- 2 Impact of COVID-19 pandemic on the socioeconomic inequality of health behavior among
- 3 Japanese adolescents: a two-year-repeated cross-sectional survey
- 4
- 5 Akira Kyan^{1,2}, Minoru Takakura²
- ⁶ ¹Graduate School of Human development and environment, Kobe University, Kobe, Japan;
- ⁷ ² Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
- 8

9 * Corresponding author's information

- 10 Name: Akira Kyan
- 11 Institutional addresses: Graduate School of Human development and environment, Kobe University,
- 12 Kobe, 657-8501 Japan
- 13 Business telephone number: +81- 78-803-7721
- 14 E-mail addresses: a-kyan@pony.kobe-u.ac.jp
- 15

16 Affiliations and Postal addresses

- ¹⁷ Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto,
- 18 Kobe, Hyogo 867-8501, Japan
- ¹⁹ ² Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
- 20

- 21 **Telephone numbers**
- 22 A.K.: +81-78-803-7721
- 23 M.T.: +81-98-895-1255
- 24
- 25 Email addresses
- 26 A.K.: a-kyan@pony.kobe-u.ac.jp
- 27 M.T.: minoru@med.u-ryukyu.ac.jp
- 28
- 29 **ORCiDs**
- 30 A.K.: 0000-0002-8134-8687
- 31 M.T.: 0000-0001-5558-7863

32 Abstract

33	Background: Although disparities in socioeconomic status in health behaviors have been highlighted
34	globally, they are not well understood in Japanese adolescents. The purpose of this study was to
35	clarify the changes in socioeconomic disparities in adolescents' fundamental health behaviors, such
36	as physical activity, screen time (ST), sleep, breakfast intake, and bowel movement before and
37	during COVID-19.
38	Methods: This was a repeated cross-sectional study which used data from the 2019 and 2021
39	National Sports-Life Survey of Children and Young in Japan. Data of 766 and 725 participants in
40	2019 and 2021, respectively, were analyzed. Favorable health behaviors were defined as daily
41	moderate-to-vigorous physical activity (MVPA) of at least 60 minutes, ST of less than 2 hours, sleep
42	of 8 to 10 hours, daily breakfast intake, and bowel movement frequency of at least once in every 3
43	days. We calculated the slope index of inequality (SII) and relative index of inequality (RII) in each
44	health behavior for equivalent household income levels for assessing absolute and relative economic
45	inequalities.
46	Results:Compliance with MVPA and ST recommendation significantly declined from 20.1% and
47	23.0% in 2019 to 11.7% and 14.9% in 2021, respectively. The SII and RII increased in MVPA for
48	income levels, but decreased in daily breakfast in 2019 to 2021. Although the widening and
49	narrowing of the disparity was inconclusive for ST, it exacerbated for the higher income groups.
50	Conclusions: Our study revealed widening of economic disparities in the achievement of
51	recommended MVPA and narrowing of it in breakfast intake among adolescents before and during

52 COVID-19.

53

54 **Keywords:** Epidemiology; Health inequities; Household income; Physical Activity; Public health

55 What is already known on this subject

56	•	Although disparities in the economic status of the family and neighborhood have been observed
57		in several fundamental health behaviors among western countries' adolescents, they have not
58		been well understood in Japan. It has been pointed out that the economic disparities caused by
59		the COVID-19 pandemic threaten to increase disparities in health and health behaviors.
60		
61	Wh	at this study adds
62	•	This is the first study to examine the change in socioeconomic inequalities in various health
63		behavior among Japanese adolescents before and during the COVID-19 pandemic.
64	•	We found widening of socioeconomic disparities in the achievement of recommended PA
65	•	We found narrowing of socioeconomic disparities in breakfast intake.
66		
67	Hov	v this study might affect research, practice or policy
68	•	Continuous monitoring of how this affects health in the short and long term is needed.

70 Introduction

71	The issue of socioeconomic disparities of health in Japan has been pointed out only in the last 20
72	years, after the period of rapid economic growth. A systematic review of health disparities in Japan
73	reports that the gradient of disparities is modest in the first decades since the 1990s compared with
74	western countries [1]. In the last decade, as it worsened, the situation has been recognized as a public
75	health concern [1]. Since 2013, correcting the situation has been one of the goals of Japan's health
76	policies [2].
77	In western countries, disparities by the economic status of the family and neighborhood have been
78	observed in several fundamental health behaviors, such as physical activity (PA) [3], sedentary
79	behavior (screen time (ST)) [4], sleep behavior [5], bowel movement frequency (constipation) [6],
80	and food intake [7], among adolescents. In Japan, on the other hand, they are not well understood.
81	This may be because it has only been a few decades since the health inequalities in Japan were first
82	called to attention. In relatively recent very few examples of the inequality of health behavior, daily
83	breakfast intake is higher in the high-income group [8], while socioeconomic disparities in food and
84	nutrient intake have been restrained owing to serving of school lunches on weekdays in schools [9].
85	There are no studies on the relationship between socioeconomic status (SES) and exercise in
86	Japanese adolescents, except for one inconclusive study in a local Japanese journal [10].
87	During the COVID-19 pandemic, the fundamental health behaviors have deteriorated among
88	adolescents around the world [11,12]. Likewise, national surveys among Japanese adolescents
89	reported that exercise, including active play, declined significantly, screen time of 2 hours or more

90	per day increased significantly, and daily breakfast intake, adequate sleep of 8-10 hours, and the
91	frequency of bowel movement remained almost unchanged [13,14]. The COVID-19 pandemic has
92	not only disrupted healthcare, but also the lifestyle and social and economic activities of people. In
93	Japan, measures to prevent the spread of the pandemic included policies to restrict people's activities,
94	such as closure of restaurants and restriction on large-scale events [15]. Thereby, the service industry,
95	including the restaurants, and tourism industry, experienced a significant drop in sales, and many
96	businesses were forced into unemployment and bankruptcy [15]. In contrast, the information and
97	communication industry, including online businesses, saw an increase in sales [15]. Thereby, the
98	accompanying widening of household income inequality became a concern [16]. The public health
99	concern associated with it is that this may increase disparities in people's health or health behaviors
100	[17]. The possibility of increasing disparities in mental well-being [18] and recreational PA [19]
101	among Japanese adults has been reported recently. Regarding dietary intake among Japanese
102	adolescents, a recent retrospective study found that meat, fish, eggs, and vegetables intake worsened,
103	especially in low-income households, during school closure (from 16 April to 6 May, 2020), while it
104	mended after school lunch restarted [20]. However, no study has been conducted on other health
105	behaviors in either Japan or the rest of the world [21].
106	Adolescent health behaviors have been documented to not only determine the physical and mental
107	growth and development and health during adolescence, but also how these are carried over into the

- 108 future [22]. It is also a right for all children to have a healthy life [22]. If they are suffering from
- 109 inequality because of the home environment, which is beyond their control, they are victims. While

110	some health behaviors, which are affected by the COVID-19 pandemic, should be recovered for
111	adolescents, understanding how these behaviors vary with household income is important to form
112	intervention strategies (providing necessary support to those who need it) and policies. Thus, this
113	study aimed to clarify the trends in socioeconomic disparities in adolescents' health behaviors,
114	especially the fundamental health behaviors that constituted daily life, such as PA, ST, breakfast
115	intake frequency, and bowel movement frequency before and during COVID-19.
116	

117 Methods

118 Data source

119 This study used data from the 2019 and 2021 National Sports-Life Survey of Children and Young 120 conducted by the Sasakawa Sports Foundation (SSF) [14]. The survey is a nationwide cross-121 sectional survey that has been conducted every two years since 2001. From the 2017 survey, the 122 target age groups were categorized into ages 4-11 and 12-21. The survey mainly measures exercise 123and sports participation of children and youth during after-school periods and holidays, and sports 124 environments as well as health behaviors including sleep time, media usage time, and bowel 125movement frequency. Data are collected using self-administered questionnaires from adolescents 126 and parents/guardians between June and July of each survey year. 127 The study sample of each year was selected using the two-staged stratified random sampling 128 method from 225 locations (2019: 61 in metro areas, 94 in cities with a population of over 100,000,

129 50 in cities with a population of less than 100,000, and 20 in towns and villages; 2021: 61 in metro

130	areas, 96 in cities with a population of over 100,000, 50 in cities with a population of less than
131	100,000, and 18 in towns and villages), which were proportionally distributed from the strata by
132	district/city size based on the population of the Basic Resident Register as of January 1 st in the prior
133	year of each survey year. The study area established at the time of the census in 2015 was used as the
134	primary sampling unit at the time of the survey. The target sample size allocated to each location was
135	10 to 19. Survey points were extracted by the probability proportional sampling method, using the
136	following formula to calculate the sampling interval for strata in which two or more survey points
137	were assigned.
138	Total number of people aged 4 to 21 years in the study area in the strata / Number of survey sites
139	calculated in strata
140	A total of 3,000 individuals participated in the survey. Detailed information on the survey methods
141	can be found on the SSF website [14].
142	In this study, we used data from the surveys of young people aged 12 to 21 in 2019 and 2021, as all
143	variables of interest were available. The number of responses for 2019 and 2021 were 1,675
144	(response rate 55.8%) and 1,663 (response rate 55.4%), respectively. The analysis included 12- to
145	18-year-olds, excluding 18-year-olds who were not attending high school. In the Japanese
146	educational system, most students enrolled in high school are 15- to18-year-olds. Of these, most 17-
147	and 18-year-olds are enrolled in the third grade of high school and share school routines. This was
148	the reason for including 18-year-olds attending high school in the analysis, while the age categories
149	for the analysis of PA, ST, and sleep recommendations were up to age 17. After excluding

150 individuals with missing variables of interest, data from 766 participants (359 boys and 407 girls) in 1512019 and 725 participants (365 boys and 360 girls) in 2021 were used for analysis. Ethical approval 152was not required, as this study was a secondary analysis conducted using public datasets from the 153SSF that did not include identifiable personal information. 154155Measures 156Physical activity 157PA was measured using the Japanese version of the Health Behaviour in School-aged Children 158survey (HBSC) questionnaire [23]. The HBSC questionnaire is widely used globally as the basis of 159moderate-to-vigorous PA (MVPA) surveillance of adolescents [24]. In the questionnaire, PA referred 160 to any activity that increased the heart rate and made an individual feel out of breath for some time. 161 PA can include sports, school activities, playing with friends, or walking to school. Examples of PA 162 include running, brisk walking, rollerblading, biking, dancing, skateboarding, swimming, playing 163 soccer, basketball, football, etc., and surfing. The question item was as follows: 'Over the past 7 164 days, on how many days were you physically active for a total of at least 60 minutes per day?'. 165 Participants were dichotomized into either active or inactive based on whether they achieved seven 166 days per week of 60 minutes MVPA, according to the World Health Organization (WHO) guidelines 167 on PA and sedentary behavior [25]. 168

169 Screen time

170	ST was assessed by asking about recreational TV/DVD viewing time and
171	computer/game/smartphone usage on weekdays and weekends separately. These questions were
172	formulated as follows: 'For how many hours do you watch TV or DVD or use computer, video
173	games (including TV, computer, and cellular device games, etc.), or smartphone per day outside of
174	school and/or work?'. Possible answers to the question were 'less than half-hour/day,' 'half-hour to 1
175	h/day,' '1–2 h/day,' '2–3 h/day,' '3–4 h/day,' '4–5 h/day,' 'more than 5 h/day,' and 'I don't know'.
176	The answer categories were recorded in minutes using the midpoint method. The 'I don't know'
177	option was deemed a missing case. Average minutes of daily ST were weighted by weekdays and
178	weekends using the following formula:
179	[(minutes of ST on weekdays \times 5) + (minutes of ST on weekends \times 2)] / 7.
180	We then categorized the participants based on the cut-off of 2 h of recreational ST [25].
181	
182	Sleep duration
183	Sleep duration was assessed by questioning on bedtime and awakening hours on weekdays and
184	weekends separately. Participants were asked to report the times they typically went to sleep at night
185	and woke up in the morning on weekdays and weekends. Sleep duration was calculated by
186	subtracting wake-up time from bedtime.

- 187 Average minutes of daily sleep were weighted by weekdays and weekends using the following
- 188 formula:
- 189 $[(sleep duration on weekdays \times 5) + (sleep duration on weekends \times 2)]/7.$

- 190 The participants were grouped based on whether they had a sleep duration that was within the
- range (8.0–10.0 h/night) recommended by the National Sleep Foundation [26].
- 192
- 193 Breakfast
- 194 Breakfast frequency was determined by asking the question 'How often do you have breakfast per
- 195 week?'; the possible responses were 'almost every day', 'eating 4-5 days per week', 'eating 2-3 days
- 196 per week', and 'very few'. Participants were dichotomized into almost every day or others based on
- 197 the recommendation of the Ministry of Agriculture, Forestry and Fisheries, Japan [27].

198

199 Bowel movement frequency

200 Bowel movement frequency was determined by asking the question 'How often do you have 201 bowel movement?'; the possible responses were 'almost every day', 'once per two days', 'once per 202 three days', 'less than once per three days', and 'irregularly'. We dichotomized participants into two 203 groups: 'almost every day to once every three days' and 'less than once every three days and 204 irregular', with reference to the definition of constipation [6]. While the definition of constipation 205 ranges from self-reported constipation to clinical criteria regarding frequency of bowel movements 206 and symptoms [6], one of the symptoms included in the Rome IV criteria is 'two or fewer 207 defecations in the toilet per week [6].

208

209 Household Income

210	The parents/guardians of the participants were asked about their annual pre-tax household income
211	using 11 options ranging from 'no income' to '10 million yen or more'. The 'I don't know' option
212	was deemed a missing case. The midpoint of each option was substituted for the household income.
213	The equivalent household income was calculated by dividing household income by the square root
214	of the number of members in the household [28]. Subsequently, the equivalent household income
215	was categorized based on one-half of the median equivalent household income as a cut-off point:
216	'less than 1.375 million yen', '1.375 to less than 2.75 million yen', and '2.75 million yen or
217	more'[29]. One million yen was roughly ten thousand US dollars at the time of the survey.
218	
219	Confounding factors
220	Place of residence, family structure, sex, age, sports participation, self-rated health, and preference
221	of PA were used as covariates, and were considered as potential confounders [3,30]. The place of
222	residence was categorized into two groups based on the population of the cities. Family structure
223	was assessed using information regarding the people living in the home, coded as 'living with both
224	parents' or 'other.' Sports participation was assessed by asking whether the participants were

226 Self-rated health was dichotomized into 'good' and 'poor'. Preference for PA was dichotomized into

227 'like' and 'dislike'.

228

229 Statistical analysis

230	Initially, the percentage of compliance with health behavior recommendation was estimated by
231	each income level and each survey year. Cochran-Armitage test for trend was used to assess time
232	trends in the percentage of compliance with each recommendation of health behavior and prevalence
233	of constipation over time by each income level. Fisher's exact test was performed to evaluate
234	differences in compliance with each recommendation of health behavior and prevalence of
235	constipation among different categories for each income level by each survey year. Next,
236	socioeconomic inequalities in health behavior between low- and high-income groups were assessed
237	by absolute and relative measures. Both absolute and relative measures were estimated with 95%
238	confidence intervals (CIs) for income levels in each survey year. For the absolute measures, the
239	slope index of inequality (SII) [31] was calculated using generalized linear models with binomial
240	distribution and identity link function. The coefficient yielded an estimate of the absolute inequality.
241	When this binomial model failed to converge, a generalized linear model with normal distribution
242	and identity link function was used [32]. For the relative measures, the relative index of inequality
243	(RII) [31] was calculated using generalized linear models with binomial distribution and log link
244	function. The exponentiated coefficient yielded an estimate of the relative inequality. The SII and
245	RII were estimated using ridit score for income levels as an independent variable. The SII and RII
246	were summary measures of inequality as the changes in health behavior between the bottom and top
247	points in the income hierarchy while accounting for the cumulative distribution in each income level
248	[33]. Time trends of absolute and relative measures were assessed by the inclusion of the interaction
249	term between income levels (ridit score for the SII and RII) and survey year [33]. In the model,

250	survey year was treated as a continuous variable coded as 1 for 2019 and 2 for 2021 [33]. Wald test
251	was used to test if the interaction term was statistically significant. Finally, these models were
252	adjusted for confounding factors, such as place of residence, family structure, sex, age, sports
253	participation, self-rated health, and preference of PA. To explore the association between the
254	outcomes, when each health behavior was considered in the dependent variable as an outcome, other
255	health behaviors were included in the independent variables.
256	

257 **Results**

Table 1 shows the distribution of study participants by sociodemographic characteristics and survey years. There were significant relationships between survey year and MVPA and ST (P < 0.05). The number and percentage of missing each variable were shown in the e-Table (appendix). The missing percentages for each variable were similar in both surveys. Household income was missing by approximately 22% in each survey. This is because the "I don't know" option was treated as a missing value.

Table 2 shows the prevalence in compliance with each health behavior recommendation by income levels and survey years. Overall, although the compliance with PA and ST recommendation significantly declined from 20.1% and 23.0% in 2019 to 11.7% and 14.9% in 2021, respectively, the compliance with sleep and breakfast frequency recommendation and constipation prevalence remained unchanged between 2019 (63.2%, 83.6%, and 10.1%, respectively) and 2021 (64.7%, 83.3%, and 10.5%, respectively). While declining trends in PA were observed for all income levels,

270	declining trends in ST were observed for only high-income level. Regarding breakfast consumption,
271	no overall trend of change was observed between 2019 and 2021, but a declining trend was observed
272	only at the high-income level, although it was not statistically significant. Table 2 also shows the
273	results of Fisher's exact test. A clear difference between 2019 and 2021 emerged in breakfast intake:
274	the percentage of breakfast intake was lower in the low-income group and higher in the highest-
275	income group in 2019 (P < 0.001), but the differences between the groups obscured in 2021 (P =
276	0.151). A similar trend was observed for ST, although it was not statistically significant (P in 2019
277	and 2021 were 0.097 and 0.863, respectively). On the other hand, PA showed differences by income
278	levels in 2021, although it was not statistically significant ($P = 0.063$), but not in 2019 ($P = 0.907$).
279	These differences by socioeconomic levels between the study periods were not found in compliance
000	
280	with sleep duration (P in $2019 = 0.916$; P in $2021 = 0.356$) and bowel frequency (P in $2019 = 0.503$;
280 281	with sleep duration (P in 2019 = 0.916; P in 2021 = 0.356) and bowel frequency (P in 2019 = 0.503; P in 2021 = 0.265).
281	P in 2021 = 0.265).
281 282	P in 2021 = 0.265). Table 3 shows the SII and RII in each health behavior for the income levels by survey years.
281 282 283	P in 2021 = 0.265). Table 3 shows the SII and RII in each health behavior for the income levels by survey years. Significant increase and decrease trends of disparities were shown in the compliance of MVPA and
281 282 283 284	P in 2021 = 0.265). Table 3 shows the SII and RII in each health behavior for the income levels by survey years. Significant increase and decrease trends of disparities were shown in the compliance of MVPA and daily breakfast intake. The SII in MVPA increased from -2.37% (95% CI 13.62– 8.87) in 2019 to
281 282 283 284 285	P in 2021 = 0.265). Table 3 shows the SII and RII in each health behavior for the income levels by survey years. Significant increase and decrease trends of disparities were shown in the compliance of MVPA and daily breakfast intake. The SII in MVPA increased from -2.37% (95% CI 13.62– 8.87) in 2019 to 11.2% (95% CI 2.90– 19.50) in 2021. Although it was not statistically significant in the crude model
281 282 283 284 285 286	P in 2021 = 0.265). Table 3 shows the SII and RII in each health behavior for the income levels by survey years. Significant increase and decrease trends of disparities were shown in the compliance of MVPA and daily breakfast intake. The SII in MVPA increased from -2.37% (95% CI 13.62– 8.87) in 2019 to 11.2% (95% CI 2.90– 19.50) in 2021. Although it was not statistically significant in the crude model (P for trends = 0.057), the adjusted model showed significant increase trends (P for trends = 0.032).

290	decreased from 4.34 (95% CI 2.05–9.18) in 2019 to 1.11 (95% CI 0.5–2.47) in 2021 (P for trends =
291	0.015). The SII in ST decreased from 20.72% (95% CI 7.71- 33.72) in 2019 to 4.74% (95% CI -
292	7.97-17.45) in 2021, but it was not statistically significant (P for trends = 0.085). Similarly, for RII,
293	the disparity decreased numerically but was not statistically significant. For sleep duration and
294	bowel movement, no disparities or increase and decrease trends were observed for the survey years.
295	Except the SII in PA, all adjusted models showed almost the same results as the crude models.
296	

297 Discussion

298This is the first study to examine the time trend in socioeconomic inequalities in various health 299behaviors among the Japanese adolescents before and during the COVID-19 pandemic. We found 300 widening of socioeconomic disparities in the achievement of recommended PA and narrowing of 301 socioeconomic disparities in breakfast intake among adolescents. For MVPA particularly, while all 302 income groups showed deterioration during the COVID-19 pandemic, the trend was more prominent 303 in the lowest-income groups. Breakfast intake frequency showed an improving trend among lower 304 income groups, while it was worsening among higher-income groups. For ST, the widening and 305 narrowing of the disparity was inconclusive. However, it exacerbated in the higher income groups. 306 Sleep duration and bowel movement frequency did not change from pre-COVID-19 time to the 307 present, and no socioeconomic disparities were observed. The percentage of the present study 308 participants achieving the recommended sleep duration was poor at approximately 35%, while other 309 countries achieved roughly 65% [34]. The prevalence of constipation at about 10% was not

310 relatively high [6].

311	The association between SES and PA observed in other countries [3] has not been reported in
312	Japan [10]. This was probably due to having extracurricular activities as a social system in Japan that
313	allowed many adolescents to participate in sports without spending money. Japan has a system of
314	extracurricular activities in which teachers are engaged in sports coaching from junior high school
315	through high school [35]. In most cases, the cost of participation in extracurricular activities is small,
316	with minimal expenses for the essential equipment. The course of study stipulate a policy for
317	extracurricular activities [36] and almost all schools have it. This is a unique initiative worldwide
318	[35]. According to national comprehensive survey data, as of 2019, the percentage of second-year
319	middle school students enrolled in sports/exercise programs was as high as 66.5% [13], which meant
320	that it played an important role as an equitable opportunity for PA for the Japanese adolescents. The
321	decline in PA among Japanese adolescents during the COVID-19 pandemic was probably the result
322	of the prohibition of that activity due to the pandemic. The widening socioeconomic disparity in PA
323	may be due, in part, to the dependency of accessibility of sports activities on the SES of the family.
324	The local government took measures, such as banning extracurricular activities, at the municipal
325	level to prevent the spread of COVID-19, and the decision to exercise was up to the individuals.
326	Meanwhile, paid sports organizations continued to provide certain services, such as online lectures.
327	The association between paid sports activities and household income has been pointed out before the
328	pandemic [37]. That is, it can be presumed that a larger proportion of adolescents from families with
329	sufficient household income were engaged in paid sports and benefited from them, while a larger

330 proportion of those from low-income families, who were not engaged in paid sports, were inactive.

331 Further research is needed to clarify these details.

332	Socioeconomic disparities in compliance with breakfast intake recommendation have narrowed:
333	the percentage of lower-income groups has improved, while that of higher-income groups has
334	declined. The reason for the decrease in the percentage of higher income groups is not clear, but it is
335	possible that the overall increase in people's health awareness due to the pandemic [38] has led to an
336	improvement in the percentage of low-income groups consuming breakfast. Assuming that the
337	acquisition of knowledge about diet causes behavioral change [39], the change to have regular
338	breakfast, irrespective of its content, may be easier than changing other health behaviors. This is
339	because food resources are also abundant in Japan.

340 A meta-analysis in high-income Western countries found that young people from lower 341 socioeconomic backgrounds have higher levels of ST compared with those from higher 342 socioeconomic backgrounds [4]. According to our results, in 2019, before the COVID-19 pandemic, 343 the trend in Japan was similar to that in other countries. It can be seen that ST has also worsened for 344 higher income groups due to the pandemic. Although the economic disparity can be interpreted to 345 have been eliminated, the overall deterioration is an urgent public health issue. It is plausible to 346 assume that the lifestyles of the higher income groups are changing since the restrictions on going 347 out have led people, at all income levels, to spend more time at home. As mentioned above, higher 348 income groups are more likely to participate in paid private tutoring and sports activities [37]. It is 349 assumed that adolescents from higher-income families had more ST at home due to the COVID-19

350 pandemic. Similar changes may be occurring around the world, but no research has yet elucidated it,

- assignment and a study. It should be urgently verified.
- 352

353 Limitations

354 This study had some limitations. Because this is not a longitudinal study, individual trajectory is 355 unknown. Although the sampling method of the present study is appropriate to ensure the 356 representativeness of the data, eligible samples included in the analysis were 45.7% and 43.6% of all 357 respondents in 2019 and 2021, respectively. However, the proportion of population in each 358 district/city based on their sizes was similar to that of the nation as a whole. Therefore, the 359 representativeness of the data would not deviate considerably. Another limitation is that all data are 360 from self-reported questionnaires, which cannot deny the possibility of including biases such as 361 social desirability. However, the question items used in this study were almost identical to those used 362 in large international or national surveys. For example, PA, ST, sleep, and breakfast frequency were 363 similar to those used in the HBSC [24] and Japanese comprehensive surveys [13]. Thus, these items 364 have sufficient validity as questionnaire to capture the health behaviors of adolescents. The number 365 of the missing value of income was relatively large, but the pattern of missing values was similar in 366 each survey year. This may not be a critical issue in discussing trends in socioeconomic disparities. 367 It also has been pointed out that disparities in these health behaviors have been recognized for other 368 SES indicators, such as parental education level, jobs, and psychosocial deprivation. Impacts to 369 health behaviors may vary by SES indicators [3]. Future studies need to examine disparities in other

370	SES indicators to identify needs for support. Although a number of factors related to each health
371	behavior were taken into account, dietary intake related to bowel movement frequency was only
372	taken into account for breakfast intake frequency due to a lack of data. No socioeconomic disparities
373	in bowel movement frequency have been detected previously in Japan; our results are in line with
374	previous studies [30]. Given that bowel movement frequency is related to dietary intake, school
375	lunches may also contribute to reducing the socioeconomic inequality in bowel movement. To
376	clarify this, future studies need to examine dietary intake and bowel movement simultaneously.
377	

378 Conclusion

379	In conclusion, our study revealed that economic disparities in the achievement of recommended
380	PA widened, while it narrowed for breakfast intake among adolescents before and during COVID-19.
381	The fact that we found socioeconomic disparities that were insignificant before the pandemic
382	confronted us with the need for urgent supports and medium- and long-term monitoring. Possible
383	supports include financial assistance to low-income populations, interventions that encourage more
384 385	effective health behavior change among them, etc. Because of the relatively mild restrictions on behavior in Japan compared to other countries (e.g. no lockdowns are imposed) [12], a severer
386	situation is feared in other countries. Indeed, a recent ecological study among Scottish adolescents
387	reported on the cautionary on a possible widening socioeconomic inequality in PA and ST [40].
388	Further individual-level research is necessary to verify this.

390 Author statements

- 391 Acknowledgements
- 392 We would like to thank Editage (www.editage.com) for English language editing.
- 393

394 Ethical approval

- 395 Ethical approval was not required, as this study was a secondary analysis conducted using public
- 396 datasets from the SSF that did not include identifiable personal information.
- 397
- 398 Funding
- 399 This study was supported by the Grant-in-Aid for Scientific Research (JSPS KAKENHI Grant
- 400 Number 20K10473 and 20K13966) from the Japan Society for the Promotion of Science.
- 401
- 402 *Competing interests*
- 403 The authors declare that they have no competing interests.
- 404

- 406 All authors contributed to the concept or design of the study and the acquisition, analysis, or
- 407 interpretation of data for the work. A.K. drafted the manuscript. M.T. critically revised the
- 408 manuscript. All authors gave final approval and agreed to be accountable for all aspects of work,
- 409 thus ensuring integrity and accuracy.

⁴⁰⁵ Authors contribution

410 **References**

- 411 1 Ikeda N, Saito E, Kondo N, et al. What has made the population of Japan healthy? Lancet
- 412 2011;**378**:1094–105. doi:10.1016/S0140-6736(11)61055-6
- 413 2 Ministry of Health L and W. Healthy Japan 21 (the second term).
- 414 2018.https://www.nibiohn.go.jp/eiken/kenkounippon21/en/ (accessed 23 Jun 2022).
- 415 3 O'Donoghue G, Kennedy A, Puggina A, et al. Socio-economic determinants of physical activity
- 416 across the life course: a 'DEterminants of DIet and Physical ACtivity' (DEDIPAC) umbrella
- 417 literature review. *PLoS One* 2018;**13**:e0190737. doi:10.1371/JOURNAL.PONE.0190737
- 418 4 Mielke GI, Brown WJ, Nunes BP, et al. Socioeconomic Correlates of Sedentary Behavior in
- 419 Adolescents: Systematic Review and Meta-Analysis. Sport Med 2017;47:61–75.
- 420 doi:10.1007/S40279-016-0555-4/FIGURES/5
- 421 5 Sosso FE, Khoury T. Socioeconomic status and sleep disturbances among pediatric population: a
- 422 continental systematic review of empirical research. *Sleep Sci* 2021;**14**:245. doi:10.5935/1984-
- 423 0063.20200082
- 424 6 Mugie SM, Benninga MA, Di Lorenzo C. Epidemiology of constipation in children and adults: A
- 425 systematic review. Best Pract Res Clin Gastroenterol 2011;25:3–18.
- 426 doi:10.1016/j.bpg.2010.12.010
- 427 7 Cislak A, Safron M, Pratt M, *et al.* Family-related predictors of body weight and weight-related
- 428 behaviours among children and adolescents: a systematic umbrella review. Child Care Health
- 429 *Dev* 2012;**38**:321–31. doi:10.1111/J.1365-2214.2011.01285.X

- 430 8 Okamoto S. Parental socioeconomic status and adolescent health in Japan. Sci Rep
- 431 2021;**11**:12089. doi:10.1038/s41598-021-91715-0
- 432 9 Murayama N, Ishida H, Yamamoto T, et al. Household income is associated with food and
- 433 nutrient intake in Japanese schoolchildren, especially on days without school lunch. Public
- 434 *Health Nutr* 2017;**20**:2946–58. doi:10.1017/S1368980017001100
- 435 10 Yamakita M, Sato M, Ando D, et al. Associations between parent's educational levels and
- 436 children's time spent in exercise. *Res Exerc Epidemiol* 2017;**19**:36–43. doi:10.24804/ree.19.36
- 437 11 Farello G, Di Lucia A, Fioravanti B, et al. Analysis of the impact of COVID-19 pandemic on
- 438 functional gastrointestinal disorders among paediatric population. Eur Rev Med Pharmacol Sci
- 439 2021;**25**:5836–42. doi:10.26355/EURREV_202109_26802
- 440 12 Kharel M, Sakamoto JL, Carandang RR, et al. Impact of COVID-19 pandemic lockdown on
- 441 movement behaviours of children and adolescents: a systematic review. BMJ Glob Heal
- 442 2022;**7**:e007190. doi:10.1136/BMJGH-2021-007190
- 443 13 Japan sports agency. National survey of the physical strength, exercise ability and exercise habits.
- 444 2021.https://www.mext.go.jp/sports/b_menu/toukei/kodomo/zencyo/1368222.htm (accessed 24
 445 Jun 2022).
- 446 14 Sasakawa Sports Foundation. Publications. 2021.https://www.ssf.or.jp/en/publications/ (accessed
 447 21 Jul 2022).
- 448 15 Statistics Bureau of Japan. Summary of the Results of Monthly Survey on Service Industries.
- 449 2018.https://www.stat.go.jp/english/data/mssi/kekka/index.html (accessed 22 Sep 2021).

- 450 16 Cabinet office. 2021 Analysis of the Survey of Children's Living Conditions Report.
 451 2022.https://www8.cao.go.jp/kodomonohinkon/chousa/r03/pdf-index.html (accessed 23 Jun
- 452 **2022**).
- 453 17 Ahmed F, Ahmed N, Pissarides C, et al. Why inequality could spread COVID-19. Lancet Public
- 454 *Heal* 2020;**5**:e240. doi:10.1016/S2468-2667(20)30085-2
- 455 18 Kanbayashi H, Hommerich C, Sudo N. Impact of COVID-19 Pandemic on Household Income
- 456 and Mental Well-Being: Sociol Theory Methods 2021;36:259–77. doi:10.11218/ojjams.36.259
- 457 19 Kyan A, Takakura M. Socio-economic inequalities in physical activity among Japanese adults
- 458 during the COVID-19 pandemic. *Public Health* 2022;**207**:7–13. doi:10.1016/j.puhe.2022.03.006
- 459 20 Horikawa C, Murayama N, Kojima Y, et al. Changes in Selected Food Groups Consumption and
- 460 Quality of Meals in Japanese School Children during the COVID-19 Pandemic. *Nutrients*
- 461 2021;**13**:2743. doi:10.3390/nu13082743
- 462 21 López-Bueno R, López-Sánchez GF, Casajús JA, et al. Potential health-related behaviors for pre-
- 463 school and school-aged children during COVID-19 lockdown: A narrative review. Prev Med
- 464 (*Baltim*) 2021;**143**:106349. doi:10.1016/j.ypmed.2020.106349
- 465 22 Patton GC, Sawyer SM, Santelli JS, *et al.* Our future: a Lancet commission on adolescent health
- 466 and wellbeing. *Lancet* 2016;**387**:2423–78. doi:10.1016/S0140-6736(16)00579-1
- 467 23 Tanaka C, Kyan A, Takakura M, *et al.* Validation of the Physical Activity Questions in the World
- 468 Health Organization Health Behavior in School-Aged Children Survey Using Accelerometer Data
- 469 in Japanese Children and Adolescents. J Phys Act Heal 2021;18:151–6. doi:10.1123/jpah.2019-

0671

471	24	Inchley J, Currie D, Cosma A, et al. Health Behaviour in School-aged Children (HBSC) study
472		protocol: background, methodology and mandatory items for the 2017/18 survey. 2018.
473	25	World Health Organization. WHO guidelines on physical activity and sedentary behaviour.
474		2020.https://www.who.int/publications/i/item/9789240015128 (accessed 10 Sep 2021).
475	26	Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation's sleep time duration
476		recommendations: methodology and results summary. 2015. doi:10.1016/j.sleh.2014.12.010
477	27	Ministry of Agriculture F and F. What Are the Benefits of Shokuiku (Food and Nutrition
478		Education)? 2018.https://www.maff.go.jp/j/syokuiku/evidence/index.html (accessed 9 Jul 2022).
479	28	OECD. What are equivalence scales? 2011.http://www.oecd.org/els/soc/OECD-Note-
480		EquivalenceScales.pdf (accessed 10 Sep 2021).
481	29	Keppel K, Pamuk E, Lynch J, et al. Methodological Issues in Measuring Health Disparities. Vital
482		Health Stat 2 2005;:1–16./pmc/articles/PMC3681823/ (accessed 10 Sep 2021).
483	30	Yamada M, Sekine M, Tatsuse T. Psychological Stress, Family Environment, and Constipation in
484		Japanese Children: The Toyama Birth Cohort Study. J Epidemiol 2019;29:220–6.
485		doi:10.2188/jea.JE20180016
100		
486	31	Mackenbach JP, Kunst AE. Measuring the magnitude of socio-economic inequalities in health:
486 487	31	Mackenbach JP, Kunst AE. Measuring the magnitude of socio-economic inequalities in health: An overview of available measures illustrated with two examples from Europe. Soc Sci Med

489 32 Naimi AI, Whitcomb BW. Estimating Risk Ratios and Risk Differences Using Regression. Am J

490 <i>E</i>	<i>Epidemiol</i> 2020; 189 :508–10.	. doi:10.1093/aje/kwaa044
--------------	--	---------------------------

- 491 33 Wachtler B, Hoebel J, Lampert T. Trends in socioeconomic inequalities in self-rated health in
- 492 Germany: a time-trend analysis of repeated cross-sectional health surveys between 2003 and 2012.
- 493 *BMJ Open* 2019;**9**:e030216. doi:10.1136/bmjopen-2019-030216
- 494 34 Rollo S, Antsygina O, Tremblay MS. The whole day matters: Understanding 24-hour movement
- 495 guideline adherence and relationships with health indicators across the lifespan. J Sport Heal Sci
- 496 2020;**9**:493–510. doi:10.1016/j.jshs.2020.07.004
- 497 35 Nakazawa A. Seeing sports as educational activities: a postwar history of extracurricular sports

498 activities in Japan. *Hitotsubashi J Soc Stud* 2014;**45**:1–14.

- 49936JapanSportsAgency.CourseofStudy.5002018.https://www.mext.go.jp/sports/b_menu/sports/mcatetop04/list/1398875.htm(accessed 11)
- 501 Jul 2022).
- 502
 37
 Benesse Education Research Institute. Third Annual Survey of Out-of-School Educational
- 503 Activities 2017. 2017.https://berd.benesse.jp/shotouchutou/research/detail1.php?id=5210
- 504 (accessed 11 Jul 2022).
- Japan Sports Agency. Survey research on the public's participation in sports, changes in
 awareness, and health status due to the outbreak of new coronavirus infection.
- 507 2019.https://www.mext.go.jp/sports/b_menu/sports/mcatetop01/list/detail/jsa_00003.html
- 508 (accessed 11 Jul 2022).
- 509 39 Asakura K, Todoriki H, Sasaki S. Relationship between nutrition knowledge and dietary intake

510	among primary	school childre	en in Japan	Combined effect of	children's and their	guardians'
-----	---------------	----------------	-------------	--------------------	----------------------	------------

- 511 knowledge. J Epidemiol 2017;27:483–91. doi:10.1016/J.JE.2016.09.014
- 512 40 Bardid F, Tomaz SA, Johnstone A, et al. Results from Scotland's 2021 report card on physical
- 513 activity and Health for children and youth: Grades, secular trends, and socio-economic
- 514 inequalities. J Exerc Sci Fit Published Online First: 19 July 2022. doi:10.1016/j.jesf.2022.07.002
- 515

Table 1. Distribution of study participants by sociodemographic characteristics

	20	2019		2021		
	N	%	Ν	%	\mathbf{P}^{a}	
Total	766		725			
Sex						
Male	359	46.9	365	50.3	0.195	
Female	407	53.1	360	49.7		
Age group (year)						
12	88	11.5	78	10.8	0.571	
13	152	19.8	129	17.8		
14	122	15.9	110	15.2		
15	140	18.3	120	16.6		
16	119	15.5	133	18.3		
17	115	15.0	120	16.6		
18	30	3.9	35	4.8		
Residence area		5.7		1.0		
21 metropolises and cities with population of 100,000+	679	88.6	652	89.9	0.452	
Cities with population < 100,000, and towns and villages	87	11.4	73	10.1		
Equivalent household income (million yen)	07	11.1	10	10.1		
< 1.375	69	9.0	66	9.1	0.347	
1.375 - 2.75	259	33.8	220	30.3	0.5 1	
2.75+	438	57.2	439	60.6		
Family structure	150	57.2	109	00.0		
Both parents	651	85.0	635	87.6	0.153	
Other	115	15.0	90	12.4	0.15.	
Sports participation	115	15.0)0	12.4		
No	270	35.2	292	40.3	0.048	
Yes	496	55.2 64.8	433	40.3 59.7	0.040	
Self-rated health	470	04.0	433	39.1		
Good	650	84.9	602	83.0	0.359	
Bad	116	04.9 15.1	123	85.0 17.0	0.557	
Preference of physical activity	110	13.1	125	17.0		
Dislike	142	10 5	130	17.0	0.789	
Like	624	18.5 81.5	595	17.9 82.1	0.705	
MVPA	024	81.3	393	82.1		
<7 days	612	79.9	640	88.3	0.000	
7 days	154				0.000	
Screen time	154	20.1	85	11.7		
< 2 h	176	23.0	108	14.0	0.000	
$\geq 2 h$	590		617	14.9	0.000	
$\leq 2 \ln$ Adequate sleep duration	390	77.0	017	85.1		
8hr-10hr	101	(2) 0	460	64 7	0.553	
Other	484	63.2	469 25.6	64.7	0.553	
Other Breakfast	282	36.8	256	35.3		
	100	15.5	101	1	0.04	
Almost everyday	126	16.4	121	16.7	0.944	
Other	640	83.6	604	83.3		
Constipation					0 - 6	
Yes	77	10.1	76	10.5	0.798	
No	689	89.9	649	89.5		

	Compliance with MVPA guideline					Compliance with screen time guideline				Compliance with sleep duration guideline				Daily breakfast intake							
	2019		2019			202	1	20)19		202	1	20	19		2021		20)19		202
	n	(%)	n	(%)	P ^b for trend	n	(%)	n	(%)	P ^b for trend	n	(%)	n	(%)	P ^b for trend	n	(%)	n	(%)		
Fotal	154	20.1	85	11.7	0.000	176	23	108	14.9	0.000	282	36.8	256	35.3	0.545	640	83.6	604	83.3		
Equivalent hous million yen)	ehold in	ncome																			
< 1.375	15	21.7	3	4.5	0.003	14	20.3	9	13.6	0.304	27	39.1	19	28.8	0.205	48	69.6	50	75.8		
1.375 - 2.75	53	20.5	22	10.0	0.002	49	18.9	35	15.9	0.388	95	36.7	84	38.2	0.735	208	80.3	189	85.9		
2.75+ P for	86	19.6	60	13.7	0.018	113	25.8	64	14.6	0.000	160	36.5	153	34.9	0.604	384	87.7	365	83.1		
Fisher's exact test		0.907		0.063			0.097		0.863			0.916		0.356			0.000		0.151		

Table 2. Prevalence of health behavior in 2019 and 2021 according to the equivalent household income

MVPA moderate-to-vigorous physical activity,

a bowel movement frequency is less than once every 3 days.

b Cochran-Armitage trend test

Table 3. Slope index of inequality (SII) and relative index of inequality (RII) in health behavior according to the income

levels by survey year

		2019		2021	P for trend ^c
MVPA					
Crude SII (95% CI)	-2.37	(-13.62, 8.87)	11.20	(2.9, 19.5)	0.057
Adjusted SII ^a (95% CI) ^b	-7.94	(-18.94, 3.06)	8.86	(0.23, 17.48)	0.032
Crude RII	0.86	(0.43, 1.73)	3.03	(1.16, 7.93)	0.038
Adjusted RII ^a (95% CI)	0.59	(0.28, 1.23)	2.50	(0.95, 6.58)	0.018
Screen time					
Crude SII (95% CI)	20.72	(7.71, 33.72)	4.74	(-7.97, 17.45)	0.085
Adjusted SII ^a (95% CI) ^b	15.85	(3, 28.7)	6.42	(-6.19, 19.03)	0.137
Crude RII	2.57	(1.4, 4.7)	1.27	(0.66, 2.47)	0.125
Adjusted RII ^a (95% CI)	2.16	(1.13, 4.12)	1.41	(0.71, 2.82)	0.208
Sleep duration					
Crude SII (95% CI)	-1.84	(-15.32, 11.64)	-0.15	(-13.96, 13.66)	0.864
Adjusted SII ^a (95% CI) ^b	-5.42	(-18.68, 7.83)	0.40	(-12.42, 13.23)	0.707
Crude RII	0.92	(0.52, 1.65)	0.99	(0.54, 1.82)	0.865
Adjusted RII ^a (95% CI)	0.79	(0.42, 1.46)	1.02	(0.52, 1.99)	0.720
Breakfast					
Crude SII (95% CI)	20.22	(9.4, 31.04)	1.35	(-9.87, 12.57)	0.018
Adjusted SII ^a (95% CI) ^b	18.98	(8.4, 29.56)	1.29	(-9.44, 12.01)	0.018
Crude RII	4.34	(2.05, 9.18)	1.11	(0.5, 2.47)	0.015
Adjusted RII ^a (95% CI)	4.19	(1.89, 9.27)	1.14	(0.5, 2.62)	0.022
Constipation					
Crude SII (95% CI)	-1.09	(-9.29, 7.11)	-0.82	(-9.46, 7.82)	0.965
Adjusted SII ^a (95% CI) ^b	2.68	(-5.61, 10.97)	3.08	(-5.44, 11.6)	0.865
Crude RII	0.89	(0.36, 2.19)	0.92	(0.37, 2.29)	0.960
Adjusted RII ^a (95% CI)	1.49	(0.51, 4.31)	1.44	(0.53, 3.89)	0.845

SII slope index of inequality (%), RII relative index of inequality, CI confidence interval

a Adjusted for place of residence, family structure, sex, age, sports participation, self-rated health, and preference of PA.

b Generalized linear model with normal distribution and identity link function

c Wald test of the interaction term between equivalent house hold income (ridit score) and survey year