transmission of commensal bacteria and antibiotic resistance genes. Currently, most 111 

studies on bacteria transmission focus on one bacteria species and use single nucleotide 112 

polymorphisms (SNPs) in marker genes [15] or whole bacterial genomes [16, 17]. If using 113 

metagenomics data, this would require very deep sequencing depth and could only sufficiently 114 

profile SNPs from the most abundant bacterial genomes. Instead, we leveraged the unique nature 115 

of bacterial CRISPR arrays as markers to track bacteria transmission of different bacteria species. 116 

Viral spacers are constantly acquired by the bacteria and integrated at the end of CRISPR arrays, 117 

proximal to the leader sequence [14]. Although the spacer sequences that the bacteria acquire 118 

from a specific virus are not entirely random, as bias in spacer sequence distribution has been 119 

observed [18, 19], the possible number of unique spacer sequences bacteria can acquire from a 120 

virus infection is large. Given the dynamics of the CRISPR arrays, the probability that individuals 121 
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share the exact same sequences due to independent spacer integration events is negligible. We 122 

demonstrate that CRISPR arrays can indeed be used to study bacteria transmission with better 123 

resolution than SNP-type analyses, especially when the CRISPR array is large.  124 

 125 

Results 126 

Study cohort and sample collection 127 

We obtained 221 respiratory samples (pooled nasal and throat swabs) that were collected from 128 

54 individuals participating in the Household Influenza Transmission Study (HITS) in Managua, 129 

Nicaragua. In total, 10 households with 4-8 members in each household participated in the study, 130 

and samples were collected at 4 to 5 time points for each individual, at 2-4 day intervals. Sample 131 

collection was independent of influenza infection, thus some of the samples were collected at time 132 

points when the individual was not infected or had recovered (Table S1). The households were 133 

assigned to high, low, or no influenza virus (control) infection groups based on the number of 134 

individuals per household who tested positive for influenza. High infection households had all or 135 

2/3 of the household members testing positive at some point over the serial sampling (5-8 136 

household members), while the low infection households had less than a third of household 137 

members testing positive for influenza at any time point (2-3 members). The ‘no flu’ households 138 

represent uninfected controls (Table S1). We did not sample all the household members from the 139 

low influenza and control households. Influenza infection was diagnosed by rtPCR and the 140 

infections were all due to influenza A virus subtype H3N2. Total RNA and DNA were extracted 141 

from each sample and processed for RNAseq (metatranscriptomics) and whole genome shotgun 142 

(metagenomics), respectively, for an in-depth microbiome analysis of the upper respiratory tract 143 

across household members. Of the 221 samples, we obtained 167 metagenomics and 178 144 

metatranscriptomics libraries; 135 samples had both metagenomics and metatranscriptomics 145 

data and we focused on these samples for a subset of the analyses.  146 
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 147 

Impact of influenza infection on microbial composition in the upper airways  148 

To profile the microbial composition in subjects with and without influenza across the households 149 

studied, we did a taxonomic classification on the metagenomics and metatranscriptomics reads 150 

post filtering (human reads were removed from both datasets and rRNA reads were removed 151 

from the metatranscriptomics dataset). We detected bacteria, phages, and eukaryotic viruses 152 

across the samples (Human viruses are shown in Tables S2 and S3) by using kraken2, which is 153 

based on exact k-mer matches to reference genomes [20]. Of the human viruses detected, beta 154 

herpesvirus was the most prevalent across samples. There was no correlation between viruses 155 

detected and the influenza infection status of the individuals, except for influenza A virus 156 

sequence reads, which were, as expected, enriched in the flu positive samples, validating the 157 

quality of the metatranscriptomics datasets (Fisher’s Exact test and FDR <=0.05).   158 

 159 

To analyze the microbial community across the household groups and influenza infection status, 160 

we compared the relative abundance of bacteria and viruses for different comparisons; the 161 

household subjects and samples are summarized in Table 1 and Table 2. Children were enriched 162 

in the flu infection group as they were the index cases and the first household members tested to 163 

have influenza infection. Pooling samples from different timepoints for each individual, we 164 

identified significant differences in bacteria diversity between household groups at both DNA and 165 

RNA levels (PERMANOVA [21] p value=0.0005 and 0.043 for metagenomes and 166 

metatranscriptomes, respectively; Fig. 1a and 1b). We applied differential expression analysis 167 

(DESeq2 [22]) to identify specific bacterial taxa that drove the differences in the beta diversity. 168 

Dolosigranulum was significantly enriched in the metagenomes of the control households 169 

compared to the low infection households but enriched in the metatranscriptomes of the high flu 170 

infection households compared to the low infection households (Fig. 1c and 1d). Moraxella was 171 
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enriched in the high flu infection households for both metagenomes and metatranscriptomes (Fig. 172 

1c and 1d).  173 

Figure 1. Differential abundance of bacteria and phages between households and samples. (a) PCA 
plot of b diversity of the microbial composition from metagenomics datasets for different influenza infection 
households. Red indicates the high flu infection households, pink indicate low flu infection households, and 
grey indicates control households. (b) PCA plot of b diversity of the microbial composition from 
metatranscriptomics datasets for different influenza infection households. Red indicates the high flu infection 
households, pink indicate low flu infection households, and grey indicates control households. (c) Differential 
abundance of bacteria genera between different household groups in metagenomes. Red or pink indicate 
higher differential abundance in the flu infection group tested while grey indicates it is higher in the control 
group. (d) Differential abundance of bacteria genera between different household groups in 
metatranscriptomes. Red or pink indicate higher differential abundance in the flu infection group tested while 
grey indicates it is higher in the control group. 
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 174 

Fig. 1 (cont’d). (e) PCA plot of b diversity of the microbial composition from metagenomics datasets for flu 
negative individuals from flu infection or control households. Red indicates the flu infection households and 
grey indicates control households. (f) PCA plot of b diversity of the microbial composition from 
metatranscriptomics datasets for flu negative individuals from flu infection or control households. Red 
indicates the flu infection households and grey indicates control households. (g) Differential abundance of 
bacterial genera between no flu infection individuals from flu infection and control households. Red indicates 
higher differential abundance in the flu infection households while grey indicates it is higher in the control 
group. 
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By comparing flu negative samples from individuals in the influenza infection households with the 175 

(flu negative) samples from the control households, we identified significant differences in 176 

bacterial composition of the metagenomes (p-value=0.0005) but not of the metatranscriptomes 177 

(p-value=0.29) (Fig. 1e and 1f). A few bacteria taxa were differentially enriched between the two 178 

groups, including Dolosigranulum, which was enriched in the control households (Fig. 1g).  179 

 180 

We compared samples from individuals who did not test positive for influenza at any time point 181 

from any of the households (including the controls) and compared them to influenza positive 182 

samples. The microbial composition was significantly different (metagenomes p-value=0.015) but 183 

not the microbial expression profile (metatranscriptomes p-value=0.099, Fig. 2a). Moraxella was 184 

enriched in the flu positive samples (Fig 2b). Since Moraxella was enriched in the high infection 185 

households and the flu infection samples, indicating it correlated with influenza infection, we 186 

compared the relative abundance of the Moraxella species between flu negative time points 187 

(baseline) and flu positive time points from the same individuals. A few of the Moraxella spp, 188 

especially Moraxella catarrhalis, were moderately enriched in the flu positive time points (log2 fold 189 

change >1) in both metagenome and metatranscriptome datasets (Fig. 2c). We also identified 190 

phages, such as Salmonella phage Chi (or Chivirus) which was enriched in the high flu infection 191 

households compared to the ‘no flu’ infection households (FDR<=0.05, log2 fold change =2.17) 192 

while Pahexavirus was enriched in the low flu infection households compared to the ‘no flu’ 193 

infection households (FDR<=0.05, log2 fold change =2.69) 194 

 195 

To characterize microbial functional changes during influenza infection, we profiled the relative 196 

abundance of microbial genes with FMAP, a tool that provides a functional analysis from 197 

metagenomic and metatranscriptomic sequencing data [23]. We also identified gene orthology 198 

groups (KEGG) and their relative abundance. As previously done, we partitioned the samples into 199 

influenza infection timepoints and no infection groups (only samples from individuals that did not 200 
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test as flu positive were included in the ‘no infection’ group). In the metagenomics data we 201 

identified i number of microbial genes differentially abundant between flu positive and flu negative 202 

samples, including genes that allow bacteria to adapt to the environment, such as the two-203 

 
 
Figure 2. Differential abundance of bacteria and phages between influenza infection status.  (a)  PCA 
plot of 𝛃 diversity of the microbial composition from flu positive and flu negative samples from metagenomics 
and metatranscriptomics datasets. Red indicates flu positive samples and grey indicates flu negative 
samples. (b) Bacterial genera differentially abundant in metagenomes between flu positive and flu negative 
samples; red indicates the taxa are enriched in flu positive samples and grey enriched in flu negative samples. 
(c) Log2 fold change of Moraxella species between flu positive and flu negative time points from the same 
individuals in metagenomes and metatranscriptomes. The red triangles indicate enrichment in the flu positive 
time points.  
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component system where histidine kinase detect stimuli from the environment and trigger 204 

downstream regulatory responses [24] (Fig. 3a). We did not identify genes differentially 205 

expressed in the metatranscriptomics data. To identify which specific bacterial taxa contributed 206 

to the differentially abundant genes between flu positive and flu negative samples, we extracted 207 

 
Figure 3. Bacteria genes and pathways altered in influenza infection. Microbial gene orthologous groups 
were profiled for each sample. Microbial orthologous genes differentially abundant in metagenomes between 
flu positive samples and flu negative samples from all households were identified using DESeq2 with a p 
value smaller than 0.05 and a log 2 fold change larger than 2 or smaller than -2. (a) The dot plot shows 
differentially abundant genes between flu positive and flu negative samples. The size of the dot indicates –
log10 of the adjusted p values. Red indicates that the relative abundance of the gene is higher in flu positive 
samples and grey indicates it is higher in flu negative samples. (b) The reads mapped to the differentially 
abundant genes in (a) were extracted and their taxonomy classifications were determined through Kraken2. 
Moraxella contributes the most to these genes. The graph shows the boxplot of counts per million for the 
reads mapped both to Moraxella catarrhalis and the genes on the y axis. The samples were separated into 
the flu positive or flu negative groups. Red indicates flu positive samples and grey indicates flu negative 
samples.  
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the reads mapped to these genes and assigned taxonomic classification using Kraken2. 208 

Moraxella was the dominant genus contributing to the differentially abundant genes (Fig. S1), 209 

with Moraxella catarrhalis largely contributing to these genes in the flu positive samples (Fig. 3b).  210 

 211 

Shared CRISPR spacers to identify transmission events  212 

We used the metagenomics datasets to study phage-bacteria interactions by focusing on the 213 

CRISPR array-integrated spacers. As phages play an important role in shaping the bacterial 214 

population and could affect host immunity, we identified phages differentially abundant between 215 

influenza positive households and control households. We profiled phage-bacteria interactions to 216 

further investigate the microbial ecological changes associated with influenza infection and to 217 

identify bacterial host species for the enriched phages found. The spacers in the CRISPR arrays, 218 

originating from viruses and integrated into the bacterial genomes, were used to link the bacteria 219 

and virus. The spacer sequences were mapped back to the viral and bacterial contigs, leading to 220 

the identification of several bacteria and phages that were linked by the shared spacers. Phages 221 

were connected to bacterial hosts both in and outside their designated host range (Fig. S2). Some 222 

interactions between bacteria and phages were shared between individuals and others were 223 

unique to an individual (Fig. S2). A few bacterial commensals and pathobionts in the respiratory 224 

tract, such as Prevotella and Rothia mucilliginosa, were found to be infected by many phages. No 225 

specific phage-bacteria interactions appeared to be associated with influenza infection 226 

(determined by Fisher’s Exact test). This indicates either that influenza infection does not disrupt 227 

the phage-bacteria interaction dynamics in the respiratory tract or the interactions we profiled 228 

happened before influenza infection.  229 

 230 

One important question when considering the disruption of the respiratory microbiome in a 231 

respiratory viral infection is whether certain bacteria with pathogenic potential are more likely to 232 
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be transmitted. Since many commensals and pathobionts are natural members of the respiratory 233 

community [25, 26], determining the dynamics of respiratory commensal bacteria transmission 234 

within households is challenging. We used the CRISPR spacers and arrays to track bacteria 235 

transmission. Bacteria with the same set of spacers in the same order are likely to be related, 236 

indicating a potential transmission event if the same CRISPR arrays are found in two individuals. 237 

We first identified spacer sequences from the metagenomics reads using MetaCRAST.  We 238 

pooled the spacers across all the samples and identified spacers shared between samples based 239 

on 90% sequence similarity. We then determined the proportion of spacers that were shared 240 

between any two samples. Samples from the same individual collected at different time points 241 

shared more spacers than samples from different individuals (Fig. 4a). Although spacer content 242 

is dynamic over time within individuals because of continuous interactions between phages and 243 

their bacterial hosts, the spacers were not significantly different over the sampling period. We also 244 

found that the proportion of shared spacers was higher when comparing samples from individuals 245 

living in the same household and individuals from different households, which is what we would 246 

expect with transmission (Fig. 4a). To further compare spacers identified from individuals within 247 

and across households, we pooled the serial samples for each subject and redid the analysis in 248 

subject-to-subject comparisons. Individuals from the same households have a higher proportion 249 

of shared spacers than individuals from different households (Fig. 4b), indicating more shared 250 

bacteria. As the number of subject-to-subject comparisons is not balanced for within and between 251 

households, we removed comparisons between individuals with lower than 2% shared spacers 252 

(Fig. 4b), leading to an equal number of comparisons within and between households, helping us 253 

to weigh comparisons between individuals from the same and different households equally and 254 

removing noise. A connection network was then generated based on the percent of shared 255 

spacers between individuals (Fig. 4c) where the nodes are the individuals and the edges are 256 

weighted by the value of the percent of shared spacers. We also detected subnetworks within the 257 

network using the shared spacer data between individuals (Fig. 4c). The correlation between the 258 
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partition of the nodes to the subnetworks and the household metadata was 0.79, indicating the 259 

individuals within the same households are more tightly connected based on their percent of 260 

shared spacers.  261 

 262 

To determine which bacteria taxa were shared between individuals, we then investigated the 263 

genomic sequence where the shared CRISPR arrays were located. To do so we assembled the 264 

 
Figure 4. CRISPR spacers shared between samples and individuals. The percent of shared spacers 
between samples or individuals were compared and used to construct the connection network between 
individuals. (a)  Boxplot indicating percent of spacers shared between samples from the same individuals, 
different individuals in the same households, and individuals from different households. The colors indicate 
whether the samples are from the same households (purple) or different households (orange). (b) Density 
plot and boxplot for percent of spacers shared at the individual level within and between households. The 
black line on the density plot indicates the cut-off where there is the same number of comparisons within 
and between households. (c) The connection network was generated based on the percent of shared 
spacers between individuals for the data above the cut-off in (b). The nodes represent individuals, and the 
edges represent percent of shared spacers. Same color nodes indicate individuals come from the same 
household and the numbers on the nodes represent the subnetwork they were partitioned into. 
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metagenomics reads into contigs from samples from the same individual and mapped the spacers 265 

back to the contigs to identify CRISPR arrays and the order of the spacers. We used a dynamic 266 

programming local alignment method to find the best alignments between any two CRISPR arrays 267 

that come from different individuals. We only focused on the CRISPR array alignments with more 268 

than 5 spacers. We analyzed the 2-dimensional density distribution of the CRISPR array 269 

alignments for their alignment similarity and alignment length and compared the density 270 

distributions for the alignments with CRISPR arrays from individuals from the same or different 271 

households (Fig. S4). Using this approach, we found that density distributions are different 272 

between the two groups we compared (Fig. S4) and statistically significant by using Kolmogorov-273 

Smirnov test (p-value < 0.05) (Fig. 5a). We identified a region on the density plot (the upright solid 274 

purple region) that was enriched with alignments from the same households, and the alignments 275 

in that region have higher alignment similarity and alignment length (Fig. 5a), giving us better 276 

 
Figure 5. CRISPR array alignment distribution within and between households and bacteria taxa 
shared between individuals. (a) Contour plots for the 2D density distribution of CRISPR array alignments 
on alignment similarity and alignment length. The density distribution for the CRISPR array alignments with 
CRISPR arrays from individuals from the same households or different households were colored in purple 
and orange, respectively. The numbers on the contour plot indicate the regions have 25%, 50% and 75% of 
the data. The solid color regions on the plot indicate the density of the data in these regions were significantly 
different between the two groups. The purple region has higher data density in the same household group 
and the orange region has higher data density in the different household group. (b) The contigs contain the 
CRISPR arrays from the alignments with a similarity greater than 0.9 and more than 15 spacers mapped to 
the NCBI nt database. The graph shows the barplot of the number of individual pairs that share the bacteria 
with the color indicating they are from the same households or different households.  
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confidence that the CRISPR arrays in the alignments in this region are likely to be transmitted 277 

between individuals. We filtered the alignments with a similarity greater than 0.9 and an alignment 278 

length greater than 15. We extracted the contigs containing the CRISPR arrays from these 279 

alignments and aligned the contigs to the NCBI nt database to get taxonomic assignments. We 280 

identified contigs assigned to bacterial commensals and pathobionts that were found to be shared 281 

within and across households, such as Prevotella, Fusobacterium and Rothia (Fig. 5b). Although 282 

rare, some bacteria were shared only within households, such as Streptococcus and Veillonella 283 

parvula.  284 

 285 

Correlation between transmitted bacteria and shared antibiotic resistance genes 286 

Using the spacer profile information, we first tested if there was overrepresentation of shared 287 

bacteria within flu infection households as compared to the control households. To do this we 288 

removed individual pairs that shared less than 6% of the spacers (Fig. S5a), which eliminated all 289 

pairs across households and helped focus on within household transmission. We analyzed pairs 290 

of individuals within the same households who shared >6% of their spacers (Fig. S5b) and 291 

compared across the flu infection groups the proportion of individuals in each household who 292 

passed this filter. Since we only had 10 households and there were variations in each flu infection 293 

group for the data we compared (Fig. S5c), we were not able to determine whether there was a 294 

correlation between bacteria transmission and flu infection levels.  295 

 296 

We constructed a network to analyze the individuals that shared CRISPR arrays (Fig. 6).  We 297 

looked at antibiotic use history (Fig. S6), influenza infection status, and age (we used 18 years 298 

old as the cut off for adults). We found that individuals connected in the network could be flu 299 

positive or flu negative, with no over representation in either group (Fig. 6). To detect the presence 300 

of antibiotic resistance genes, we assembled contigs across individuals (different time points from 301 

the same individual were pooled together) for both metagenomics and metatranscriptomics 302 
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datasets. Antibiotic resistance genes were identified by aligning the predicted open reading 303 

frames on the assembled contigs to the CARD database [27]. The sequences predicted as 304 

antibiotic resistance genes were also filtered such that the reference genes in the database were 305 

at least 80% covered over their sequence length. By mapping the reads from the samples back 306 

to the antibiotic resistance genes detected in each subject, we quantified the antibiotic resistance 307 

genes by relative abundance. We aggregated the relative abundance values to the level of gene 308 

families that summarized the gene variants. We applied DESeq2 on the samples for both 309 

metagenomics and metatranscriptomics datasets to identify antibiotic resistance genes that were 310 

enriched or differentially expressed during flu infection. TEM and CfxA4 beta lactamase, as well 311 

 
Figure 6. Network connecting individuals with shared CRISPR arrays. Individuals sharing CRISPR 
arrays were linked with the subject IDs (which are anonymized) shown next to the nodes. The color of the 
nodes indicates household information. The bacteria taxa annotation of the contigs containing CRISPR 
arrays shared between the individuals are shown next to the edges. Circle and box indicate whether the 
subjects are children or adults; pink color is to highlight flu positive individuals.  
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as sulfonamide resistant genes (sul) were differentially abundant in the metagenomics datasets 312 

(FDR p-value < 0.05) (Fig. S7) but with a small log2 fold change, indicating a marginal yet 313 

statistically-significant difference. We did not detect any genes differentially expressed in the 314 

metatranscriptomics dataset. This indicates that influenza infection does not appear to be 315 

associated with increased presence of antibiotic resistance.  316 

 317 

We used the antibiotic resistance gene profiles to calculate the fraction of individuals with a 318 

specific antibiotic resistance gene in each household, compared across the high influenza 319 

infection, low influenza infection and the control households for both metagenomics and 320 

metatranscriptomics datasets. We did not find enrichment of any genes in any group, indicating 321 

there was no differential patterns in the presence of antibiotic resistance genes among 322 

households (Fig. S8). Some antibiotic resistance genes were annotated with bacteria origins 323 

using the contigs to which the genes belonged (Table S4). We compared the antibiotic resistance 324 

gene profiles between individuals from the same households and grouped individuals on whether 325 

they were connected by shared bacteria or not. We observed that individuals connected by shared 326 

bacteria had more similar antibiotic resistance gene profiles than with other individuals from the 327 

same households, demonstrated by a smaller dissimilarity index (the two distributions were tested 328 

to be different with a p-value of 0.003) (Fig. S9). This implies that there might be transmission of 329 

antibiotic resistance genes together with the transmission of bacteria.  330 

 331 

Discussion 332 

The respiratory tract microbiome, because of its function in health [25], should play an important 333 

role during respiratory tract infections. Here, we generated metagenomic and metatranscriptomic 334 

datasets from nasal and throat swabs to profile bacteria taxa and investigate ecological and 335 

functional aspects of the microbiome in the upper airways, as well as establish whether 336 

transmission of bacteria could be tracked using the metagenomics data. 337 
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 338 

We observe that influenza positive households were significantly different in microbial 339 

composition from the control (flu negative) households with a few bacteria and phages 340 

differentially abundant between the groups. We observed enrichment of Moraxella in the high flu 341 

infection households and flu positive samples. Moraxella has previously been found to be 342 

enriched in influenza infection samples [3], supporting our observation. Moraxella Catarrhalis was 343 

also enriched in the flu infection time points compared to the baseline in the same individuals. 344 

Moraxella catarrhalis is a common respiratory tract bacteria usually found in children that can 345 

potentially cause infections and lead to pneumonia [28]. However, one interesting observation is 346 

that the enrichment of certain bacteria that were previously thought to be associated with influenza 347 

infection, such as Dolosigranulum  [3], were found in our study to be enriched in the control 348 

households as well, indicating that in some instances there is a household effect for the bacteria 349 

present. When comparing between influenza positive and negative time points from the same 350 

individuals, we found that the microbial diversity was not significantly different. A recent study 351 

found divergence in the respiratory tract microbiome in ferrets over 14 days post influenza 352 

infection, where the microbiome at the initial infection time points and day 14 were more like the 353 

microbiome in the uninfected ferrets [4]. In our study, although influenza viruses were not 354 

detectable after a few days, the microbiome remained similar to the infected time points, although 355 

it is possible the microbiome would have gotten back to baseline at later time points.  356 

 357 

We identified microbial genes that were differentially enriched in flu positive and flu negative 358 

samples that are involved in bacteria physiology. This includes the two-component systems that 359 

are ubiquitous in bacteria and found to regulate virulence and antibiotic resistance in bacteria [29]. 360 

Thus, the disruption of the microbiome by influenza infection could potentially affect the balance 361 

between bacteria competition and bacteria-host interactions. Moraxella was found to contribute 362 

the most to these differentially abundant genes, indicating not only its relative abundance is 363 
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disrupted during influenza infection but also effects on its functional potential. We also 364 

investigated whether antibiotic resistance genes were associated with influenza infection, 365 

however, we did not find a strong relationship between the relative abundance or expression of 366 

antibiotic resistance genes and influenza infection as ARGs can be detected as often in the control 367 

group.  368 

 369 

The use of CRISPR arrays to track bacteria movement was previously done in a study 370 

investigating environmental bacteria strains on different continents [30]. However, our study is the 371 

first to use it to track bacteria transmission using clinical samples and in short-range transmissions 372 

within and between households. By using the spacers and CRISPR arrays we have shown how 373 

we could identify more transmitted bacteria within than across households, as would be expected. 374 

However, the number of shared CRISPR arrays between households also indicates that this could 375 

be an approach to potentially track transmission of bacteria on a larger scale. The individuals 376 

connected with shared bacteria include both children and adults, infected with influenza viruses 377 

and not infected.  Children within households can also drive bacteria sharing as they may have 378 

closer contact with other household members. However, we do not have bacteria isolates or 379 

longer time points before influenza infection to validate bacteria transmission and to determine 380 

whether this happened during influenza infection.  381 

 382 

There are a few limitations in this study. First, while the use of CRISPR arrays did allow the 383 

identification of shared bacteria between individuals, not all bacteria species have a CRISPR 384 

system [31], thus our analysis is restricted to a limited set of bacteria species. Also, we do not 385 

have bacteria isolates paired with the metagenomics datasets to validate the CRISPR array 386 

analysis. Second, we were limited by the number of households in the study and thus cannot 387 

draw any conclusion between bacteria sharing and influenza infection rate. The households with 388 

high or low influenza infection only indicate the members in the households were infected with 389 
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influenza but we could not track specific transmission of influenza viruses among household 390 

members. Other type of evidence, such as bacteria isolates or long read sequencing would be 391 

needed to accurately link ARGs to bacteria genomes shared between individuals.  392 

 393 

In conclusion, the analysis of the metagenome and metatranscriptome data demonstrate that the 394 

microbiome compositional and functional potentials are altered in influenza infection. In both flu 395 

positive and control individuals we saw that commensal bacteria and potential pathobionts can 396 

be readily transmitted within and across households. This implies that antibiotic resistance genes 397 

could also be transmitted. Finally, we demonstrated CRISPR arrays are a powerful tool to track 398 

bacteria transmission between individuals, offering a novel approach to leverage metagenomics 399 

datasets.  400 

 401 
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Material and Method 437 

 438 

Data collection  439 

Samples were collected from individuals participating in the Household Influenza Transmission 440 

Study (HITS) in Managua, Nicaragua between July 2013 and October 2014. The HITS sample 441 

cohort included child index cases enrolled in the Nicaraguan Influenza Cohort Study and their 442 

family members who developed influenza as well as some influenza negative control households. 443 

Respiratory specimens consisted of pooled nasal and throat swabs collected from household 444 

members every 2-4 days over a 9-12 day period. Samples were shipped to the Center for 445 

Genomics and Systems Biology, New York University, and stored at − 80 °C. The HITS study was 446 

approved by the institutional review boards at the Nicaraguan Ministry of Health and the University 447 

of Michigan. Informed consent or parental permission was obtained for all participants and 448 

children aged 6 years and older provided assent. 449 

 450 

RNA extraction and library preparation for metatranscriptome sequencing.  451 

Total RNA was isolated from 500uL of each respiratory sample (nasal washes) with the QIAGEN 452 

RNeasy Micro Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s recommendations 453 

and stored at –80°C. No mRNA enrichment or rRNA depletion steps were performed due to the 454 

limited biomass of the starting material. NEBNext Ultra II RNA Library Prep kit (New England 455 

Biolabs, Ipswich, MA) was used to generate the metatranscriptomics libraries and each library 456 

was subjected to 14-17 cycles of PCR and adaptor concentration was diluted 1:100 or 1:200 to 457 

maintain sample and adaptor ratio. Libraries were quantified by qPCR using the KAPA Library 458 

Quantification Kit (KAPA Biosystems, Wilmington, MA) on a Roche 480 LightCycler (Roche, Basel, 459 

Switzerland); their size distributions were measured on a 4200 TapeStation using a D1000 460 

ScreenTape (Agilent Technologies, Santa Clara, CA). Libraries were diluted to 4 nM in dilution 461 
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buffer (10mM Tris, pH 8.5) and combined with equimolar input into 9 sequencing pools (20-25 462 

libraries per pool). Paired-end sequencing (2x150 bp) was performed at the Genomics Core 463 

Facility (Center for Genomics and Systems Biology, New York University) on the Illumina NextSeq 464 

500 instrument according to the manufacturer’s instructions (Illumina, Inc., San Diego, CA) with 465 

a few libraries sequenced on the Illumina HiSeq 2500 instrument.  466 

 467 

DNA isolation and library preparation for metagenome sequencing  468 

Genomic DNA was isolated from the remaining volume of each sample with the PowerSoil DNA 469 

Isolation Kit (Qiagen) and stored at –80°C. Libraries were generated using Nextera DNA Flex 470 

library prep kit (Illumina, Inc., San Diego, CA).  Libraries were quantified by qPCR using the KAPA 471 

Library Quantification Kit (KAPA Biosystems, Wilmington, MA) on a Roche 480 LightCycler 472 

(Roche, Basel, Switzerland); their size distributions were measured on a 4200 TapeStation using 473 

a D1000 ScreenTape (Agilent Technologies, Santa Clara, CA). Libraries were diluted to 4 nM in 474 

dilution buffer (10mM Tris, pH 8.5) and combined with equimolar input into 9 sequencing pools 475 

(20-25 libraries per pool). Paired-end sequencing (2x150 bp) was performed at the Genomics 476 

Core Facility (Center for Genomics and Systems Biology, New York University) on the Illumina 477 

NextSeq 500 instrument according to the manufacturer’s instructions (Illumina, Inc., San Diego, 478 

CA) with a few libraries sequenced on the Illumina HiSeq 2500 instrument. 479 

 480 

Metagenomics and metatranscriptomics data processing 481 

The metagenomics reads were filtered to remove adaptors and low quality reads using 482 

Trimmomatic v0.36 [32] followed by DeconSeq2 v1.32.0 [33] to remove human reads. The 483 

metatranscriptomics reads were filtered by Trimmomatic, DeconSeq2 and SortMeRNA v2.1 [34] 484 

to remove adaptors, human reads and rRNA reads, respectively. The median reads number for 485 
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metagenomes was 6.8M(IQR=9.8M) and the median reads number for metatranscriptomes was 486 

4.9M (IQR=5.6M) post filtering.  487 

 488 

Bacterial taxonomic assignments and differential abundant analysis  489 

The filtered metagenomics and metatranscriptomics datasets were run through Kraken2 v2 to 490 

classify the reads to bacterial and viral taxa. Beta diversity of the metagenomics and 491 

metatranscriptomics datasets was determined using Bray Curtis distance and the global diversity 492 

between different groups was determined by PERMANOVA. The bacterial and viral taxa 493 

differentially abundant between influenza infection and no infection samples, and different 494 

household groups were identified by DESeq2 v 1.34.0 with adjusted p values <=0.05 and a log2 495 

fold change greater than 2 or smaller than -2.  496 

 497 

Bacterial gene and taxa contribution 498 

The Functional Mapping and Analysis Pipeline (FMAP [23]) was used to identify the KEGG gene 499 

orthologous groups in the metagenomics and metatranscriptomics datasets. Gene families 500 

differentially abundant or expressed between influenza positive and influenza negative samples 501 

were identified by using DESeq2 with an adjusted p value smaller than 0.05 or a log2 fold change 502 

greater than 2 or smaller than -2. The reads mapped to the KEGG gene orthologous groups that 503 

are differentially abundant between influenza positive and influenza negative groups were 504 

extracted and mapped to bacteria taxa using Kraken2.  505 

 506 

Bacteria and virus interaction analysis 507 

The metagenomics bacterial reads identified by Kraken2 were pooled across different samples 508 

from the same individual and assembled into contigs using metaSPAdes v3.12.0 [35]. The 509 

spacers were mapped back to the bacterial contigs with <=1 mismatch and no secondary mapping.  510 

All filtered metagenomics reads from the same individuals across time points were assembled 511 
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into contigs. VirSorter v1.1.0 [36] was used to predict the viral contigs and we focused on the 512 

contigs predicted as category 1 and category 2, which are high confidence viral contigs. The 513 

spacers were mapped back to the viral contigs using BLAST with parameters modified for short 514 

query sequences [37].  The viral and bacterial contigs were searched by BLAST against the NCBI 515 

nt database and viral Refseq database, respectively, to get taxonomy assignments. The bacterial 516 

contigs were annotated to the level of species or genus if more than 80% of the alignments on 517 

that contig were annotated as that species or genus. The viral assignments were filtered by 90% 518 

sequence similarity with the best hits (longest alignment length and highest identity). The viral 519 

and bacterial contigs linked by at least 5 spacers were identified and presented. Figure S10 520 

provides an overview of theanalysis steps. 521 

 522 

CRISPR spacer analysis and network analysis 523 

The spacers were identified from each metagenomics dataset using MetaCRAST [38]. The 524 

spacers across all the samples were clustered and spacers with sequence similarity greater than 525 

90% using CD-HIT [39] were determined as being the same spacers across samples. The percent 526 

of shared spacers between samples was determined as the number of shared spacers between 527 

any two samples divided by the average of total spacers in the two samples. Percent of shared 528 

spacers was compared between samples from the same individuals, different individuals in the 529 

same households and different households. When comparing at the individual level, the spacers 530 

from different time points for the same individual were combined to do the analysis. The network 531 

connecting individuals based on shared spacers was generated using igraph [40] in R studio and 532 

the edge weight was the percent of shared spacers between individuals. Subnetworks were also 533 

analyzed using igraph.  534 

 535 

Identification of bacteria shared between individuals by using CRISPR arrays  536 
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The spacers and the order of the spacers were determined by mapping the spacers to the 537 

bacterial contigs using bowtie2 v2.2.4 [41]. A dynamic programming Smith-Waterman algorithm 538 

was used to find the best alignments between any two CRISPR arrays. We tested a few 539 

parameters for gap opening score, match score and mismatch score. Since the results were very 540 

similar for alignment length and alignment similarity (Fig. S3), we chose the parameters that led 541 

to the highest number of alignments between CRISPR arrays (gap score=-1, match score=3, 542 

mismatch score=-2). The CRISPR array alignments were analyzed for alignment similarity and 543 

alignment length. 2D density distribution was estimated based on the alignment similarity and 544 

alignment length using the ks package [42] in R studio. The densities from the same household 545 

and different households were compared, and regions on the density plot enriched with data from 546 

the same household or different households were identified.  547 

 548 

Antibiotic resistance gene profiling and household transmission analysis 549 

All filtered metagenomics and metatranscriptomic reads from the same individuals across time 550 

points were assembled into contigs using metaSPAdes [35]. Open reading frames from each 551 

contig were predicted by using MetaProdigal v2.6.3 [43]. The ORFs were aligned to the CARD 552 

v3.1.0 [27] database for ARG annotation. ORFs that covered at least 80% of the ARG reference 553 

sequences were identified as present. The contigs carrying the ARGs were mapped to the NCBI 554 

nt database; the top hits, and the taxonomic information and definition for the top hits, were 555 

extracted. The metagenomic and metatranscriptomic sequence reads were mapped back to the 556 

ARGs identified in their respective datasets. The number of reads mapped back to the antibiotic 557 

resistance genes were identified and differential abundance and expression analysis were done 558 

using DESeq2. 559 

 560 

The beta diversity of the presence/absence of the antibiotic resistance gene profiles were 561 

measured between individuals. The dissimilarities (measured by Jaccard similarity index) 562 
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between same household individuals connected by shared bacteria were compared to the 563 

dissimilarities between same household individuals not connected by bacteria. The taxa origins 564 

of the antibiotic resistance genes were investigated by searching by BLAST the contigs that carry 565 

antibiotic resistance genes against the NCBI nt database; the top hits were recorded.  566 

 567 

 568 

  569 
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 570 

Table 1. Summary table for individuals across the households 571 

 Flu infection  

Number of Households 
High Infection 
N=4 

Low Infection 
N=4 

No infection 
N=2 p values 

Number of individuals 23 23 6  
Age Median (sd) 8 (6.5) 13 (9.5) 7 (8.3) 0.0981 
Gender    1 
Female (%) 16 (70) 17 (70) 4 (70)  
Male (%) 7 (30) 6 (30) 2 (30)  
     

The p values were calculated by using ANOVA and Fisher’s Exact tests. 572 

 573 
 574 
 575 
Table 2.  Summary table for flu infection and no infection samples 576 
 577 
 Flu infection  

 
Infection 
N=42 

No infection 
N=93 p values 

Age Median (sd) 6 (5.4) 14 (8.2) 4.47E-07 
Gender   0.02051 
Female (%) 15 (47) 74 (80)  
Male (%) 17 (53) 19 (20)  

The p values were calculated using ANOVA and Fisher’s Exact tests 578 

  579 
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Figure legends 580 

 581 

Figure 1. Differential abundance of bacteria and phages between households and samples. 582 

(a) PCA plot of b diversity of the microbial composition from metagenomics datasets for different 583 

influenza infection households. Red indicates the high flu infection households, pink indicate low 584 

flu infection households, and grey indicates control households. (b) PCA plot of b diversity of the 585 

microbial composition from metatranscriptomics datasets for different influenza infection 586 

households. Red indicates the high flu infection households, pink indicate low flu infection 587 

households, and grey indicates control households. (c) Differential abundance of bacteria genera 588 

between different household groups in metagenomes. Red or pink indicate higher differential 589 

abundance in the flu infection group tested while grey indicates it is higher in the control group. 590 

(d). Differential abundance of bacteria genera between different household groups in 591 

metatranscriptomes. Red or pink indicate higher differential abundance in the flu infection group 592 

tested while grey indicates it is higher in the control group. (e) PCA plot of b diversity of the 593 

microbial composition from metagenomics datasets for flu negative individuals from flu infection 594 

or control households. Red indicates the flu infection households and grey indicates control 595 

households. (f) PCA plot of b diversity of the microbial composition from metatranscriptomics 596 

datasets for flu negative individuals from flu infection or control households. Red indicates the flu 597 

infection households and grey indicates control households. (g) Differential abundance of 598 

bacterial genera between no flu infection individuals from flu infection and control households. 599 

Red indicates higher differential abundance in the flu infection households while grey indicates it 600 

is higher in the control group.  601 

 602 

 603 
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Figure 2. Differential abundance of bacteria and phages between influenza infection status.   604 

(a)  PCA plot of 𝛃 diversity of the microbial composition from flu positive and flu negative samples 605 

from metagenomics and metatranscriptomics datasets. Red indicates flu positive samples and 606 

grey indicates flu negative samples. (b) Bacterial genera differentially abundant in metagenomes 607 

between flu positive and flu negative samples; red indicates the taxa are enriched in flu positive 608 

samples and grey enriched in flu negative samples. (c)  Log2 fold change of Moraxella species 609 

between flu positive and flu negative time points from the same individuals in metagenomes and 610 

metatranscriptomes. The red triangles indicate enrichment in the flu positive time points.  611 

 612 

Figure 3. Bacteria genes and pathways altered in influenza infection. Microbial gene 613 

orthologous groups were profiled for each sample. Microbial orthologous genes differentially 614 

abundant in metagenomes between flu positive samples and flu negative samples from all 615 

households were identified using DESeq2 with a p value smaller than 0.05 and a log 2 fold change 616 

larger than 2 or smaller than -2. (a) The dot plot shows differentially abundant genes between flu 617 

positive and flu negative samples. The size of the dot indicates –log10 of the adjusted p values. 618 

Red indicates that the relative abundance of the gene is higher in flu positive samples and grey 619 

indicates it is higher in flu negative samples. (b) The reads mapped to the differentially abundant 620 

genes in (a) were extracted and their taxonomy classifications were determined through Kraken2. 621 

Moraxella contributes the most to these genes. The graph shows the boxplot of counts per million 622 

for the reads mapped both to Moraxella catarrhalis and the genes on the y axis. The samples 623 

were separated into the flu positive or flu negative groups. Red indicates flu positive samples and 624 

grey indicates flu negative samples.  625 

 626 

Figure 4. CRISPR spacers shared between samples and individuals. The percent of shared 627 

spacers between samples or individuals were compared and used to construct the connection 628 

network between individuals. (a)  Boxplot indicating percent of spacers shared between samples 629 
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from the same individuals, different individuals in the same households, and individuals from 630 

different households. The colors indicate whether the samples are from the same households 631 

(purple) or different households (orange). (b) Density plot and boxplot for percent of spacers 632 

shared at the individual level within and between households. The black line on the density plot 633 

indicates the cut-off where there is the same number of comparisons within and between 634 

households. (c) The connection network was generated based on the percent of shared spacers 635 

between individuals for the data above the cut-off in (b). The nodes represent individuals, and the 636 

edges represent percent of shared spacers. Same color nodes indicate individuals come from the 637 

same household and the numbers on the nodes represent the subnetwork they were partitioned 638 

into. 639 

 640 

Figure 5. CRISPR array alignment distribution within and between households and bacteria 641 

taxa shared between individuals. (a) Contour plots for the 2D density distribution of CRISPR 642 

array alignments on alignment similarity and alignment length. The density distribution for the 643 

CRISPR array alignments with CRISPR arrays from individuals from the same households or 644 

different households were colored in purple and orange, respectively. The numbers on the contour 645 

plot indicate the regions have 25%, 50% and 75% of the data. The solid color regions on the plot 646 

indicate the density of the data in these regions were significantly different between the two groups. 647 

The purple region has higher data density in the same household group and the orange region 648 

has higher data density in the different household group. (b) The contigs contain the CRISPR 649 

arrays from the alignments with a similarity greater than 0.9 and more than 15 spacers mapped 650 

to the NCBI nt database. The graph shows the barplot of the number of individual pairs that share 651 

the bacteria with the color indicating they are from the same households or different households.  652 

 653 

Figure 6. Network connecting individuals with shared CRISPR arrays. Individuals sharing 654 

CRISPR arrays were linked with the subject IDs shown next to the nodes. The color of the nodes 655 
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indicates household information. The bacteria taxa annotation of the contigs containing CRISPR 656 

arrays shared between the individuals are shown next to the edges. Circle and box indicate 657 

whether the subjects are children or adults; pink color is to highlight flu positive individuals.  658 

 659 
  660 
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Supplementary Figures 661 

 662 

Figure S1. Bacteria taxa mapped to genes differentially abundant between flu positive and 663 

flu negative samples. Dotplot for the bacteria taxa mapped to genes found to be differentially 664 

abundant between flu+ and flu- samples with bacteria taxa on the x axis and genes shown on the 665 

y axis. For each gene, the color intensity of the dots shows the fraction of reads mapped to the 666 

bacteria taxa relative to total reads contributing to that gene on the y axis.  667 

 668 

Figure S2. Bacteria and phage interaction network. Bacteria and viruses were linked by 669 

spacers mapped back to both bacterial and viral contigs. The graph shows the presence of 670 

interactions between specific bacteria and phages. The phages are shown on the x axis and 671 

bacteria on the y axis. The color intensity reflects the number of individuals for which the specific 672 

bacteria/phage interactions can be detected. The bacteria and phages in the same genera or 673 

found to infect bacteria in the same genera are grouped into same panels.  674 

 675 

Figure S3. Parameters tested for dynamic programming to align CRISPR arrays. Different 676 

parameters were tested in a local alignment method to find the best alignments between any two 677 

CRISPR arrays. With the alignment similarity and alignment length distributions, correlations 678 

between methods and statistics are shown in the figure.  679 

 680 

Figure S4. Contour plot with 2D density of the CRISPR array alignments. The 2D density 681 

distribution was estimated for the CRISPR array alignments on the alignment similarity and 682 

alignment length. The color intensity indicates the density of the data in the regions. The two 683 

panels indicate the CRISPR array alignments with CRISPR arrays from the same or different 684 

households. The y axis was adjusted to highlight the region where most of the data points are 685 

located, although there were more points over 50 on the y axis.  686 
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 687 

Figure S5. Bacteria transmission and flu infection. (a) Density and boxplot plot for percent of 688 

spacers shared at the individual level within and between households. The red line on the density 689 

plot indicates the cut-off where all the “between household” individual pairs were removed. (b) 690 

The connection network was generated based on the percent of shared spacers between 691 

individuals for the data above the cut-off in (a). The nodes represent individuals and the edges 692 

represent percent of shared spacers. Same color nodes represent individuals come from the 693 

same household. (c) Dotplot for percent of individuals in each household that were connected. 694 

Number of individuals in (b) in each household were divided by total number of individuals in the 695 

households and compared across flu infection groups. The x axis indicates household code and 696 

the panels show the household from high, low, or no flu infection groups.  697 

 698 

Figure S6. Antibiotic use history. The antibiotics taken by the subjects within 2 years prior to 699 

influenza infection is shown in red color. White indicates that particular antibiotic was not taken 700 

by the subject, and grey indicates antibiotics use information for that individual is not available 701 

(NA).  702 

 703 

Figure S7. Antibiotic resistance genes differentially abundant between flu positive and flu 704 

negative samples. Barplot for counts per million of the ARGs identified as differentially abundant 705 

between flu positive and flu negative samples. The color indicates the influenza positive (flu+) or 706 

influenza negative (flu-) groups. The panel titles indicate the mechanism used by the genes to 707 

confer antibiotic resistance.  The log2 fold change of ARGs counts for the identified antibiotic 708 

resistance genes are also shown with barplot.  709 

 710 

 711 

 712 
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Figure S8. Prevalence of antibiotic resistance genes in households across flu infection 713 

groups. Presence/absence of antibiotic resistance genes was determined for each individual. 714 

The ratio of individuals that have a specific ARG in each household was calculated by dividing 715 

the number of individuals carrying the gene with the total number of individuals in the households. 716 

The graph shows a dotplot for the fraction of individuals that have ARGs across the flu infection 717 

groups for metagenomics (MG) and metatranscriptomics (MT) datasets. The color indicates the 718 

data type, red for MG and blue for MT. H, L or N panel titles correspond to high, low, and no flu 719 

infection groups, respectively. The color intensity indicates the fraction of individuals that have 720 

the ARGs in the household. The red horizontal panel titles indicate the mechanisms used by the 721 

ARGs to confer antibiotic resistance. 722 

 723 

Figure S9. Boxplot for ARG profiles dissimilarity between individuals from same 724 

households connected by shared bacteria, same households not connected and different 725 

households. Each dot represents the dissimilarity in ARG profiles between two individuals. The 726 

color indicates the individuals were from the same or different households. The x axis shows 727 

whether the individuals were connected by shared bacteria when they are from the same 728 

household. The y axis shows the distance in ARG profiles between any two individuals.  729 

 730 
Figure S10. Overview of CRISPR array analysis steps. CRISPR arrays were used for two 731 

purposes: (1) the spacers that comprise the CRISPR arrays on bacterial contigs and that can be 732 

mapped to viral contigs, were used to link bacteria and phages to study phage-bacteria 733 

interactions; and (2) the spacers and the CRISPR arrays were used as a barcode to study bacteria 734 

transmission within and across households.  735 

  736 
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Supplementary Tables 737 

 738 

Table S1. Sample metadata.  739 

 740 

Table S2. Human DNA viruses identified from the metagenomics datasets. The human 741 

viruses were identified from Kraken analysis and the presence or absence of the viruses are 742 

shown as 1 or 0.  743 

 744 

Table S3. Human viruses identified from the metatranscriptomics datasets. The human 745 

viruses were identified from Kraken analysis and the presence or absence of the viruses are 746 

shown as 1 or 0.  747 

 748 

Table S4. Antibiotic resistance genes and contig annotations. The contigs containing the 749 

ARGs were annotated with the bacteria genome information.  750 

  751 
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