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Abstract 

 
Amyotrophic Lateral Sclerosis (ALS) is characterised by progressive motor neuron 
degeneration but there is marked genetic and clinical heterogeneity1. Identifying 
common mechanisms of ALS amongst this diversity has been challenging, 
however, a systematic framework examining motor neurons across the ALS 
spectrum may reveal unifying insights. Here, we present the most comprehensive 
compendium of ALS human-induced pluripotent stem cell-derived motor neurons 
(iPSNs) from 429 donors across 15 datasets including Answer ALS and 
NeuroLINCS, spanning 10 ALS mutations and sporadic ALS. Using gold-standard 
reproducible bioinformatic workflows, we identify that ALS iPSNs show common 
activation of the DNA damage response and p53 signalling, which was replicated 
in the NYGC ALS postmortem cohort of 203 spinal cord samples. The strongest 
p53 activation was observed in C9orf72 repeat expansions but was also 
independently increased in TARDBP, FUS and sporadic subgroups. ALS iPSNs 
showed extensive splicing alterations and enrichment of SNVs, indels and gene 
fusions, which may contribute to their damage-induced mutation signature. Our 
results integrate the global landscape of motor neuron alterations in ALS, revealing 
that genome instability is a common hallmark of ALS motor neurons and provides 
a resource to identify future ALS drug targets. 
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Introduction 

 
Over 30 gene mutations have been established to cause ALS, the most common 

being in C9orf72, SOD1, TARDBP and FUS. However, in ~90% of cases, no 

pathogenic mutation is identified, which we refer to as sporadic (sALS)1. 

Heritability estimates of ALS are ~50% and genome-wide association studies have 

identified over 50 common variants associated with ALS susceptibility (e.g. 

UNC13A, TBK1, ATXN2, NEK1, SMN1)2. These genes are involved in a wide 

range of processes spanning neuronal functions, RNA processing, DNA damage 

response, mitochondrial function and proteostasis3. This genomic complexity has 

made identifying common pathogenic mechanisms across ALS challenging4.  

A major hurdle in identifying the causes of ALS has been the inaccessibility to 

patient motor neurons. Whilst postmortem ALS tissue has revealed important 

insights, it represents the end-stage of the disease with only few surviving motor 

neurons5–8. Human-induced pluripotent stem cell (iPSC)-derived motor neurons 

(iPSNs) offer a potential solution. They can recapitulate pathological features of 

ALS, enabling exploration of the functional consequences of genetic variants on 

motor neurons during the initial phases of the disease9–11. Since iPSNs can be 

generated from any individual irrespective of genetic background, they enable 

sALS to be modelled, which is not possible with animal models12. However, iPSN 

cultures are expensive and labour intensive and studies have often been limited to 3 

or fewer patients13–17. Against this background, there has been a recent expansion 

of ALS iPSN biobanks with initiatives such as neuroLINCS18 and Answer ALS19, 

offering a unique opportunity to identify generalisable motor neuron perturbations 

across ALS genetic backgrounds. Here, we present a robust analytical framework 

to identify unifying molecular aberrations underlying motor neuron dysfunction in 

ALS.  
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Results 

 

iPSC-derived motor neuron identities 

 
Our search strategy of databases identified 16 ALS iPSN datasets that had 

undergone RNA-sequencing (RNA-seq; Fig. 1, Extended Data Fig. 1). iPSN 

differentiation protocols for each dataset were extracted and found to follow 

generally similar procedures between datasets, however, there were notable 

differences in the duration of cultures, which ranged between 12-42 days in vitro 

(mean 31 days; Table S1). All samples underwent extensive quality control and 

principal component analysis was used to interrogate the effects of sequencing and 

culture batch confounding variables (Table S2). This revealed 2 global clusters of 

iPSNs separated by PC1 and PC2, according to poly(A) or total Ribo-Zero RNA 

library preparation (Extended Data Fig. 2-3). The principal component gene 

loadings confirmed that the separation was driven by histone and small nucleolar 

encoding genes, which represent non-polyadenylated genes (Extended Data Fig. 

2a).  

iPSNs showed high expression of neuronal markers from all datasets with 

exception of one HB9 reporter dataset that also exhibited different RNA library 

preparations between ALS (Ribo-Zero) and control (polyA) samples and was 

excluded from the meta-analysis (Extended Data Fig. 4)20. Although the expression 

of post-mitotic dorso-ventral motor neuron domain markers (e.g. CHAT, MNX1 

[HB9], LHX3, FOXP1, ALDH1A2, ISL1) varied between datasets, there was high 

expression of rostro-caudal markers (HOX1-8) across all datasets, which is 

consistent with hindbrain, cervical and thoracic spinal cord specification (Extended 

Data Fig. 5-7). For the meta-analysis, we included 15 datasets comprising 429 

iPSNs, of which 323 were from ALS patients and 106 from non-ALS controls. 

ALS iPSNs carried pathogenic mutations in 10 different genes, including 
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C9orf7218,19,21–24 (n = 60), SOD114,15,17–19 (n = 20), FUS16,19,21,25,26 (n = 14) and 

TARDBP19,22,27,28 (n = 10), whilst 208 (64.2%) were from patients without an 

identifiable ALS mutation, which we term sALS (Table 1).  

Fig. 1: Study overview. 

 

Schematic summarising our analytic framework using iPSC-derived motor neurons 

(iPSNs) to interrogate perturbations across the spectrum of ALS.  

ALS iPSNs activate the DNA damage response 

 
To identify pan-ALS transcriptomic changes we performed a meta-analysis 

comparing all 323 ALS versus 106 control iPSNs, accounting for batch effects 

between datasets (see Methods). We found 43 differentially expressed genes in 

pan-ALS versus control iPSNs, with 20 upregulated and 23 downregulated in ALS 

iPSNs (FDR < 0.05, Fig. 2a, Table S3). Amongst differentially expressed genes 

most increased in ALS was the endoribonuclease RNase L (RNASEL) which 

regulates decay of cytoplasmic RNA and localisation of RNA binding proteins 
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(RBPs)29. Using functional enrichment analysis, we found that upregulated genes 

in ALS were enriched in the DNA damage response (hypergeometric p = 2.2x10-5; 

SESN1, RRM2B, TNFRSF10B) and p53 signalling (p = 2.7x10-5; CDKN1A, 

TP53TG3E) whereas downregulated genes were overrepresented by DNA-binding 

transcription factor activity (p = 0.003; MYOG, TBX5, POU5F1 [Oct4]) and 

ventral spinal cord development (p = 0.004; LMO4, OLIG2, FOXN4; Fig. 2b). 

Gene Set Enrichment Analysis (GSEA) identified significant up-regulation of the 

p53 signal transduction gene set (GO:0072331, n = 264) in ALS iPSNs 

(normalised enrichment score [NES] +1.44, enrichment P = 4.9x10-4; Fig. 2c).  

To further understand how signalling pathways are activated in ALS iPSNs, we 

performed a Signalling Pathway RespOnsive GENes (PROGENy)30 analysis which 

leverages perturbation experiments to more accurately infer pathway activity 

changes by weighting genes in each pathway based on their responsiveness. 

PROGENy revealed that the most substantial pathway activity increase in ALS 

iPSNs was in p53 (NES +13.0, p < 0.002), followed by Mitogen-Activated Protein 

Kinase (MAPK; NES +5.6, p < 0.002), whilst the greatest decrease was observed 

in WNT (NES -2.5, p = 0.03; Fig. 2d). Examining each gene in the p53 pathway 

according to its p53 weighting in PROGENy, revealed that the genes with the 

strongest responsiveness in p53 activity in ALS iPSNs included CDKN1A, SESN1, 

RRM2B, MDM2, C2orf66, ZNF561 and ZMAT3 (Fig. 2e). We next inferred the 

activities of 429 transcription factors (TFs) from their regulon expression within 

the DoRothEA database30. Remarkably, this revealed that TP53 was the TF with 

the greatest increase in activity in ALS (NES +7.62, p < 0.002) followed by 

ZNF274 and ATF4. The strongest TF decreases in ALS were in PRDM14, 

ZNF263, and SIX5 (Fig. 2f; Table S4). Interrogating individual genes constituting 

the TP53 TF regulon revealed the greatest increases in ALS iPSNs in TNFRSF10B, 

SESN1, RRM2B, CDKN1A, ZMAT3 and MDM2.  

Although our statistical design adjusts for dataset batch effects, it is plausible that 

changes between ALS and control groups were confounded by imbalances between 
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total Ribo-Zero and poly(A) libraries. To address this, we performed a subgroup 

analysis in poly(A) datasets (10 datasets; 48 ALS, 43 control iPSNs) and total 

Ribo-Zero (5 datasets; 275 ALS, 63 control iPSNs) separately (Extended Data Fig. 

8a-b). Comparing ALS versus control iPSNs revealed that in poly(A) datasets there 

were 69, and in total Ribo-Zero datasets there were 12 differentially expressed 

genes (Extended Data Fig. 8c-d). Overlapping differentially expressed genes 

between analyses revealed that RNase L was significantly increased in ALS iPSNs 

in both library preparation analyses independently. Furthermore, we confirmed 

significant increases in p53 pathway activity in ALS in both library preparation 

analyses (polyA datasets: NES +11.4, p < 0.002; Ribo-Zero datasets: NES +7.3, p 

< 0.002; Extended Data Fig. 10e-f). Likewise, TP53 TF activity was significantly 

increased in ALS iPSNs in both library preparations (polyA datasets: NES +6.54, p 

< 0.002; Ribo-Zero datasets: NES +5.12, p < 0.002; Extended Data Fig. 8g-h). This 

indicates that library preparation was not responsible for the DNA damage 

response gene expression changes observed in ALS iPSNs. 
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Fig. 2: Differential gene expression in ALS versus control iPSNs. 

 

a, Volcano plot of differential gene expression in ALS versus control iPSNs. b, 

Functionally enriched terms in up-regulated (red) and down-regulated (blue) 

differentially expressed genes. c, Gene set enrichment analyses (GSEA) for signal 

transduction by p53 (GO:0072331, n = 264) in ALS versus control. NES, 

normalized enrichment score. d, PROGENy signalling pathway activities in ALS 

versus control. Pathways increased in ALS are red and pathways decreased are 

blue. *** represents P < 0.0001 and * P < 0.05. e, Expression changes of p53 

signalling pathway genes in ALS versus control according to their PROGENy 

weights. Genes increasing p53 activity in ALS are red whilst genes decreasing p53 

activity in ALS are blue. f, Activities of 429 transcription factors in DoRothEA 

inferred from their regulon expression changes in ALS versus control. The 

normalised enrichment score in ALS versus control (x-axis) is plotted according to 

the enrichment p-value (y-axis). 
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p53 activation is common across ALS genetic backgrounds 

 
To identify how ALS iPSN changes compare between ALS genetic backgrounds, 

we next examined the effect of each genetic subgroup on gene expression 

separately. 2 sALS datasets (208 sALS vs 56 controls), 7 C9orf72 datasets (60 

C9orf72, 83 controls), 5 SOD1 datasets (20 SOD1 vs 63 controls), 5 FUS datasets 

(14 FUS vs 55 controls) and 3 TARDBP datasets (10 TARDBP vs 48 controls).  

Controls from each dataset were utilised only if the dataset had samples from the 

relevant genetic background. Although we found large numbers of differentially 

expressed genes (adjusted P < 0.05) in TARDBP mutants (3,547), the other 

subgroups showed more modest changes: FUS (239), C9orf72 (161), and SOD1 

(7). Despite sALS being the most well-powered, with 208 iPSNs, there were only 4 

differentially expressed genes (Fig. 3a-e). Correlation of transcriptome-wide gene 

expression changes between ALS genetic backgrounds revealed weak associations, 

with the strongest correlation between SOD1 and sALS lines (Pearson R = +0.38) 

and the weakest between SOD1 and TARDBP (R = -0.14; Fig. 3f, Extended Data 

Fig. 9a). To identify whether different ALS genetic backgrounds exhibit 

differential expression within the same genes, we overlapped genes significantly 

changed in expression (Table S5). Although no genes were significantly changed 

in expression across all ALS genetic backgrounds, Uroplakin UPK3BL1 and 

nuclear pore complex interacting protein NPIPA8 were changed in the C9orf72, 

TARDBP and FUS subgroups (Extended Data Fig. 9b). Functional enrichment 

analysis of differentially expressed genes in each genetic subgroup revealed that 

C9orf72 mutants upregulated genes involved with p53 and the DNA damage 

response whilst downregulating cytoskeleton and microtubule genes. FUS mutants 

showed upregulation of genes involved with transcription and DNA-binding and 

downregulation of synaptic signalling genes. Conversely, TARDBP mutants 

upregulated neuronal and synaptic genes and downregulated genes involved in the 

cell cycle and RNA splicing (Extended Data Fig. 9c-e). There were no functional 

terms enriched amongst SOD1 or sALS differentially expressed genes.  
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Examining PROGENy pathway activities in each genetic subgroup independently 

revealed that apart from SOD1 (NES +0.33, p = 0.16), the p53 pathway activity 

was significantly increased in each of C9orf72 (NES + 10.9, p < 0.002), TARDBP 

(NES +8.6, p < 0.002), sALS (NES +4.2, p < 0.002) and FUS (NES +3.2, p = 

0.018; Fig. 3g). Examining the other signalling pathways revealed increases across 

most genetic backgrounds in hypoxia, VEGF and MAPK and decreases in WNT 

and PI3K (Extended Data Fig. 10a). Examining TF regulon activity in each genetic 

background separately revealed significantly increased TP53 activity in C9orf72 

(NES +9.3, p < 0.002), FUS (NES +4.0, p = 0.004) and TARDBP (NES +2.5, p = 

0.01) but decreased activity in SOD1 (NES -3.0, p < 0.002) whilst sALS (NES -

0.31, p = 0.25) was non-significantly changed (Fig. 3h). Observing the other TF 

activity changes between genetic backgrounds revealed 5 TFs that were 

significantly changed in the same direction across 4 of 5 genetic backgrounds, of 

which ZNF274 was increased whilst GATA3, MAZ, TAL1 and TEAD4 were 

decreased in activity in the ALS subgroups (Extended Data Fig. 10b). Taken 

together, despite transcriptome-wide heterogeneity between genetic backgrounds, 

these data suggest that p53 signalling activation is common across the ALS 

spectrum in iPSNs. 
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Fig. 3: Gene expression changes in each ALS genetic background. 

 

a-e, Volcano plots comparing ALS iPSNs to controls in each ALS genetic 

background. Genes coloured red are significantly increased in the ALS subgroup 

and genes coloured blue are decreased in the ALS subgroup. f, Heatmap showing 

the Pearson’s correlation coefficient for transcriptome-wide changes between each 

genetic background. g, PROGENy p53 signalling pathway activity amongst each 

of the genetic backgrounds independently. h, Dorothea TP53 transcription factor 

regulon activity in each genetic background. **** represents P < 0.0001, *** P < 

0.001, ** P < 0.01, * P < 0.05.  

 
ALS postmortem tissue shows p53 activation 

 
To identify whether iPSN ALS gene expression signatures are also found in 

postmortem tissue, we compared our findings with postmortem spinal cord RNA-

seq from the NYGC ALS cohort, consisting of tissue from 153 ALS patients and 

80 controls5,31. We found 14,529 differentially expressed genes in postmortem 
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ALS versus control spinal cord samples, with 6,417 upregulated and 8,112 

downregulated in ALS (FDR < 0.05; Extended Data Fig. 11a). CHIT1, GPNMB 

and LYZ were the most strongly upregulated genes in ALS spinal cord, consistent 

with a recent report5. Functional enrichment analysis revealed that upregulated 

genes were enriched in the stress response, programmed cell death and the DNA 

damage response, whilst downregulated genes were enriched in neuronal functions 

(Extended Data Fig. 11b). As with iPSNs, signalling pathway and TF regulon 

analysis confirmed that ALS postmortem spinal cord was significantly upregulated 

in both p53 signalling (NES +4.7, p < 0.002) and TP53 activity (NES +4.01, p = 

0.05; Extended Data Fig. 11c-d). Other signalling pathways also significantly 

increased in ALS were TNFα, Androgen, NFκB and hypoxia whereas EGFR and 

VEGF pathways were significantly decreased in activity.  

Correlating transcriptome-wide ALS gene expression changes between iPSNs with 

postmortem spinal cord revealed a weak positive correlation (Pearson R = +0.13; 

Extended Data Fig. 11e). Of the 43 differentially expressed genes changed in ALS 

iPSNs, 16 (37.2%) were also changed in ALS postmortem spinal cord, with 7 co-

upregulated and 9 co-downregulated in both ALS iPSNs and postmortem 

(hypergeometric test p = 0.0002; Table S6). Amongst the co-upregulated genes 

were the DNA damage response and p53 pathway genes CDKN1A, TNFRSF10B, 

SESN1 and RRM2B as well as the endoribonuclease RNase L (RNASEL) and 

oxidative stress responder ISCU. These results not only confirm p53-dependent 

DNA damage response upregulation in ALS but the overlapping genes between 

iPSNs and postmortem offer insight into motor neuron-specific changes across 

ALS that start early and persist into the later stages of the disease. 

Examining differential expression in each postmortem spinal cord genetic 

subgroup revealed increases in both p53 signalling and TP53 activity in each of 

sALS (n = 115; p53: NES +5.0, p < 0.002; TP53 NES +4.1, p = 0.03), C9orf72 (n 

= 29; NES +4.7, p < 0.002; TP53 NES +4.4, p = 0.16), SOD1 (n = 5; NES +3.4, p 

= 0.07; TP53 NES +2.1, p = 0.1) and FUS (n = 2; NES +2.6, p = 0.6; TP53 NES 
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+3.1, p = 0.18; Extended Data Fig. 11f-g). Correlating transcriptome-wide ALS 

changes in postmortem spinal cord with iPSNs for each genetic subgroup revealed 

weak associations with the strongest between C9orf72 (Pearson R = +0.25) 

followed by sALS (R = +0.15), SOD1 (R = +0.07) and FUS (R = +0.002). C9orf72 

mutant iPSNs and postmortem spinal cord shared 20 differentially expressed genes 

including axon dynein complex genes DNAH17, DNAAF1, and TEKT2, whereas 

FUS shared 6 and sALS shared 1 overlapping differentially expressed gene 

(Extended Data Fig. 11h). 

Splicing alterations in RBPs and neuronal genes 

 
A proposed molecular mechanism of disease in ALS motor neurons is dysregulated 

alternative splicing, which may contribute to genomic instability underlying DNA 

damage response activation32,33. To identify alternative splicing changes in ALS 

iPSNs, we utilised the splice graph tool MAJIQ34,35, which quantifies local splicing 

variations from large heterogeneous RNA-seq datasets and corrects for dataset 

batch effects (Fig. 4a)36. Since total Ribo-Zero RNA libraries predominantly 

capture unprocessed nascent pre-mRNAs and poly(A) selected RNA libraries 

capture mature poly-adenylated mRNAs, we restricted splicing analyses to iPSNs 

that had undergone poly(A) library preparation (10 datasets composed of 48 ALS 

and 43 control iPSNs). Comparing ALS versus control iPSNs identified 264 local 

splice variation events in 161 unique genes that were significantly different 

between ALS and control (TNOM p < 0.05, Δ PSI > 0.1; Fig. 4b, Table S7). 

Amongst the splicing events most changed in ALS were in genes that are involved 

in DNA repair (including POLM, METTL22, HUWE1, HDAC1, MTA1, PMS1, 

ZSWIM7) and RBPs (including YTHDC2, THOC1, PRR3, STAU2, PTBP3, SREK1, 

POLDIP3; Fig. 4c).  The event in POLDIP3 was the same exon skipping event that 

occurs upon TDP-43 depletion (Extended Data Fig. 12a-b)37, indicating that TDP-

43 nuclear loss of function may contribute to splicing changes in ALS iPSNs. 

Functional enrichment analysis of the 161 genes containing differential splicing 
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showed enrichment in protein binding, synaptic and neuronal functions (Fig. 4d), 

which are central to ALS motor neuron physiology. 

The local splice variations identified by MAJIQ are predominantly complex, being 

composed of combinations of various 3’ and 5’ splice sites rather than simple 

binary events (e.g. exon skipping or intron retention [IR]). Furthermore, splice 

events are not restricted to annotated reference transcriptome splice sites and of the 

264 differential splicing events, 28 (10.6%) involved de novo splice junctions. Of 

these, 7 were found to be de novo (cryptic) exons (RELCH, HOXC4, RBM26, 

SLC35B3, TENM3, TPTEP2-CSNK1E, ZSCAN29) although none of these 

overlapped with TDP-43 depletion37. 50 out of 264 (18.9%) differential splice 

events harboured IR within the local splice variation. Breaking down each local 

splice variation into its component splice types and categorising these into basic 

splicing modules revealed that exon skipping was the most common splicing type 

(182, 45.4%) followed by IR (54, 13.5%; Fig 4e). Splicing alterations, particularly 

IR, result in cotranscriptional RNA:DNA hybrids (R-loops) that predispose to 

genomic instability and DNA double-strand breaks38,39. We propose that splicing 

defects and R-loop formation in ALS iPSNs may contribute to genome instability 

and induce the DNA damage response. In support of this, mutations in the 

RNA:DNA helicase senataxin (SETX), which usually resolves R-loops, cause 

young-onset ALS40 and depletion of FUS and TDP-43 both lead to R-loop 

associated DNA damage41.  
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Fig. 4: Alternative splicing alterations in ALS iPSNs.

 

a, Schematic of the steps in splicing analysis of ALS and control iPSNs with 

MAJIQ35. b, Differential alternative splicing in poly(A) selected ALS versus 

control iPSNs. Y-axis is -log10 of TNOM p-value with events < 0.05 coloured. X-

axis is Δ PSI (ALS - CTRL) with events > 0.1 coloured red (increased) and < -0.1 

blue (decreased). c, Violin plots showing PSI values (y-axis) for each ALS (red) 

and control iPSN samples (blue) for the representative splicing events in POLM, 

METTL22, LINC00665, YTHDC2, HUWE1 and HDAC1. d, Functionally enriched 

terms amongst genes with differential alternative splicing. e, Pie chart showing the 

categorisation of differential local splice variants into each of the basic splicing 

event types using the MAJIQ modulizer. 
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ALS iPSNs are enriched in SNVs, indels and gene fusions 

 
Genome instability triggers the DNA damage response and p53 signalling42. To 

explore the possibility that DNA damage arises in ALS iPSNs we ran the GATK 

variant discovery pipeline, which detects single nucleotide variants (SNVs), 

insertions and deletions (indels), that are signatures of aberrant repair of DNA 

damage. Variant detection is highly sensitive to coverage and sequencing 

chemistries and so we restricted variant detection to the Answer ALS dataset (ALS 

n = 238, CTRL n = 42 iPSNs). To increase the likelihood that identified variants 

were DNA variants we excluded known RNA editing sites. Across all filtered 

variant types, we found significantly greater numbers of variants per iPSN in ALS 

compared to control (Wald test p < 2x10-16; Fig. 5a). Examining each variant type 

separately, revealed significantly greater numbers per iPSN of SNVs (Wald test p 

< 2x10-16), insertions (p = 2.5x10-14) and deletions (p = 1.1x10-9) in ALS compared 

to control (Fig. 5b; Table S8). We observed the greatest increase in the number of 

C>T base substitutions in ALS iPSNs relative to controls (p < 2x10-16), followed 

by T>A (p = 0.001), C>T (p = 0.001) and C>A (p = 0.004; Fig 5c).  By observing 

the relative proportions of each type of base substitution, we found ALS iPSNs 

showed increases in T>C, T>A and C>A whereas the proportions of C>T, C>G 

and T>G were decreased relative to controls (Extended Data Fig 13a). Examining 

the number of variants per iPSN in each ALS genetic background revealed 

significantly greater numbers of variants only in the sALS subgroup, although the 

other mutant subgroups were relatively underpowered when restricted to Answer 

ALS (sALS n = 200, C9orf72 n = 21, SOD1 n = 8, TARDBP n = 1, FUS n = 0; 

Extended Data Fig. 13b).  

Gene fusions are another important class of genome alteration that can arise from 

the repair of DNA damage. Fusions involve two genes becoming juxtaposed due to 

structural rearrangements, including inversions and translocations (Fig. 5d). To 

explore the possibility of whether ALS iPSNs exhibit increased numbers of gene 
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fusions we examined for such events using the RNA-seq iPSN datasets. Accurate 

gene fusion detection requires paired-end reads and so we restricted the STAR 

Fusion analysis to the 11 paired-end datasets (306 ALS, 90 CTRL iPSNs, Table 

1)43. Since gene fusion discovery is also sensitive to differences in read coverage, 

we adjusted for the total read count per sample as well as dataset batch effects in 

the generalised linear model. There were a total of 292 unique gene fusions 

observed in ALS iPSNs and 152 unique gene fusions in control iPSNs, with 91 

shared in both conditions (Fig. 5e). Amongst the 201 gene fusions identified in 

ALS iPSNs but not in controls, were fusions affecting genes implicated in ALS 

including VAPB–APCDD1L-DT, ATXN1–ZFYVE27, TUBA1A–NEFM and 

OSTF1–APP (Table S9). Furthermore, of the 292 genes fusions identified in ALS 

iPSNs, 14 affected genes also exhibited altered splicing, supporting the possibility 

of trans-splicing, that post-transcriptionally joins exons from separate pre-

mRNAs44. By comparing the proportion of each unique gene fusion in ALS with 

CTRLs iPSNs, we identified 9 gene fusions with a significantly greater burden in 

ALS iPSNs (Table S9). Interestingly, these mostly involved long noncoding RNAs 

(lncRNAs), for example, the gene fusion with the greatest burden in ALS was a 

neighbour fusion between the lncRNA LINC01572 and PMFBP1 (OR 3.3, 95% CI 

1.6-Inf, Fisher’s exact test p 0.001).  

Examining the frequency of gene fusions per iPSN, revealed significantly greater 

numbers of gene fusions in ALS compared to controls (Wald test p = 0.002; Fig. 

5f; Table S10). Comparing the frequencies of each type of gene fusion between 

ALS with control iPSNs, revealed trends towards increased numbers in ALS iPSNs 

for each of gene neighbours (Wald test p = 0.13), overlapping neighbours (p = 

0.83), local inversions (p = 0.95), distant intra-chromosomal (p = 0.93), although 

this was statistically significant only for inter-chromosomal fusions (p = 0.0002; 

Extended Data Fig. 13c). Comparing the number of gene fusions per iPSN in each 

ALS genetic group with their respective dataset controls, revealed significantly 

greater numbers of gene fusions in C9orf72 repeat expansions (Wald p = 7x10-5) 
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and SOD1 mutant groups (Wald test p = 6.6x10-5; Extended Data Fig. 13d). Taken 

together, these findings reveal enrichment of SNVs, indels and gene fusions in 

ALS motor neurons, which we propose is a genomic signature arising from 

elevated DNA damage. 

Fig. 5: ALS iPSNs exhibit greater numbers of SNVs, indels and gene fusions. 

 

a, Violin plot showing the numbers of variants identified per iPSN in ALS (red) 

and CTRL (blue) samples from Answer ALS. b, Violin plots showing the number 

of variants according to their annotated type (Single Nucleotide Variant [SNV], 

Insertions, Deletions). c, Number of SNVs classified according to their base 

substitution type in ALS and CTRL. d, Schematic of a gene fusion. e, Venn 

diagram overlapping unique gene fusions in ALS and CTRL iPSNs from paired-

end datasets. f, Violin plot showing the numbers of unique gene fusions per iPSN. 

**** represents P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05.  
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Discussion 

 
Here we present a comprehensive catalogue of ALS motor neuron transcriptomes, 

comprising >400 iPSNs spanning 10 different ALS mutations and sALS. 

Systematically integrating this data provides substantially improved statistical 

power to detect perturbations in ALS motor neurons. Our major finding is that 

ALS motor neurons display augmented DNA damage response and p53 signalling 

activation across the spectrum of ALS. ALS motor neurons showed altered splicing 

in neuronal genes as well as greater numbers of SNVs, indels and gene fusions 

compared to controls, which may contribute to the elevated DNA damage 

response. Our findings add to a growing body of evidence for the role of defective 

DNA repair and induction of the DNA damage response in ALS motor neurons45.  

Despite the large sample size, we found relatively few differentially expressed 

genes across the ALS spectrum. This is likely due to heterogeneity between ALS 

genetic backgrounds since these displayed weak transcriptome-wide correlations, 

thus limiting the detection of common gene expression changes at the pan-ALS 

level. Whilst the sALS subgroup was the most well powered, representing two-

thirds of all ALS iPSNs, it showed only 4 differentially expressed genes, 

reminiscent of what we found in sALS iPSC-derived astrocytes46. sALS represents 

a genetically heterogeneous group and likely includes patients carrying as yet 

unknown pathogenic gene mutations47. Additionally, environmental risk factors 

play an important role in ALS aetiology particularly in patients without a highly 

penetrant mutation48–52. Whilst the iPSC model is an elegant approach to model 

sALS, a notable limitation is that it does not reproduce the patients’ environmental 

exposures. Nonetheless, iPSNs without a known ALS mutation still showed 

significantly elevated p53 activity.  
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In summary, we integrated all publicly available transcriptomic data of iPSNs from 

ALS donors, to enable a greater understanding of the determinants of motor neuron 

dysfunction. Future studies are required to identify whether DNA damage in ALS 

motor neurons results from increased spontaneous damage or impaired repair. 

Identifying the identity and loci of the DNA lesions that accumulate in ALS motor 

neurons driving p53 activation will help in this regard and may expose desperately 

needed tangible therapeutic targets in this devastating and currently untreatable 

disease. 
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Table 1. iPSN datasets included in meta-analysis 

 

Reference Accession # Mutation ALS n Control n Library type Layout 

Sareen et al, 2013 GSE52202 C9orf72 4 4 polyA Single 

Kiskinis et al, 2014 GSE54409 SOD1 2 3 polyA Paired 

Kapeli et al, 2016 GSE77702 FUS 3 2 polyA Single 

Wang et al, 2017 GSE95089 SOD1 2 2 polyA Paired 

De Santis et al, 2017 GSE94888 FUS 3 3 Ribo-zero Paired 

Bhinge et al, 2017 PRJNA361408 SOD1 2 2 Ribo-zero Single 

Luisier et al, 2018 GSE98290 VCP 3 3 polyA Single 

Abo-Rady et al, 
2020 GSE143743 C9orf72 3 3 polyA Single 

Dafinca et al. 2020 

GSE139144 C9orf72 4 8 

polyA Paired GSE147544 TARDBP 6 4 

Catanese et al., 2021 GSE168831 

C9orf72 6 

6 polyA Paired FUS 6 

Smith et al, 2021 PRJEB47567 TARDBP 3 2 polyA Paired 

Hawkins et al, 2022 GSE203168 FUS 2 2 Ribo-zero Single 

Sommer et al, 2022 GSE201407 C9orf72 6 6 polyA Paired 

NeuroLINCS, 2022 phs001231.v2.p1 

sporadic 8 

14 Ribo-zero Paired 

SOD1 6 

C9orf72 16 

Answer ALS, 2022 
AnswerALS data 
portal 

sporadic 200 

42 Ribo-zero Paired 

C9orf72 21 

SOD1 8 

6 other ALS 
mutations 9 

Total   323 106   
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Methods 

 
Eligibility criteria and search strategy 

We evaluated all human iPSN datasets that had undergone bulk RNA-sequencing 

(RNA-seq) that examined ALS and controls (healthy individuals or isogenic 

correction), regardless of the iPSN differentiation protocol or RNA-seq library 

strategy. All ALS subtypes were included and the definition of ALS used by each 

individual dataset was accepted. In datasets with multiple timepoints through 

motor neuron differentiation only the final most terminal differentiated timepoint 

was utilised13. We excluded datasets that had not undergone a motor neuron 

differentiation protocol or failed iPSN identity or RNA-seq quality control 

measures. We systematically reviewed RNA-seq databases, including Gene 

Expression Omnibus (GEO), NCBI sequence read archive (SRA), EBI 

arrayExpress, European Nucleotide Archive (ENA), synapse.org and manually 

searched reference lists as well as ALS data portals of relevant studies up to June 

2022. The search strategy included keywords relating to ALS and motor neurons.   

RNA-seq processing, integration and quality control 

The iPSN differentiation protocol method (including induction, specification and 

terminal differentiation) as well as RNA-seq library strategy (RNA extraction, 

library preparation, sequencing instrument and read metrics) for each dataset is 

noted in Table S1. Raw RNA-seq reads (fastq files) and accompanying metadata 

were downloaded using nfcore/fetchngs v1.5 pipeline 53 and pysradb v1.3 using the 

sample SRA accession number. Reads were processed using the nfcore/rnaseq 

v3.8.1 pipeline53. Raw reads underwent adaptor trimming with Trim Galore, 

removal of ribosomal RNA with SortMeRNA, alignment to Ensembl GRCh38.99 

human reference genome using splice-aware aligner, STAR v2.7.1 and BAM-level 

quantification with Salmon. Samples were subjected to extensive RNA-seq quality 

control utilising FastQC, RSeQC, Qualimap, dupRadar, Preseq, and SAMtools and 
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results were collated with MultiQC. Samples that passed the nfcore/rnaseq quality 

control status checks were included in the meta-analysis (Table S2). The median 

read depth was 115 (range 6 - 164) million reads per sample. 

We used principal component analysis (PCA) and unsupervised clustering to 

interrogate the batch effects of clinical variables, iPSN protocols and RNA-seq 

strategies between samples and datasets. Gene counts were normalised and 

transformed using the variance stabilizing transformation function in DESeq2. 

Principal components were calculated based on the 500 highest variance genes 

using the plotPCA function and individual PC gene loadings were extracted with 

the prcomp function. Samples clustered into two groups based on library 

preparation (polyA or total Ribo-Zero RNA). We examined the motor neuron 

transcriptomic identities of iPSNs by clustering using the ComplexHeatmap 

package based on the expression of canonical neuronal and glial cell type markers 

as well as dorsoventral54 and rostrocaudal (HOX) gene markers. The Lee et al. 

dataset was excluded due to RNA library batch effects between ALS (Ribo-Zero) 

and control (polyA) samples as well as inadequate neuronal marker expression20. 

We excluded three control samples in AnswerALS that whole-genome sequencing 

revealed to have pathogenic ALS mutations. Additionally, 4 Answer ALS iPSNs 

from non-ALS motor neuron disease patients were excluded. NeuroLINCS consists 

of 3 distinct iPSC protocols (iMNs, diMNs and undifferentiated iPSCs; Table S1), 

of which only the iMN and diMN batches were included. Gender was confirmed 

by examining expression of the X chromosome gene XIST (female) and Y 

chromosome genes KDM5D, DDX37, RP54Y1 and EIFAY (male). 

Modelling differential gene expression 

STAR aligned and Salmon quantified transcript abundance were summarised at the 

gene-level using tximport in R v4.1.3. Differential gene expression analysis was 

then fitted using DESeq255. The meta-analysis results of ALS iPSNs was generated 

by comparing the ALS versus control groups using the Wald test, controlling for 

sex differences and dataset variation with the design formula ~gender + dataset + 
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condition. This design controls for technical variation due to library preparation 

(nested within the dataset variable), which was the main factor driving PCA 

structure (Extended Data Fig. 2-3), thereby increasing the sensitivity for 

identifying differences due to ALS. We orthogonally estimated technical variation 

using the RUVg method that takes empirically defined negative control genes to 

estimate low-rank technical variation in the data, specifying 5 RUV factors56. To 

examine the effect of each ALS genetic background on gene expression a similar 

approach was used, comparing the ALS versus control samples using the design 

formula ~gender + dataset + genetic_group. For these subgroup analyses, control 

samples from each dataset were only utilised if the dataset also exhibited the 

relevant ALS genetic background. 

Results for each genetic background were correlated by matching the Wald test 

statistic for each gene followed by Pearson correlation.  In all analyses, genes were 

considered differentially expressed at FDR < 0.05. Significantly up- and down-

regulated differentially expressed genes were used as input to functional 

enrichment analyses, which was used to identify enriched pathways using 

g:Profiler2. g:Profiler2 searches the following data sources: Gene Ontology (GO; 

molecular functions, biological processes and cellular components), KEGG, 

REAC, WikiPathways, CORUM and Human phenotype ontology. In the functional 

enrichment bar charts, the top significant terms were manually curated by 

removing redundant terms. Gene Set Enrichment Analysis (GSEA) was performed 

using FGSEA on GO:0072331 (signal transduction by p53 class mediator) gene 

set. The decoupleR package was used to estimate PROGENy signalling pathway 

activities and DoRothEA TF regulon activities inferred from gene expression 

changes 30.  

Postmortem spinal cord ALS RNA-seq samples were derived from samples from 

the New York Genome Centre (NYGC) ALS consortium. Samples from non-spinal 

cord sites were excluded as well as samples that failed quality control as described 

previously5. Processed gene counts are available from Zenodo accession 6385747. 
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In cases where multiple spinal cord samples were available from donors only the 

cervical cord sample was included. Differential expression results for postmortem 

spinal cord ALS were calculated by comparing ALS versus control samples, 

accounting in the design for the RNA library preparation method, gender and the 

site of spinal cord (cervical, thoracic or lumbar).  

Alternative Splicing Analyses 

All modes of alternative splicing were analysed using MAJIQ v2.434,35 on poly(A) 

selected RNA library samples. STAR aligned BAMs were used as input to the 

MAJIQ splice graph builder using Ensembl GRCh38.99 transcript annotation. 

Batch effects between datasets and gender were corrected for by using 

MOCCASIN36. Differential splicing was calculated using the MAJIQ heterogen 

function, which is designed for examining splicing across large and heterogeneous 

datasets. A threshold of 10% ΔΨ and TNOM p-value < 0.05 was used to call 

significant splicing changes between groups. Changes in each specific class of 

splicing were examined using the Voila modulize function that breaks down the 

complex local splice variants into the classic binary splicing events (e.g. exon 

skipping or intron retention). For comparison of ALS iPSN splicing events with 

TDP-43 deletion, RNAseq fastq files from iNeurons were downloaded from ENA 

PRJEB42763. These were processed using nfcore/rnaseq followed by MAJIQ v2.4 

using the MAJIQ deltapsi function, which is more appropriate for this small single 

batch homogenous experimental replicate dataset.  

Gene variant and fusion detection 

Gene variants were detected using the nfcore/rnavar pipeline v1.0.053, which is 

based on GATK v4.2.6 short variant discovery workflow. Variant discovery is 

highly sensitive to coverage and sequencing chemistries and so only the Answer 

ALS dataset was used for variant detection thus avoiding confounding batch 

effects between multiple datasets. Raw RNA-seq reads were mapped using STAR 

in two-pass mode. SplitNCigarReads tool was used to reformat alignments that 

span introns for the HaplotypeCaller. BaseRecalibrator and ApplyBQSR were used 
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for base quality recalibration. Single nucleotide variants (SNVs) and indels were 

called using the HaplotypeCaller and variants were filtered using VariantFiltration 

specifying a minimum phred-scaled confidence threshold of 20 and minimum 

quality depth of 2.0. and. RNA editing variants from the REDIportal v2.0 were 

filtered out using VCFtools –exclude-bed module. Variants were annotated using 

snpEff and Ensembl VEP whilst VCFtools vcf-annotate –fill-type module was used 

on the filtered output to classify variants into SNVs, insertions or deletions. The 

characteristics of variants were assessed using the MutationalPatterns package 

v3.6.0, which summarises the number and proportions of each type of base 

substitution57. To compare the number of variants per iPSN in ALS versus CTRL 

groups, a generalised linear model was fit specifying a poisson distribution 

adjusting for differences in read coverage per sample using a spline: variant_count 

~ condition + rcs(total_reads, 3).  

Gene fusions were identified using the nfcore/rnafusion pipeline v2.0.053, utilising 

the STAR-Fusion v1.10.143 workflow on paired-end RNA-seq datasets. Raw RNA-

seq reads were aligned using STAR to identify chimeric transcripts, which are 

defined as a part of a read aligning to one gene and another part of the same read to 

a different gene (split) or when each end of a paired read set aligns to different 

genes (spanning). STAR Fusion applies numerous filters to avoid spurious fusion 

detection including removing chimeric reads that overlap with sequence similar 

regions and removing duplicate paired-end alignments. Fusion events were filtered 

using the FusionFilter module default settings for spanning and split reads. Fusion 

events with fusion fragments per million (FFPM) < 0.1 were removed. Gene fusion 

events are classified using FusionAnnotator module into inter-chromosomal and 

intra-chromosomal. Intra-chromasomal are subclassified into local gene orientation 

rearrangements, neighbours (<100kb apart), overlapping neighbours (genes span 

overlap by at least 1 base pair) and distant (>100kb apart). To compare the number 

of variants or fusions per iPSN in ALS versus CTRL groups, a generalised linear 

model was fit specifying a poisson distribution adjusting for differences in read 
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coverage per sample using a spline and batch effects between datasets: 

fusion_count ~ condition + dataset + rcs(total_reads, 3). To detect burden 

differences of individual gene fusions in ALS compared to CTRL iPSNs, the 

Fisher test was used to calculate the Odds Ratio, 95% confidence interval and p-

value. In both variant and fusion analyses, to examine the effect of each ALS 

genetic group, controls were only utilised if the dataset also included ALS samples 

from the relevant genetic group.  

Schematics were created with BioRender.com. All error bars in the boxplots shown 

represent 1.5 times the interquartile range.  

 

Data availability 

 
All raw and processed sequencing data generated in this study are available on 

public repositories under accession numbers shown in Table 1.   
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