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Abstract 24 

Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has demonstrated its ability to 25 
rapidly and continuously evolve, leading to the emergence of thousands of different sequence 26 
variants, many with distinctive phenotypic properties.  Fortunately, the broad availability of next 27 
generation sequencing (NGS) technologies across the globe has produced a wealth of SARS-28 
CoV-2 genome sequences, offering a comprehensive picture of how this virus is evolving so 29 
that accurate diagnostics and reliable therapeutics for COVID-19 can be maintained.  The 30 
millions of SARS-CoV-2 sequences deposited into genomic sequencing databases, including 31 
GenBank, BV-BRC, and GISAID are annotated with the dates and geographical regions of 32 
sample collection, and can be aligned to the Wuhan-Hu-1 reference genome to extract the 33 
constellation of nucleotide and amino acid substitutions.  By aggregating these data into concise 34 
datasets, the spread of variants through space and time can be assessed.  Variant tracking 35 
efforts have focused on the spike protein due to its critical role in viral tropism and antibody 36 
neutralization.  To identify emerging variants of concern as early as possible, we developed a 37 
computational pipeline to process the genomic data from public databases and assign risk 38 
scores based on both epidemiological and functional parameters.  Epidemiological dynamics 39 
are used to identify variants exhibiting substantial growth over time and across geographical 40 
regions.  In addition, experimental data that quantify Spike protein regions critical for adaptive 41 
immunity are used to predict variants with consequential immunogenic or pathogenic impacts.  42 
These growth assessment and functional impact scores are combined to produce a Composite 43 
Score for any set of Spike substitutions detected.  With this systematic approach to routinely 44 
score and rank emerging variants, we have established a method to identify threatening variants 45 
early and prioritize them for experimental evaluation. 46 

 47 

 48 

Introduction 49 

The ongoing evolution of SARS-CoV-2 has remained a persistent public heath challenge 50 
throughout the entire course of the pandemic.  In just two and a half years since the first strain 51 
of the virus was isolated and fully sequenced, SARS-CoV-2 has evolved into hundreds of 52 
thousands of strains containing unique combinations of mutations, also known as variant 53 
constellations, with many of these mutations leading to altered virus phenotypes in terms of 54 
antigenicity, transmissibility, and viral fitness.25,26  In order to label the rapidly growing collection 55 
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of variants, the scientific community has relied on the PANGO Lineage21 nomenclature or WHO 56 
classifications as naming schemes for these variants. The continual emergence of SARS-CoV-2 57 
variants has caused public health agencies to categorize these lineages depending on their 58 
predicted importance. In the United States, the CDC has identified these as four categories: 59 
Variants Being Monitored (VBM), Variants of Interest (VOI), Variants of Concern (VOC), or 60 
Variants of High Consequence (VOHC). Classification is dependent on viral growth dynamics 61 
and level of threat to preexisting immunity or therapeutic efficacy. Notable Variants of Concern 62 
include B.1.1.7 (WHO class Alpha), B.1.617.2 (WHO class Delta), and the most recent 63 
B.1.1.529/BA.1-BA.5 (WHO class Omicron).27   64 

It has been a consistent pattern throughout the course of the pandemic for SARS-CoV-2 to 65 
acquire genetic changes of functional and epidemiological importance, beginning with the 66 
observation as early as Spring 2020 that the Spike protein mutation, D614G, was associated 67 
with higher viral loads and was under positive selection.16 Since then, with the emergence of 68 
Alpha and Delta, Spike mutations such as N439R, N501Y, E484K, and P681H, have been 69 
linked to increased ACE2 binding affinity, antibody binding escape, and enhanced viral 70 
replication.3,29,32,  The most recently emerged Variant of Concern, Omicron, has been reported 71 
to contain constellations of mutations across the n-terminal domain (NTD) and receptor binding 72 
domain (RBD). This has resulted in high levels of viral antigenic escape, and partial or complete 73 
resistance to the majority of available therapeutic monoclonal antibodies and, to a large extent, 74 
infection or vaccine-elicited polyclonal sera.14,30  The astonishing ability of SARS-CoV-2 to 75 
rapidly evolve into variants with expanded cellular tropism, enhanced replication, increased 76 
transmissibility, and evasion of preexisting immunity has triggered the scientific community to 77 
band together and critically monitor the evolution of this virus through efforts like the US 78 
National Institute of Allergy and Infectious Diseases (NIAID)’s SARS-CoV-2 Assessment of Viral 79 
Evolution (SAVE) program1 and COVID-19 Genomics UK Consortium (COG UK), which seek to 80 
iteratively provide a risk-assessment of emerging variants of interest and offer 81 
recommendations towards an optimal public health response.  82 

A key component to successfully monitoring viral evolution, and thereby setting the stage for 83 
risk assessment, is through genomic surveillance.12,16 Thanks to the growing availability of next 84 
generation sequencing (NGS) technologies, SARS-CoV-2 genome sequences from millions of 85 
infected individuals across the globe have been determined and deposited into public 86 
databases11 such as the National Center for Biotechnology Innovation (NCBI) GenBank, the 87 
Global Initiative on Sharing Avian Influenza Data (GISAID)20, and the Bacterial and Viral 88 
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Bioinformatics Resource Center (BV-BRC)24.  These data have been dynamically growing at a 89 
rapid pace since the early stages of the pandemic and have allowed researchers to pinpoint 90 
mutations under positive or negative selection through the evaluation of occurrence rates of 91 
synonymous versus non-synonymous nucleotide substitutions or identify the mutational drivers 92 
of evolution by modeling growth as a linear combination of the effects of individual 93 
mutations.15,31  Overall, the amount of SARS-CoV-2 genomic sequencing being carried out on a 94 
global scale and the bioinformatics capabilities to understand these data has opened 95 
opportunities for diverse research into strategies for the early detection of emerging variants of 96 
concern.  This is a concept by which computational frameworks are used to manage and 97 
analyze rapidly growing viral sequencing data and ultimately prioritize emerging variants based 98 
on epidemiological dynamics and functional characteristics in near real time1,15,17.  The concept 99 
of early detection is a key aspect of the NIAID SAVE program - to select and prioritize the 100 
variants for in vitro and in vivo experimentation to assess risk of novel emerging variants (see 101 
Reference #1 for a complete description of the NIAID SAVE program for more details of the 102 
integrated workflow). 103 

Here we present a computational heuristic developed for early detection of SARS-CoV-2 104 
emerging variants of interest, which combines spatiotemporal sequence prevalence dynamics 105 
and geographic spread with functional impact prediction, that can be used to rank variants 106 
composed of constellations of substitutions.  The methods described have been used to rank 107 
emerging variants of interest for the NIAID SAVE consortium Early Detection group every month 108 
since early 2021 to inform wet-lab experimentation. 109 

 110 

 111 

Methodology and Results 112 

Algorithms for Early Detection 113 

Sequence Prevalence Dynamics - The BV-BRC team has developed the SARS-CoV-2 Early 114 
Detection and Analysis Pipeline to offer informatics support for analyzing emerging SARS-CoV-115 
2 variants from genomic sequencing data and associated epidemiological metadata processed 116 
from public databases.  Throughout the pandemic, the team has run this pipeline nearly every 117 
week to process SARS-CoV-2 genomic sequencing and epidemiological data and support the 118 
Early Detection component of the NIAID SAVE program.  Data for this pipeline can be 119 
downloaded from the EpiCov portal of GISAID20, NCBI GenBank, Virus Pathogen Resource23, 120 
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or BV-BRC24 databases.  A primary aspect of this pipeline is the ability to capture four sequence 121 
prevalence dynamics segregated by month and geographic location: 1) the total SARS-CoV-2 122 
genome sequence counts, 2) the genome sequence counts for specific lineages and variants, 3) 123 
the sequence prevalence of these lineages and variants, and 4) the growth rates of these 124 
lineages and variants from month to month (see Supplementary Material for more details). 125 
These sequence prevalence dynamics are calculated for individual PANGO lineages21, single 126 
amino acid substitutions found in any SARS-CoV-2 protein, and unique constellations of protein 127 
substitutions denoted as “covariates”, which we refer to collectively as “variants”. Note that 128 
covariates consist of a string of single amino acid mutations identified in one or more proteins of 129 
some SARS-CoV-2 sequence isolate.  Each covariate also belongs to a specific PANGO 130 
lineage based on the nomenclature status of the origin sequence.  Multiple covariates of a 131 
single protein can belong to the same PANGO lineage.  In this work, we focus on the analysis of 132 
Spike covariates since this has been the initial focus of the NIAID SAVE program. 133 

Generating the sequence prevalence dynamics of emerging variants provides the required 134 
epidemiological parameters needed by the scoring heuristics for predicting which variants might 135 
be of concern.  We designed a workflow to capture these dynamics as an upstream component 136 
of the scoring heuristics. 137 

Capturing the Dynamics of Emerging Variants - A custom built pipeline was routinely used to 138 
compute sequence prevalence dynamics by capturing SARS-CoV-2 variants and isolation 139 
metadata (geographic location and date of isolation) from the genomic sequencing databases. 140 
Strict quality control criteria were used to filter out genomes with high numbers of ambiguous or 141 
indeterminate bases (n>x), low sequence length coverage (n<x,000kb), missing viral names, or 142 
improper metadata such as incorrect representation of dates or region names. Genomes were 143 
then pairwise aligned to the Wuhan-Hu-1 reference genome (NC_045512.2), and a constellation 144 
of variants was extracted for the Spike protein, or for the entire SARS-CoV-2 proteome (all 16 145 
non-structural proteins as well as E, M, N, S, ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF9b, 146 
ORF10, and ORF14). Variant constellations can then be partitioned into temporal and 147 
geographic groups. The total number of genomes isolated for these groups is also calculated 148 
and serves as the denominator for the prevalence ratio (formula 1).  Dates were then partitioned 149 
by month, and variant constellation counts and total isolate counts per region per date month 150 
were used to compute epidemiological dynamics, namely the prevalence and growth rates of 151 
variants by month as shown in formulas (1) and (2). 152 

(1) 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒	𝑅𝑎𝑡𝑖𝑜 = #	#$%&$'(	)*+,*'-*.	&'	/*0&1'	/	2,%&'0	3*%&12	3
#	41($5	)*+,*-*.	6.15$(*2	&'	/*0&1'	/	2,%&'0	3*%&12	3

 153 
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 154 

(2) 𝐺𝑟𝑜𝑤𝑡ℎ	𝑅𝑎𝑡𝑒 = 3%*7$5*'-*	/$(&1	&'	/*0&1'	/	2,%&'0	3*%&12	3	
3%*7$5*'-*	/$(&1	&'	/*0&1'	/	2,%&'0	3*%&12	389

 155 

Running this process to identify variant constellations and acquire region-date counts directly 156 
from the raw sequence data is a very computationally expensive task for a large batch of 157 
genomes and requires High-Performance Computing. An alternative approach is to use 158 
preprocessed data provided in GISAID metadata files, which can be downloaded with a 159 
registered GISAID account.  Records include variant constellations, geographic location, date of 160 
collection, and basic quality control data such as the sequence length and ambiguous 161 
nucleotide content.  These files can be used to extract the Spike variant constellation of each 162 
record, count the occurrence of these Spike variants by region and date, bin the dates by 163 
month, and compute the monthly prevalence and growth rate dynamics for each Spike variant 164 
based on the total sequence record counts per region and date.  PANGO lineage designations 165 
can also be used to count the occurrence of specific lineages by region and date and compute 166 
spatiotemporal dynamics.  A similar strategy can be used to collect data for single amino acid 167 
substitutions rather than variant constellations or PANGO Lineages, iterating through each 168 
sequence record, and counting the occurrence of each single mutation by region and date and 169 
then computing the prevalence and growth rates of these single mutations by month per region. 170 

This workflow was used to generate sequence prevalence dynamics based on either GISAID 171 
metadata files or GenBank/BV-BRC FASTA files and then fed into the scoring heuristics 172 
component of the pipeline (see the Supplementary Material for more details). 173 

Sequence Prevalence Score - To identify SARS-CoV-2 variations with concerning 174 
epidemiological dynamics, a scoring heuristic based on sequence prevalence ratio (Formula 1), 175 
growth in sequence prevalence (Formula 2), and geographic spread was devised - the 176 
Sequence Prevalence Score.  This scoring method can be applied to rank variants within the 177 
entire dataset, within a specific PANGO lineage, a specific WHO clade, or a user supplied list of 178 
covariates. First, this method segregates variants for each country.  Next, only variants with a 179 
sequence count greater than 10 in the most recent month are retained to control for large 180 
apparent growth rates associated with small numbers.  Any variants that were filtered out are 181 
assigned a score of 0.  To calculate the Sequence Prevalence Score, the most recent three 182 
months of data are used. A score of 1 is assigned for every country/month combination in which 183 
the sequence prevalence is >5% or the growth rate from the previous month is >5-fold.   These 184 
numbers are then summed to obtain the final Sequence Prevalence Score across all 185 
countries/month combinations.  Three months of data is the default interval applied, but users 186 
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can specify this parameter through a “--interval” argument.  Figure 1 shows a ranking using the 187 
Sequence Prevalence Score to prioritize variants from GISAID data processed in November of 188 
2021, which is considered the initial month of emergence of the Omicron variant.  In this 189 
ranking, the Sequence Prevalence Score for the Omicron variant is still relatively small but 190 
detectable. 191 

Functional Impact Score – While the Sequence Prevalence Score quantifies prevalence 192 
properties of variants, it requires some minimum time period to observe concerning trends and 193 
may not rank concerning variants high at early stages of emergence.  A complementary 194 
approach for analyzing emerging variants independent of epidemiological dynamics is to predict 195 
their functional impact using prior knowledge from experimental datasets.  We have designated 196 
regions of the Spike protein that have been experimentally shown to impact immune escape, 197 
receptor binding affinity, or viral replication as “Sequence Features of Concern” (SFoC).  We 198 
detail our procedure for selecting SFoCs in the following section, but overall, these SFoCs 199 
include sites that could impact the binding of one or more monoclonal antibody classes10, 200 
neutralization with infection or vaccine (mrna-1273) induced antibodies, affect receptor binding 201 
affinity, or functionally important sites (NTD Supersite13, Furin Cleavage Site28,29, or D614G16). 202 

Upon establishing our list of SFoCs, we assign each Spike variant a Functional Impact Score 203 
based on positional overlap with these critical regions.  For each mutated position in the variant, 204 
if an overlap is found with one of the regions in the SFoC list, a score of 1 is assigned treating 205 
separately each of the monoclonal antibody classes, convalescent serum, vaccine serum, ACE2 206 
binding affinity, NTD supersite, furin cleavage site, and site D614G.  Any amino acid substitution 207 
or deletion that has a position falling within an SFoC is treated as one scorable mutation.  208 
Summing all the scores of each position mutated in the variant produces the Functional Impact 209 
Score. In Figure 2 we provide a visual representation of what this positional overlap with SFoCs 210 
defined by deep mutational scanning antibody escape data would look like.  The figure comes 211 
from an implementation of these annotations in the genome browser of the BV-BRC SARS-212 
CoV-2 Variant Tracker24 and quantifies impact of monoclonal antibody binding by class for a 213 
mutation at each site on the Receptor Binding Domain. 214 

Sequence Features of Concern – Most of the data used to define the SFoCs were derived from 215 
the deep mutational scanning experiments conducted by the Bloom Lab2,3,4,5,6,7,8,9.  The resulting 216 
experimental data quantified the mutation impact towards monoclonal antibody escape, 217 
convalescent serum antibody escape, vaccine (mrna-1273)  elicited antibody escape, and ACE2 218 
binding affinity for nearly every position on the Receptor Binding Domain (RBD).  To achieve 219 
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these quantifications, the Bloom Lab constructed an RBD mutant library such that each amino 220 
acid site on the RBD was mutated with the 19 possible amino acid substitutions in the genetic 221 
background of the Wuhan-Hu-1 reference strain.  The Bloom Lab used rigorous statistical 222 
processing to calculate an “escape fraction” for antibody escape (all between 0 and 1) and 223 
“binding average” for ACE2 affinity (all between -5 and 1) for every mutation at every position of 224 
the RBD.  Each of the different monoclonal antibodies belonging to one of the four Barnes et al. 225 
structural epitope classes10, subject specific convalescent sera, and subject specific vaccine 226 
sera had their own escape fraction scores per mutation per site.  The data from all these deep 227 
mutational scanning studies can be downloaded and explored at 228 
https://jbloomlab.github.io/SARS2_RBD_Ab_escape_maps/.  229 

We examined the distribution of scores for each antibody escape datasets and the ACE2 230 
binding dataset to narrow down on positions of the RBD vulnerable to significant increase in 231 
antibody escape or ACE2 binding affinity upon mutation.  With a consolidated violin plot for all 232 
monoclonal antibodies and convalescent/vaccine sera, the analysis of antibody escape data 233 
showed that most of the escape fraction values were close to the 0 baseline and less than 0.2 234 
(Figure 3).  Therefore, to capture positions on the RBD that lead to strong antibody escape 235 
upon being mutated, an escape fraction threshold of 0.25 was applied.  Consequentially, the 236 
antibody escape SFoCs were defined as RBD sites with one or more mutations that lead to an 237 
escape fraction exceeding this threshold for some monoclonal antibody, convalescent subject 238 
sera, or vaccine subject sera.  The monoclonal antibodies corresponding to a mutation 239 
exceeding this escape fraction threshold were categorized into their structural epitope class to 240 
generalize the scoring for functional impact. As a result of this threshold, we designated 75 sites 241 
on the RBD that could significantly impact the binding of up to four antibody classes and 36 242 
sites that could significantly impact the binding of antibodies from convalescent or vaccine sera. 243 

Similarly, we evaluated the distribution of scores for the ACE2 binding affinity dataset.  This 244 
analysis showed that most scores were close to the 0 baseline or negative, where a negative 245 
score implied a decrease in binding affinity (Figure 4).  To identify mutations that led to 246 
increased ACE2 binding affinity, a binding average threshold of 0.1 was selected.  As a result, 247 
each site with one or more mutations that exceeded this threshold was defined as an SFoC for 248 
increased ACE2 affinity, thus designating 12 sites that could significantly increase the binding to 249 
ACE2 upon mutation.  We found site 501 to be included in this list, which is a notable site that 250 
leads to high degree of conformational alterations of the Spike RBD when bound to ACE2 upon 251 
acquiring a mutation39. 252 
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The remaining Sequence Features of Concern were those deemed critical for adaptive immunity 253 
or viral tropism, such as the NTD supersites13 (sites 14-20, 140-158, 245-264), site 614 of the 254 
Spike16, and the region flanking the furin cleavage site28,29 (sites 671-692).  These were 255 
determined through literature curation. 256 

Composite Score - Once the Sequence Prevalence Score and the Functional Impact Score 257 
have been computed, the two are summed to produce the Composite Score, which is used in 258 
our monthly reports to NIAID SAVE for variant rankings.  Composite Scoring can be applied to 259 
all variants in a dataset, variants among a specified WHO clade, covariates among a specified 260 
PANGO lineage, or variants in a user supplied list.  Thus, the Composite Score can 261 
simultaneously identify variants with alarming sequence prevalence dynamics and variants that 262 
would be predicted to impact important functional characteristics of the virus or both.  For 263 
example, an initial analysis of the Omicron variant using epidemiological data from November 264 
2021 did not show a high Sequence Prevalence Score (Figure 1), but the original Omicron 265 
sequence did show a very high Functional Impact Score and therefore a high Composite Score 266 
(Figure 5).  These results highlight the importance of paying attention to both the Sequence 267 
Prevalence Score and Functional Impact Score for the early identification of Variants of Interest 268 
for further evaluation. 269 

The Composite Score is also very useful in quantifying subtle differences among covariates of 270 
the same clade.  By January 2022, the most dominant lineage of Omicron clade was BA.1, 271 
which included several sub-lineages with varying Spike covariates, most significantly the 272 
addition of the R346K mutation.  At the same time, BA.2 was also emerging and there was a 273 
primary variant constellation similar to BA.1 but with several unique mutation sites.  When a list 274 
of these distinct Omicron covariates was supplied to the ranking algorithm, differences between 275 
the original BA.1 covariate and BA.1 + R346K could be observed through an increase in the 276 
functional impact score (Figure 6).  In contrast, many of the other covariates had a Sequence 277 
Prevalence Score of 0, which indicated that those covariates were not displaying any significant 278 
regional growth and likely not as threatening as the original BA.1 or the BA.1 + R346K (now 279 
known as BA.1.1) covariates. 280 

Mutation Prevalence Score – In addition to the covariate constellation analysis, a Mutation 281 
Prevalence Score analyzing single amino acid substitutions on the SARS-CoV-2 Spike protein 282 
is also calculated.  As with the Sequence Prevalence Score, this approach uses data from the 283 
past three months to assign a score of 1 for every country/month combination in which the 284 
prevalence of an amino acid mutation is >5% or the growth rate is greater than 5-fold.  Figure 285 
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7A-B show the results of ranking mutations within the RBD and NTD using global GISAID 286 
sequence data from December 2021. 287 

Emerging Lineage Score – In some cases, researchers may just want to know how the various 288 
PANGO Lineage designations differ in terms of their epidemiological dynamics. As we saw with 289 
Delta, there were a multitude of AY.* lineages for the entire WHO clade designated in a 290 
relatively short time frame, so ranking these lineages would be helpful to identify which should 291 
be prioritized for further analysis.   292 

As with the Sequence Prevalence Score, the Emerging Lineage Score begins by filtering for 293 
covariates with an assigned country and with a variant count greater than 10 in the most recent 294 
month.  From there, using the past three months of data, for each PANGO lineage, every 295 
unique covariant/country/month combination in which the growth rate is greater than 15 is 296 
assigned a score of 1; these values are summed to compute the Emerging Lineage Score.  297 
Since this algorithm is counting multiple distinct covariates comprising each lineage, it could be 298 
biased towards PANGO lineages with very abundant covariates; hence, we used a higher 299 
growth rate threshold to capture the key covariates driving the overall growth of the lineage.  A 300 
growth rate of 15 was chosen as it results in a relatively stable list of PANGO lineages.  Growth 301 
rates above 15 did not significantly affect the ranking of the list.  This growth rate is also 302 
appealing in that it is relatively high and therefore relatively stringent.  Figure 8A-B shows the 303 
results from this method using GISAID data from December 2021 and January 2022 to rank 304 
lineages globally. BA.1 was the dominant Omicron lineage in December 2021 and was the 305 
lineage with the highest Emerging Lineage Score.  (Figure 8A).  However, by January 2022 306 
additional Omicron lineages were rapidly growing with the presence of BA.1.1 and BA.2 (Figure 307 
8B).  Since these lineages are made up of multiple covariates, we could take the results 308 
returned from the Emerging Lineage Score to decide which covariates within these lineages 309 
warranted further investigation by running a PANGO lineage specific Composite Score ranking 310 
to prioritize the covariates within a specific lineage, as shown in Figure 9 with BA.2, which 311 
captured a single covariate of the lineage with the strongest dynamics as early as January 312 
2022. 313 

 314 

Visualizing Early Detection 315 

To complement our early detection analysis of emerging SARS-CoV-2 variants through our 316 
scoring and ranking algorithms, we found it useful to visualize variant growth both globally and 317 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2022. ; https://doi.org/10.1101/2022.08.08.22278553doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.08.22278553
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

regionally to further understand the dynamics of these variants and facilitate early detection.  318 
We demonstrate the utility of these visualizations for early detection purposes by providing 319 
some case studies regarding the early dynamics of the Delta and Omicron variants.  320 

Visualizing Relative Growth of PANGO Lineages – When a new variant displays alarming 321 
epidemiological dynamics or predicted functional changes, like Delta and Omicron did, 322 
researchers may want to visualize the growth dynamics of the new variant in the context of how 323 
the prevalence of other variants are changing.  We commonly see during viral evolution that 324 
when a new dominant variant/strain emerges, it triggers a phenomenon where the growth of the 325 
currently circulating variants suddenly begin to sharply decline, perhaps because the new 326 
variant has a fitness advantage and is able to outcompete the older variants16,19,31,33.  If we 327 
observe that the prevalence of a novel variant with alarming characteristics is increasing with a 328 
corresponding sudden decline in growth of other circulating variants, this will further indicate the 329 
early detection of a potential Variant of Concern.  As an example, prior to the emergence of 330 
Delta, B.1.1.7-derived Alpha variants were the most dominantly circulating variants around the 331 
world.  However, between May and June of 2021, it was becoming clear that the newly 332 
emerging Delta variant was displaying noteworthy properties19 and very quickly replacing the 333 
other circulating variants, including B.1.1.7 (Alpha), both globally (Figure 10A) and regionally, 334 
especially in the UK (Figure 10B).  By visualizing these dynamics in stacked line plots, the 335 
relative magnitude by which a novel variant is growing offers further evidence of the early 336 
detection of a potential Variant of Concern. 337 

Visualizing Growth of Variants – In addition to tracking the emergence and growth of new 338 
PANGO lineages, it is also useful to visualize the evolution and growth of variants within the 339 
lineage.  As discussed earlier, B.1.1.529 (Omicron) started to show rapid growth in December 340 
2021 and then quickly accumulated additional substitutions, ultimately generating the newly 341 
designated BA.1 and BA.2 lineages and sub-lineages.  By providing a list of covariates of 342 
interest, like the one used in Figure 6, our pipelines produced a graph showing the prevalence 343 
of a selected list (Figure 11).  Comparing the Composite Score results from Figure 6 with the 344 
visualization in Figure 11, some interesting insights about BA.1 + R346K emerge.  BA.1 + 345 
R346K had a high functional impact score, and while the Sequence Prevalence Score was also 346 
high, it wasn’t quite as high as BA.1 for the month of January 2022.  However, the Figure 11 347 
visualization shows that BA.1 + R346K was exhibiting a sharper change in its global prevalence 348 
relative to BA.1, suggesting that this variant would warrant further monitoring.  Indeed, these 349 
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plots provide a complementary representation to the Composite Score ranking to facilitate early 350 
detection analysis and more confidently identify variants that warrant experimental evaluation. 351 

Visualizing Growth of Individual Amino Acid Substitutions – Analysis of the characteristics of 352 
lineages and covariates also provided some insights into the different amino acid mutations that 353 
contribute to the multitude of covariates, in some cases from different lineages, perhaps due to 354 
convergent evolution or recombination.  To assess their individual effects, the dynamics of 355 
selected single amino acid substitutions can also be plotted.  For example, prior to January 356 
2022, the L24-, R346K, N440K, G446S, L452R, A701V mutations were appearing sporadically 357 
throughout our ranked covariates.  Plotting the dynamics of these individual amino acid 358 
mutations over subsequent time periods shows that the R346K and G446S mutations started to 359 
decrease in prevalence at the same time as the prevalence of L24- was rapidly increasing, 360 
suggesting that viruses carrying this mutation may possess a fitness advantage (Figure 12).  361 
Indeed, this L24- is part of an extended deletion that distinguishes BA.2, which subsequently 362 
replaced BA.1. 363 

 364 

 365 

Challenges 366 

Defining SARS-CoV-2 variants that warrant experimental evaluation for functional testing 367 
presents significant challenges.  Early genomic sequencing data is often subject to data 368 
imbalances or biases with respect to specific geographic regions.  Wealthier countries with 369 
higher sequencing capacity, such as the US and UK, are responsible for the majority of publicly 370 
deposited SARS-CoV-2 genomes. Of the 4.5 million SARS-CoV-2 genomes available in 371 
GenBank and BV-BRC as of April 2022, roughly 47% were from the US and 38% from the UK.  372 
Another challenge is the sequence ambiguity that can occur as a new variant emerges and 373 
before the sequencing assays can be optimized.  And since the SARS-CoV-2 genomes 374 
submitted to the public databases have already been assembled, the quality of the read level 375 
data cannot be easily evaluated independently.  Processing variant data through the GISAID 376 
metadata file downloads, many sequences appeared to have reverted to ancestral residues in 377 
comparison to the original Omicron outbreak sequences, but in many cases this is due to low 378 
sequence coverage in certain genomic regions that is not apparent in the metadata file.  Indeed, 379 
processing assembled GenBank sequencing data from BV-BRC, only about 25% of sequences 380 
had little to no ambiguities, and the amount of ambiguity in the sequencing data fluctuated 381 
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during the initial emergence of certain important variants, like Delta and Omicron, making it 382 
challenging to compute true sequence prevalence of authentic covariates.  Another challenge is 383 
choosing the amount of data that ought to be regularly downloaded for computing the early 384 
detection scoring heuristics.  While focusing on the most recent data could potentially be used 385 
to identify concerning variants more swiftly, a potential drawback would be sequence biases 386 
resulting in minimal representation.  On the other hand, longer temporal data is more 387 
comprehensive and accurate, but could delay identification of newly emerging variants of 388 
concern.  In our pipeline, we allow the option to choose anywhere from the past 2 – 6 months of 389 
global sequencing data to evaluate, with a default of 3 as our best attempt to set a balance 390 
between early detection and unbiased, accurate results.  Finally, the most enduring challenge is 391 
the fact that these data are very large and continuously growing, as new SARS-CoV-2 392 
sequencing data are being deposited by the thousands every day.  Designing pipelines to 393 
carryout real-time genomics analysis for a shear amount of data is a technically challenging 394 
task, and our techniques on how best to manage, analyze, and scale will need to continuously 395 
adapt. 396 

 397 

 398 

Discussion 399 

Over two and a half years since the initial declaration of the COVID-19 pandemic, it seems clear 400 
that SARS-CoV-2 will persist in our community and remain a public health issue for the 401 
indefinite future.  However, if we, as a biomedical community, come together and maximize our 402 
resources to combat this virus, we can consistently minimize the threat it brings to our world and 403 
transition to a phase in which SARS-CoV-2 becomes an endemic infection with only modest 404 
effects on public health.  A major factor that could contribute to consistently minimizing the 405 
threat brought by SARS-CoV-2, or any other emerging pathogen, is through genomic 406 
surveillance.  Our most precise approach to monitoring viral evolution to ensure that we 407 
maintain reliable therapeutics and accurate diagnostics is by routinely collecting samples from 408 
infected individuals and using sequencing technologies to acquire the whole genome 409 
sequences.  With the COVID-19 outbreak, the research and public health communities have 410 
truly excelled at this task, as we have now reached a point where millions of SARS-CoV-2 411 
genome sequences have been deposited in public databases.  That being said, all of these data 412 
are only as powerful as the computational resources used to analyze them.  Thus, this 413 
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explosion in publicly available viral genomes also calls for the development of appropriate 414 
computational frameworks that can process and scale as the data grows to enable the timely 415 
identification and prioritization of emerging variants.   416 

In this work, we present approaches to process SARS-CoV-2 genomic sequences along with 417 
epidemiological metadata on a regular basis and apply scoring heuristics to prioritize variants 418 
based on their epidemiological dynamics and predicted functional characteristics by computing 419 
Sequence Prevalence, Functional Impact, and the Composite Scores.  The output provides 420 
concise lists of ranked variant constellations (covariates), offering a straightforward approach for 421 
wet-lab scientists to immediately determine which combinations of mutations ought to be 422 
evaluated experimentally.  These methods were validated through the detection of the Omicron 423 
variant and provided a relatively high-ranking score at early stages of emergence in November 424 
2021.  In addition to early detection of novel variants like Omicron, our system makes it easy to 425 
evaluate the subtle differences among the multitude of covariates arising from a single lineage, 426 
like comparing the BA.1 + R346K covariate to the original BA.1 covariate.  Finally, we also 427 
provide multiple visualization methods for variant growth either by PANGO lineage, covariate, or 428 
single amino acid substitution and demonstrate how coupling rankings with visualizations can 429 
further ground our confidence in early detection of variants that warrant experimental evaluation.   430 

While the initial focus of this work was on Spike protein variants, as that was NIAID SAVE’s 431 
interest for evaluation, the framework was recently extended to score and rank proteome-wide 432 
SARS-CoV-2 variant constellations and single amino acid substitutions, which we provide in our 433 
publicly available pipeline.  While the primary focus was the Spike protein due to its critical role 434 
in adaptive immunity and viral tropism, the community is beginning to take serious interest in 435 
mutations arising in non-structural proteins, particularly nsp3, nsp5, and RNA-dependent RNA 436 
Polymerase (nsp12), due to their importance in the SARS-CoV-2 replication cycle and antiviral 437 
drug targeting34,35,36,37,38.  We are paying close attention to the literature to monitor the science 438 
behind non-Spike protein regions that play key roles in replication or impact drug targeting, and 439 
are continually updating our Sequence Features of Concern to account for this new knowledge.  440 
Ultimately, our framework can begin providing Composite Scores for a variant constellation 441 
specific to any SARS-CoV-2 protein. 442 

The methods presented in this work could be extended for evaluating variants of other viral 443 
species if sufficient data granularity is available.  This approach requires enough genomic 444 
sequencing data, consistent spatiotemporal isolation metadata, a methodology to compute 445 
variants with respect to a reference or a consensus genome22, and sufficient prior knowledge 446 
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through experimental data to define Sequence Features of Concern and quantify functional 447 
impacts.  Moreover, these algorithms could be extended to evaluate genomic surveillance data 448 
from zoonotic disease reservoirs, such as influenza virus in avian or swine species.  Indeed, 449 
several projects already exist to collect viral genomic sequences from such reservoirs and 450 
warehouse these data in public databases18. Overall, the methodologies described here can 451 
play an important role in a complete public health ecosystem by utilizing genomic sequencing 452 
data to monitor viral evolution and remain steps ahead of SARS-CoV-2, or any other virus, and 453 
ultimately deter the next pandemic. 454 

 455 
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 635 

Figure 1 – Global Spike Variant Ranking with the Sequence Prevalence Score. The output 636 
of a ranking based on GISAID data up to November 2021.  The analysis returns a global 637 
ranking for all Spike protein variants ranked by the Sequence Prevalence Score.  The initial 638 
emergence of the Omicron variant is being captured in this ranking, but at a relatively low rank, 639 
as highlighted in the table. 640 

 641 
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 643 

Figure 2 – Sequence Features of Concern from Deep Mutational Scanning Antibody 644 
Escape Data. An image from the BV-BRC SARS-CoV-2 Variant Tracker24 genome browser 645 
shows a heatmap that quantifies the median escape fraction for each antibody class (Class 1 – 646 
4), with the darker blue indicating greater escape fraction, implying greater antibody escape due 647 
to the mutation.  We use these quantifications of potential antibody escape per mutated site per 648 
antibody class to define one type of Sequence Features of Concern.  By identifying overlap 649 
between variants (bottom track) and these Sequence Features of Concern we can compute the 650 
Functional Impact Score. 651 
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 661 

Figure 3 – Defining Sequence Features of Concern from a Threshold of Escape Fractions. 662 
Violin plots of the distribution of escape fraction scores for monoclonal antibody escape and 663 
serum antibody escape from the Bloom Lab deep mutational scanning data.  This distribution 664 
analysis led to an escape fraction threshold cutoff of 0.25 and subsequently led to the 665 
designation of 75 RBD sites significantly impacting monoclonal antibody binding and 36 sites 666 
impacting convalescent/Moderna vaccine (mrna-1273) sera elicited antibodies upon mutation. 667 
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 676 

 677 

 678 

 679 

Figure 4 – Defining Sequence Features of Concern from a Threshold of ACE2 Binding 680 
Scores.  The distribution of ACE2 binding average scores from the Bloom Lab deep mutational 681 
scanning data.  A score below 0 indicates a decrease in ACE2 binding affinity upon mutation, 682 
whereas a score above 0 indicates an increase in ACE2 affinity. Subsequently, this distribution 683 
analysis was used to select a threshold value of 0.1, that led to designating 12 RBD sites that 684 
could significantly increase ACE2 binding affinity upon mutation. 685 
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 688 

Figure 5 – Global Spike Variant Ranking with the Composite Score. The output of a ranking 689 
based on GISAID data up to November 2021.  The analysis returns a global ranking for all the 690 
Spike variants based on a Composite Score.  In this case, the Omicron variant (highlighted in 691 
yellow) jumped considerably in rank relative to the Sequence Prevalence Score in Figure 1, 692 
thus showing the relevance of quantifying the Functional Impact Score in overall variant 693 
rankings. 694 
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 700 

Figure 6 – Global Spike Variant Ranking for a User Supplied Annotated List with the 701 
Composite Score. The output ranking from the Composite Score of an inputted list of 702 
covariates, annotated with names based on the additional or lost mutations relative to a 703 
consensus variant constellation, using GISAID data up to January 2022. These naming 704 
annotations offer simpler representations of the covariate sequence. The scoring in the last 705 
three columns quantitatively capture how these covariates differ, including the increase in 706 
functional impact for BA.1 + R346K relative to the ancestral BA.1. 707 
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 721 

 722 

Figure 7 – Global Single Amino Acid Mutation Ranking with the Mutation Prevalence 723 
Score. (A) The output of an RBD mutation ranking and (B) the output of an NTD mutation 724 
ranking based on GISAID data up to December 2021. The results return a ranking for Spike 725 
protein amino acid mutations ranked by the Mutation Prevalence Score within their respective 726 
domain, RBD or NTD.  727 
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 738 

 739 

Figure 8 – PANGO Lineage Ranking with the Emerging Lineage Score. The output of a 740 
lineage ranking based on GISAID data up to December 2021 (A) and January 2022 (B).  The 741 
results return a global ranking of PANGO Lineages based on the Emerging Lineage Score.  In 742 
December 2021, BA.1 was the strongest emerging lineage with other Delta sub-lineages still on 743 
the rise.  However, by January 2022, several Omicron lineages were newly emerging, with the 744 
Delta lineages tapering off. 745 
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 751 

Figure 9 – Global Ranking of BA.2 Variants with the Composite Score. The output of a 752 
Composite Score ranking based on GISAID data up to January 2022.  The purpose of this 753 
ranking is to focus the analysis on covariates within a specific lineage, in this case within BA.2.  754 
The ability to capture a dominant covariate (top row) likely driving much of the observed 755 
dynamics for this lineage can be observed. 756 
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 761 

Figure 10 – Visualizing the Emergence of the Delta (B.1.617.2) Variant. (A) A plot of global 762 
trends overtime based on GISAID data up to June 2021 to visualize the early growth dynamics 763 
of Delta.  The graph displays the 10 PANGO lineages with the most substantial global 764 
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prevalence dynamics over a six-month time frame, with the early emergence of B.1.671.2 and 765 
the sudden sharp decline of B.1.1.7 clearly evident.  (B) A plot of growth trends for Delta in the 766 
United Kingdom based on GISAID data up to June 2021.  The graph displays the PANGO 767 
lineages with the most substantial global prevalence dynamics over a six-month time frame 768 
solely within the United Kingdom and shows the local growth of B.1.617.2 and decline of 769 
B.1.1.7. 770 

 771 

 772 

 773 

Figure 11 – Visualizing the Emergence of Omicron Variant Constellations. A plot displaying 774 
the prevalence dynamics over six months of Spike covariates in an inputted file based on 775 
GISAID data up to January 2022.  This visualization captures the sharp growth and relatively 776 
large global prevalence of BA.1 + R346K.  The names presented in the legend mean the 777 
ancestral PANGO lineage +/- certain amino acid mutations to represent different covariates.  778 
Underscores indicate that certain mutations were lost relative to the ancestral sequence. 779 
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 780 

Figure 12 – Visualizing Growth Patterns of Single Amino Acid Mutations in the Spike 781 
Protein.  A plot based on GISAID data up to March 2022 demonstrating the shift in dynamics 782 
for individual amino acid mutations.  This plot is based on an inputted list of six amino acid 783 
mutations.  Note that the L24- is a part of an extended deletion that also includes P25 and P26 784 
found in BA.2.  785 
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